1
|
Rocha M, Antas P, Castro LFC, Campos A, Vasconcelos V, Pereira F, Cunha I. Comparative Analysis of the Adhesive Proteins of the Adult Stalked Goose Barnacle Pollicipes pollicipes (Cirripedia: Pedunculata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:38-51. [PMID: 30413912 DOI: 10.1007/s10126-018-9856-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Adhesion in barnacles is still poorly understood. The cement gland secretes an insoluble multi-protein complex, which adheres very strongly to a variety of substrates in the presence of water. This adhesion mechanism is bioinspiring for the engineering of new adhesive materials, but to replicate this adhesive system, the genes coding for the cement constitutive proteins must be identified and elucidated, and their products characterised. Here, the complete sequences of three cement protein (CP) genes (CP-100K, CP-52K, and CP-19K) isolated from the cement gland of the stalked barnacle Pollicipes pollicipes (order Scalpelliformes) were obtained using RACE PCR. The three genes were compared to the 23 other acorn barnacle CP genes so far sequenced (order Sessilia) to determine common and differential patterns and molecular properties, since the adhesives of both orders have visibly different characteristics. A shotgun proteomic analysis was performed on the cement, excreted at the membranous base of specimens, where the products of the three genes sequenced in the gland were identified, validating their function as CPs. A principal component analysis (PCA) was performed, to cluster CPs into groups with similar amino acid composition. This analysis uncovered three CP groups, each characterised by similar residue composition, features in secondary structure, and some biochemical properties, including isoelectric point and residue accessibility to solvents. The similarity among proteins in each defined group was low despite comparable amino acid composition. PCA can identify putative adhesive proteins from NGS transcriptomic data regardless of their low homology. This analysis did not highlight significant differences in residue composition between homologous acorn and stalked barnacle CPs. The characteristics responsible for the structural differences between the cement of stalked and acorn barnacles are described, and the presence of nanostructures, such as repetitive homologous domains and low complexity regions, and repetitive β-sheets are discussed relatively to self-assembly and adhesion.
Collapse
Affiliation(s)
- Miguel Rocha
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Paulo Antas
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Alexandre Campos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Filipe Pereira
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| | - Isabel Cunha
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
2
|
Liang C, Ye Z, Xue B, Zeng L, Wu W, Zhong C, Cao Y, Hu B, Messersmith PB. Self-Assembled Nanofibers for Strong Underwater Adhesion: The Trick of Barnacles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25017-25025. [PMID: 29990429 DOI: 10.1021/acsami.8b04752] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing adhesives that can function underwater remains a major challenge for bioengineering, yet many marine creatures, exemplified as mussels and barnacles, have evolved their unique proteinaceous adhesives for strong wet adhesion. The mechanisms underlying the strong adhesion of these natural adhesive proteins provide rich information for biomimetic efforts. Here, combining atomic force microscopy (AFM) imaging and force spectroscopy, we examine the effects of pH on the self-assembly and adhesive properties of cp19k, a key barnacle underwater adhesive protein. For the first time, we confirm that the bacterial recombinant Balanus albicostatus cp19k (rBalcp19k), which contains no 3,4-dihydroxyphenylalanine (DOPA) or any other amino acids with post-translational modifications, can self-assemble into aggregated nanofibers at acidic pHs. Under moderately acidic conditions, the adhesion strength of unassembled monomeric rBalcp19k on mica is only slightly lower than that of a commercially available mussel adhesive protein mixture, yet the adhesion ability of rBalcp19k monomers decreases significantly at increased pH. In contrast, upon preassembly at acidic and low-salinity conditions, rBalcp19k nanofibers keep stable in basic and high-salinity seawater and display much stronger adhesion and thus show resistance to its adverse impacts. Besides, we find that the adhesion ability of Balcp19k is not impaired when it is combined with an N-terminal Thioredoxin (Trx) tag, yet whether the self-assembly property will be disrupted is not determined. Collectively, the self-assembly-enhanced adhesion presents a previously unexplored mechanism for the strong wet adhesion of barnacle cement proteins and may lead to the design of barnacle-inspired adhesive materials.
