1
|
Millán J, Di Cataldo S, Volokhov DV, Becker DJ. Worldwide occurrence of haemoplasmas in wildlife: Insights into the patterns of infection, transmission, pathology and zoonotic potential. Transbound Emerg Dis 2020; 68:3236-3256. [PMID: 33210822 DOI: 10.1111/tbed.13932] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022]
Abstract
Haemotropic mycoplasmas (haemoplasmas) have increasingly attracted the attention of wildlife disease researchers due to a combination of wide host range, high prevalence and genetic diversity. A systematic review identified 75 articles that investigated haemoplasma infection in wildlife by molecular methods (chiefly targeting partial 16S rRNA gene sequences), which included 131 host genera across six orders. Studies were less common in the Eastern Hemisphere (especially Africa and Asia) and more frequent in the Artiodactyla and Carnivora. Meta-analysis showed that infection prevalence did not vary by geographic region nor host order, but wild hosts showed significantly higher prevalence than captive hosts. Using a taxonomically flexible machine learning algorithm, we also found vampire bats and cervids to have greater prevalence, whereas mink, a subclade of vesper bats, and true foxes all had lower prevalence compared to the remaining sampled mammal phylogeny. Haemoplasma genotype and nucleotide diversity varied little among wild mammals but were marginally lower in primates and bats. Coinfection with more than one haemoplasma species or genotype was always confirmed when assessed. Risk factors of infection identified were sociality, age, males and high trophic levels, and both prevalence and diversity were often higher in undisturbed environments. Haemoplasmas likely use different and concurrent transmission routes and typically display enzootic dynamics when wild populations are studied longitudinally. Haemoplasma pathology is poorly known in wildlife but appears subclinical. Candidatus Mycoplasma haematohominis, which causes disease in humans, probably has it natural host in bats. Haemoplasmas can serve as a model system in ecological and evolutionary studies, and future research on these pathogens in wildlife must focus on increasing the geographic range and taxa of studies and elucidating pathology, transmission and zoonotic potential. To facilitate such work, we recommend using universal PCR primers or NGS protocols to detect novel haemoplasmas and other genetic markers to differentiate among species and infer cross-species transmission.
Collapse
Affiliation(s)
- Javier Millán
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Fundación ARAID, Zaragoza, Spain.,Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Sophia Di Cataldo
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Dmitriy V Volokhov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
2
|
Glidden CK, Koehler AV, Hall RS, Saeed MA, Coppo M, Beechler BR, Charleston B, Gasser RB, Jolles AE, Jabbar A. Elucidating cryptic dynamics of Theileria communities in African buffalo using a high-throughput sequencing informatics approach. Ecol Evol 2020; 10:70-80. [PMID: 31988717 PMCID: PMC6972817 DOI: 10.1002/ece3.5758] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Increasing access to next-generation sequencing (NGS) technologies is revolutionizing the life sciences. In disease ecology, NGS-based methods have the potential to provide higher-resolution data on communities of parasites found in individual hosts as well as host populations.Here, we demonstrate how a novel analytical method, utilizing high-throughput sequencing of PCR amplicons, can be used to explore variation in blood-borne parasite (Theileria-Apicomplexa: Piroplasmida) communities of African buffalo at higher resolutions than has been obtained with conventional molecular tools.Results reveal temporal patterns of synchronized and opposite fluctuations of prevalence and relative abundance of Theileria spp. within the host population, suggesting heterogeneous transmission across taxa. Furthermore, we show that the community composition of Theileria spp. and their subtypes varies considerably between buffalo, with differences in composition reflected in mean and variance of overall parasitemia, thereby showing potential to elucidate previously unexplained contrasts in infection outcomes for host individuals.Importantly, our methods are generalizable as they can be utilized to describe blood-borne parasite communities in any host species. Furthermore, our methodological framework can be adapted to any parasite system given the appropriate genetic marker.The findings of this study demonstrate how a novel NGS-based analytical approach can provide fine-scale, quantitative data, unlocking opportunities for discovery in disease ecology.
Collapse
Affiliation(s)
| | - Anson V. Koehler
- Department of Veterinary BiosciencesMelbourne Veterinary SchoolUniversity of MelbourneWerribeeVic.Australia
| | - Ross S. Hall
- Department of Veterinary BiosciencesMelbourne Veterinary SchoolUniversity of MelbourneWerribeeVic.Australia
| | - Muhammad A. Saeed
- Department of Veterinary BiosciencesMelbourne Veterinary SchoolUniversity of MelbourneWerribeeVic.Australia
| | - Mauricio Coppo
- Department of Veterinary BiosciencesMelbourne Veterinary SchoolUniversity of MelbourneWerribeeVic.Australia
| | | | | | - Robin B. Gasser
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Anna E. Jolles
- Department of Integrative BiologyOregon State UniversityCorvallisORUSA
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Abdul Jabbar
- Department of Veterinary BiosciencesMelbourne Veterinary SchoolUniversity of MelbourneWerribeeVic.Australia
| |
Collapse
|
3
|
Cotter SC, Reavey CE, Tummala Y, Randall JL, Holdbrook R, Ponton F, Simpson SJ, Smith JA, Wilson K. Diet modulates the relationship between immune gene expression and functional immune responses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:128-141. [PMID: 30954680 PMCID: PMC6527921 DOI: 10.1016/j.ibmb.2019.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/02/2023]
Abstract
Nutrition is vital to health and the availability of resources has long been acknowledged as a key factor in the ability to fight off parasites, as investing in the immune system is costly. Resources have typically been considered as something of a "black box", with the quantity of available food being used as a proxy for resource limitation. However, food is a complex mixture of macro- and micronutrients, the precise balance of which determines an animal's fitness. Here we use a state-space modelling approach, the Geometric Framework for Nutrition (GFN), to assess for the first time, how the balance and amount of nutrients affects an animal's ability to mount an immune response to a pathogenic infection. Spodoptera littoralis caterpillars were assigned to one of 20 diets that varied in the ratio of macronutrients (protein and carbohydrate) and their calorie content to cover a large region of nutrient space. Caterpillars were then handled or injected with either live or dead Xenorhabdus nematophila bacterial cells. The expression of nine genes (5 immune, 4 non-immune) was measured 20 h post immune challenge. For two of the immune genes (PPO and Lysozyme) we also measured the relevant functional immune response in the hemolymph. Gene expression and functional immune responses were then mapped against nutritional intake. The expression of all immune genes was up-regulated by injection with dead bacteria, but only those in the IMD pathway (Moricin and Relish) were substantially up-regulated by both dead and live bacterial challenge. Functional immune responses increased with the protein content of the diet but the expression of immune genes was much less predictable. Our results indicate that diet does play an important role in the ability of an animal to mount an adequate immune response, with the availability of protein being the most important predictor of the functional (physiological) immune response. Importantly, however, immune gene expression responds quite differently to functional immunity and we would caution against using gene expression as a proxy for immune investment, as it is unlikely to be reliable indicator of the immune response, except under specific dietary conditions.
Collapse
Affiliation(s)
- Sheena C Cotter
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | - Catherine E Reavey
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Yamini Tummala
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Joanna L Randall
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Robert Holdbrook
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Fleur Ponton
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia; Department of Biological Sciences, Macquarie University, NSW, 2109, Australia
| | | | - Judith A Smith
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|