1
|
Palominos MF, Bharadwaj R, Tralka C, Trang K, Aka D, Alami M, Andrews D, Bartlett BI, Golde C, Liu J, Le-Pedroza M, Perrot R, Seiter B, Sparrow C, Shapira M, Martin CH. The West African lungfish secretes a living cocoon during aestivation with uncertain antimicrobial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602297. [PMID: 39026789 PMCID: PMC11257426 DOI: 10.1101/2024.07.05.602297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
One of the most exceptional adaptations to extreme drought is found in the sister group to tetrapods, the lungfishes (Dipnoi), which can aestivate inside a mucus cocoon for multiple years at reduced metabolic rates with complete cessation of ingestion and excretion. However, the function of the cocoon tissue is not fully understood. Here we developed a new more natural laboratory protocol for inducing aestivation in the West African lungfish, Protopterus annectens, and investigated the structure and function of the cocoon. We used electron microscopy and imaging of live tissue-stains to confirm that the inner and outer layers of the paper-thin cocoon are composed primarily of living cells. However, we also repeatedly observed extensive bacterial and fungal growth covering the cocoon and found no evidence of anti-microbial activity in vitro against E. coli for the cocoon tissue in this species. This classroom discovery-based research, performed during a course-based undergraduate research experience course (CURE), provides a robust laboratory protocol for investigating aestivation and calls into the question the function of this bizarre vertebrate adaptation.
Collapse
Affiliation(s)
- M Fernanda Palominos
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720
| | | | - Charles Tralka
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720
| | - Kenneth Trang
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - David Aka
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Mariam Alami
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Dominique Andrews
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Ben I Bartlett
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Chloe Golde
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Joseph Liu
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Maya Le-Pedroza
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Robert Perrot
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Blanca Seiter
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Claudia Sparrow
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720
| |
Collapse
|
2
|
Abstract
AbstractClimate change is altering species' habitats, phenology, and behavior. Although sexual behaviors impact population persistence and fitness, climate change's effects on sexual signals are understudied. Climate change can directly alter temperature-dependent sexual signals, cause changes in body size or condition that affect signal production, or alter the selective landscape of sexual signals. We tested whether temperature-dependent mating calls of Mexican spadefoot toads (Spea multiplicata) had changed in concert with climate in the southwestern United States across 22 years. We document increasing air temperatures, decreasing rainfall, and changing seasonal patterns of temperature and rainfall in the spadefoots' habitat. Despite increasing air temperatures, spadefoots' ephemeral breeding ponds have been getting colder at most elevations, and male calls have been slowing as a result. However, temperature-standardized call characters have become faster, and male condition has increased, possibly due to changes in the selective environment. Thus, climate change might generate rapid, complex changes in sexual signals with important evolutionary consequences.
Collapse
|