Collapse
Affiliation(s)
- Chao Liang
- Department of Chemistry and Biology, College of Science , National University of Defense Technology , Changsha 410073 , P. R. China
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Department of Physics , Nanjing University , Nanjing 210093 , P. R. China
| | - Zonghuang Ye
- Department of Chemistry and Biology, College of Science , National University of Defense Technology , Changsha 410073 , P. R. China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Department of Physics , Nanjing University , Nanjing 210093 , P. R. China
| | - Ling Zeng
- Department of Chemistry and Biology, College of Science , National University of Defense Technology , Changsha 410073 , P. R. China
| | - Wenjian Wu
- Department of Chemistry and Biology, College of Science , National University of Defense Technology , Changsha 410073 , P. R. China
| | - Chao Zhong
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Department of Physics , Nanjing University , Nanjing 210093 , P. R. China
| | - Biru Hu
- Department of Chemistry and Biology, College of Science , National University of Defense Technology , Changsha 410073 , P. R. China
| | - Phillip B Messersmith
- Departments of Materials Science and Engineering and Bioengineering , University of California , Berkeley , California 94720 , United States
- Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
3
|
Yap FC, Wong WL, Maule AG, Brennan GP, Chong VC, Lim LHS. First evidence for temporary and permanent adhesive systems in the stalked barnacle cyprid, Octolasmis angulata. Sci Rep 2017; 7:44980. [PMID: 28327603 PMCID: PMC5361150 DOI: 10.1038/srep44980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/17/2017] [Indexed: 11/08/2022] Open
Abstract
Although there have been extensive studies on the larval adhesion of acorn barnacles over the past few decades, little is known about stalked barnacles. For the first time, we describe the larval adhesive systems in the stalked barnacle, Octolasmis angulata and the findings differ from previous reports of the temporary (antennulary) and cement glands in thoracican barnacles. We have found that the temporary adhesives of cyprid are produced by the clustered temporary adhesive glands located within the mantle, instead of the specialised hypodermal glands in the second antennular segment as reported in the acorn barnacles. The temporary adhesive secretory vesicles (TASV) are released from the gland cells into the antennule via the neck extensions of the glands, and surrounded with microtubules in the attachment disc. Cement glands undergo a morphological transition as the cyprid grows. Synthesis of the permanent adhesives only occurs during the early cyprid stage, and is terminated once the cement glands reach maximum size. Evidence of the epithelial invaginations on the cement glands supports the involvement of exocytosis in the secretion of the permanent adhesives. This study provides new insight into the larval adhesives system of thoracican barnacles.
Collapse
Affiliation(s)
- Fook Choy Yap
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wey-Lim Wong
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Aaron G. Maule
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Gerard P. Brennan
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Ving Ching Chong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lee Hong Susan Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Filippidi E, DeMartini DG, Malo de Molina P, Danner EW, Kim J, Helgeson ME, Waite JH, Valentine MT. The microscopic network structure of mussel (Mytilus) adhesive plaques. J R Soc Interface 2016; 12:20150827. [PMID: 26631333 DOI: 10.1098/rsif.2015.0827] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Marine mussels of the genus Mytilus live in the hostile intertidal zone, attached to rocks, bio-fouled surfaces and each other via collagen-rich threads ending in adhesive pads, the plaques. Plaques adhere in salty, alkaline seawater, withstanding waves and tidal currents. Each plaque requires a force of several newtons to detach. Although the molecular composition of the plaques has been well studied, a complete understanding of supra-molecular plaque architecture and its role in maintaining adhesive strength remains elusive. Here, electron microscopy and neutron scattering studies of plaques harvested from Mytilus californianus and Mytilus galloprovincialis reveal a complex network structure reminiscent of structural foams. Two characteristic length scales are observed characterizing a dense meshwork (approx. 100 nm) with large interpenetrating pores (approx. 1 µm). The network withstands chemical denaturation, indicating significant cross-linking. Plaques formed at lower temperatures have finer network struts, from which we hypothesize a kinetically controlled formation mechanism. When mussels are induced to create plaques, the resulting structure lacks a well-defined network architecture, showcasing the importance of processing over self-assembly. Together, these new data provide essential insight into plaque structure and formation and set the foundation to understand the role of plaque structure in stress distribution and toughening in natural and biomimetic materials.
