1
|
Fischer S, Duffield C, Swaney WT, Bolton RL, Davidson AJ, Hurst JL, Stockley P. Egalitarian cooperation linked to central oxytocin levels in communal breeding house mice. Commun Biol 2024; 7:1193. [PMID: 39333722 PMCID: PMC11436823 DOI: 10.1038/s42003-024-06922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Relationships between adult females are fundamental to understanding diversity in animal social systems. While cooperative relationships between kin are known to promote fitness benefits, the proximate mechanisms underlying this are not well understood. Here we show that when related female house mice (Mus musculus domesticus) cooperate to rear young communally, those with higher endogenous oxytocin levels have more egalitarian and successful cooperative relationships. Sisters with higher oxytocin concentrations in the paraventricular nucleus (PVN) of the hypothalamus weaned significantly more offspring, had lower reproductive skew and spent more equal proportions of time in the nest. By contrast, PVN oxytocin was unrelated to the number of weaned offspring produced in the absence of cooperation, and did not vary in response to manipulation of nest site availability or social cues of outgroup competition. By linking fitness consequences of cooperation with oxytocin, our findings have broad implications for understanding the evolution of egalitarian social relationships.
Collapse
Affiliation(s)
- Stefan Fischer
- Mammalian Behaviour & Evolution Group, Department of Evolution, Ecology and Behaviour, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK.
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria.
- Department of Behavioral & Cognitive Biology, University of Vienna, University Biology Building (UBB), Djerassiplatz 1, 1030, Vienna, Austria.
| | - Callum Duffield
- Mammalian Behaviour & Evolution Group, Department of Evolution, Ecology and Behaviour, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - William T Swaney
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Rhiannon L Bolton
- Mammalian Behaviour & Evolution Group, Department of Evolution, Ecology and Behaviour, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Amanda J Davidson
- Mammalian Behaviour & Evolution Group, Department of Evolution, Ecology and Behaviour, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Jane L Hurst
- Mammalian Behaviour & Evolution Group, Department of Evolution, Ecology and Behaviour, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Paula Stockley
- Mammalian Behaviour & Evolution Group, Department of Evolution, Ecology and Behaviour, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK.
| |
Collapse
|
2
|
Vogt CC, Zipple MN, Sprockett DD, Miller CH, Hardy SX, Arthur MK, Greenstein AM, Colvin MS, Michel LM, Moeller AH, Sheehan MJ. Female behavior drives the formation of distinct social structures in C57BL/6J versus wild-derived outbred mice in field enclosures. BMC Biol 2024; 22:35. [PMID: 38355587 PMCID: PMC10865716 DOI: 10.1186/s12915-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Social behavior and social organization have major influences on individual health and fitness. Yet, biomedical research focuses on studying a few genotypes under impoverished social conditions. Understanding how lab conditions have modified social organizations of model organisms, such as lab mice, relative to natural populations is a missing link between socioecology and biomedical science. RESULTS Using a common garden design, we describe the formation of social structure in the well-studied laboratory mouse strain, C57BL/6J, in replicated mixed-sex populations over 10-day trials compared to control trials with wild-derived outbred house mice in outdoor field enclosures. We focus on three key features of mouse social systems: (i) territory establishment in males, (ii) female social relationships, and (iii) the social networks formed by the populations. Male territorial behaviors were similar but muted in C57 compared to wild-derived mice. Female C57 sharply differed from wild-derived females, showing little social bias toward cage mates and exploring substantially more of the enclosures compared to all other groups. Female behavior consistently generated denser social networks in C57 than in wild-derived mice. CONCLUSIONS C57 and wild-derived mice individually vary in their social and spatial behaviors which scale to shape overall social organization. The repeatable societies formed under field conditions highlights opportunities to experimentally study the interplay between society and individual biology using model organisms.
Collapse
Affiliation(s)
- Caleb C Vogt
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| | - Matthew N Zipple
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Daniel D Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Caitlin H Miller
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Summer X Hardy
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew K Arthur
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Adam M Greenstein
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Melanie S Colvin
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Lucie M Michel
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Jia S, Meng Y, Gao Y, Ao L, Yang L, Wang H, Liu Y. Romantic relationships attenuated competition between lovers: evidence from brain synchronization. Cereb Cortex 2024; 34:bhae028. [PMID: 38300221 DOI: 10.1093/cercor/bhae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Competition is an essential component of social interaction and is influenced by interpersonal relationships. This study is based on social exchange theory and explores the relationship between brain synchronization and competition in the binary system of romantic relationships through electroencephalogram hyperscanning technology. The results found that females had a greater win rate in the romantic and friend groups. During the early stage (0-200 ms), when the competitive target appeared, the stranger group exhibited greater interbrain synchronicity in the Alpha frequency band. However, during the later stage (600-800 ms), the romantic group showed higher Alpha band interbrain synchrony when the competitive target appeared. Significant interbrain synchronizations were observed in the Theta frequency band of the stranger and friend groups at 400-600 ms and 800-1000 ms. Moreover, these interbrain synchronizations were significantly positively correlated with the winning rates of females in the competition. These findings suggest a close relationship between interpersonal coordination and interbrain synchronization. Furthermore, romantic relationships reduce participants' willingness to compete, affecting their attention regulation, emotional processing, and goal orientation, thus influencing competition. This study investigated the impact of romantic relationships on competition, providing a theoretical foundation for promoting the positive and healthy development of romantic relationships.
Collapse
Affiliation(s)
- Shuyu Jia
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| | - Yujia Meng
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| | - Yuan Gao
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| | - Lihong Ao
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| | - Lei Yang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| | - He Wang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
- School of Public Health, School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| | - Yingjie Liu
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
- School of Public Health, School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei province, China
| |
Collapse
|