Collapse
Affiliation(s)
- Emmanouela Filippidi
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Daniel G DeMartini
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Paula Malo de Molina
- Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Eric W Danner
- Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Juntae Kim
- Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Matthew E Helgeson
- Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - J Herbert Waite
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA, USA Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Megan T Valentine
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA, USA Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
5
|
Jonker JL, Morrison L, Lynch EP, Grunwald I, von Byern J, Power AM. The chemistry of stalked barnacle adhesive (Lepas anatifera). Interface Focus 2015; 5:20140062. [PMID: 25657841 PMCID: PMC4275876 DOI: 10.1098/rsfs.2014.0062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The results of the first chemical analysis of the adhesive of Lepas anatifera, a stalked barnacle, are presented. A variety of elements were identified in scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) of the adhesive, including Na, Mg, Ca, Cl, S, Al, Si, K and Fe; however, protein-metal interactions were not detected in Raman spectra of the adhesive. Elemental signatures from SEM-EDS of L. anatifera adhesive glands were less varied. Phosphorous was mostly absent in adhesive samples; supporting previous studies showing that phosphoserines do not play a significant role in adult barnacle adhesion. Disulfide bridges arising from Cys dimers were also investigated; Raman analysis showed weak evidence for S-S bonds in L. anatifera. In addition, there was no calcium carbonate signal in the attenuated total reflectance Fourier transform infrared spectra of L. anatifera adhesive, unlike several previous studies in other barnacle species. Significant differences were observed between the Raman spectra of L. anatifera and Balanus crenatus; these and a range of Raman peaks in the L. anatifera adhesive are discussed. Polysaccharide was detected in L. anatifera adhesive but the significance of this awaits further experiments. The results demonstrate some of the diversity within barnacle species in the chemistry of their adhesives.
Collapse
Affiliation(s)
- Jaimie-Leigh Jonker
- School of Natural Sciences, National University of Ireland, Galway, Republic of Ireland
| | - Liam Morrison
- School of Natural Sciences, National University of Ireland, Galway, Republic of Ireland
| | - Edward P. Lynch
- School of Natural Sciences, National University of Ireland, Galway, Republic of Ireland
- Department of Mineral Resources, Geological Survey of Sweden, 75128 Uppsala, Sweden
| | - Ingo Grunwald
- Department Adhesive Bonding and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Group BioInspired Materials, 28359 Bremen, Germany
| | - Janek von Byern
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Anne Marie Power
- School of Natural Sciences, National University of Ireland, Galway, Republic of Ireland
| |
Collapse
|
6
|
Zheden V, Klepal W, Gorb SN, Kovalev A. Mechanical properties of the cement of the stalked barnacle Dosima fascicularis (Cirripedia, Crustacea). Interface Focus 2015; 5:20140049. [PMID: 25657833 PMCID: PMC4275868 DOI: 10.1098/rsfs.2014.0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The stalked barnacle Dosima fascicularis secretes foam-like cement, the amount of which usually exceeds that produced by other barnacles. When Dosima settles on small objects, this adhesive is additionally used as a float which gives buoyancy to the animal. The dual use of the cement by D. fascicularis requires mechanical properties different from those of other barnacle species. In the float, two regions with different morphological structure and mechanical properties can be distinguished. The outer compact zone with small gas-filled bubbles (cells) is harder than the interior one and forms a protective rind presumably against mechanical damage. The inner region with large, gas-filled cells is soft. This study demonstrates that D. fascicularis cement is soft and visco-elastic. We show that the values of the elastic modulus, hardness and tensile stress are considerably lower than in the rigid cement of other barnacles.
Collapse
Affiliation(s)
- Vanessa Zheden
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research , University of Vienna , Vienna , Austria
| | - Waltraud Klepal
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research , University of Vienna , Vienna , Austria
| | - Stanislav N Gorb
- Zoological Institute: Functional Morphology and Biomechanics , Kiel University , Kiel , Germany
| | - Alexander Kovalev
- Zoological Institute: Functional Morphology and Biomechanics , Kiel University , Kiel , Germany
| |
Collapse
|
7
|
Zheden V, Kovalev A, Gorb SN, Klepal W. Characterization of cement float buoyancy in the stalked barnacle Dosima fascicularis (Crustacea, Cirripedia). Interface Focus 2015; 5:20140060. [PMID: 25657839 PMCID: PMC4275874 DOI: 10.1098/rsfs.2014.0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dosima fascicularis is the only barnacle which can drift autonomously at the water surface with a foam-like cement float. The cement secreted by the animal contains numerous gas-filled cells of different size. When several individuals share one float, their size and not their number is crucial for the production of both volume and mass of the float. The gas content within the cells of the foam gives positive static buoyancy to the whole float. The volume of the float, the gas volume and the positive static buoyancy are positively correlated. The density of the cement float without gas is greater than that of seawater. This study shows that the secreted cement consists of more than 90% water and the gas volume is on average 18.5%. Our experiments demonstrate that the intact foam-like cement float is sealed to the surrounding water.
Collapse
Affiliation(s)
- Vanessa Zheden
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research , University of Vienna , Vienna , Austria
| | - Alexander Kovalev
- Zoological Institute: Functional Morphology and Biomechanics , Kiel University , Kiel , Germany
| | - Stanislav N Gorb
- Zoological Institute: Functional Morphology and Biomechanics , Kiel University , Kiel , Germany
| | - Waltraud Klepal
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research , University of Vienna , Vienna , Austria
| |
Collapse
|
8
|
Bazaka K, Jacob MV, Chrzanowski W, Ostrikov K. Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. RSC Adv 2015. [DOI: 10.1039/c4ra17244b] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This article reviews antibacterial surface strategies based on reactive plasma chemistry, focusing on how plasma-assisted processing of natural antimicrobial agents can produce antifouling and antibacterial materials for biomedical devices.
Collapse
Affiliation(s)
- K. Bazaka
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - M. V. Jacob
- College of Science, Technology and Engineering
- James Cook University
- Townsville
- Australia
| | | | - K. Ostrikov
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| |
Collapse
|
9
|
Jonker JL, Abram F, Pires E, Varela Coelho A, Grunwald I, Power AM. Adhesive proteins of stalked and acorn barnacles display homology with low sequence similarities. PLoS One 2014; 9:e108902. [PMID: 25295513 PMCID: PMC4189950 DOI: 10.1371/journal.pone.0108902] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/27/2014] [Indexed: 11/23/2022] Open
Abstract
Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins ‘sticky’ has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7–16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18–26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa).
Collapse
Affiliation(s)
- Jaimie-Leigh Jonker
- School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Florence Abram
- School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Elisabete Pires
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ingo Grunwald
- Department of Adhesive Bonding and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Bremen, Germany
| | - Anne Marie Power
- School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|
10
|
Zheden V, Klepal W, von Byern J, Bogner FR, Thiel K, Kowalik T, Grunwald I. Biochemical analyses of the cement float of the goose barnacle Dosima fascicularis--a preliminary study. BIOFOULING 2014; 30:949-963. [PMID: 25237772 DOI: 10.1080/08927014.2014.954557] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The goose barnacle Dosima fascicularis produces an excessive amount of adhesive (cement), which has a double function, being used for attachment to various substrata and also as a float (buoy). This paper focuses on the chemical composition of the cement, which has a water content of 92%. Scanning electron microscopy with EDX was used to measure the organic elements C, O and N in the foam-like cement. Vibrational spectroscopy (FTIR, Raman) provided further information about the overall secondary structure, which tended towards a β-sheet. Disulphide bonds could not be detected by Raman spectroscopy. The cystine, methionine, histidine and tryptophan contents were each below 1% in the cement. Analyses of the cement revealed a protein content of 84% and a total carbohydrate content of 1.5% in the dry cement. The amino acid composition, 1D/2D-PAGE and MS/MS sequence analysis revealed a de novo set of peptides/proteins with low homologies with other proteins such as the barnacle cement proteins, largely with an acidic pI between 3.5 and 6.0. The biochemical composition of the cement of D. fascicularis is similar to that of other barnacles, but it shows interesting variations.
Collapse
Affiliation(s)
- Vanessa Zheden
- a University of Vienna, Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research , Vienna , Austria
| | | | | | | | | | | | | |
Collapse
|
11
|
Gamisch A, Staedler YM, Schönenberger J, Fischer GA, Comes HP. Histological and micro-CT evidence of stigmatic rostellum receptivity promoting auto-pollination in the madagascan orchid Bulbophyllum bicoloratum. PLoS One 2013; 8:e72688. [PMID: 23967332 PMCID: PMC3742538 DOI: 10.1371/journal.pone.0072688] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/11/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The rostellum, a projecting part of the gynostemium in orchid flowers, separates the anther(s) from the stigma and thus commonly prevents auto-pollination. Nonetheless, as a modified (usually distal) portion of the median stigma lobe, the rostellum has been frequently invoked of having re-gained a stigmatic function in rare cases of orchid auto-pollination. Here it is shown that a newly discovered selfing variant of Madagascan Bulbophyllumbicoloratum has evolved a modified rostellum allowing the penetration of pollen tubes from in situ pollinia. METHODS Gynostemium micro-morphology and anatomy of selfing and outcrossing variants of B. bicoloratum was studied by using light and scanning electron microscopy and histological sections. Pollen tube growth in the selfing variant was further observed via X-ray computed microtomography (micro-CT), providing 3D reconstructions of floral tissues at a micron scale. FINDINGS Selfing variants possess a suberect ('displaced') rostellum rather than the conventional, erect type. Very early in anthesis, the pollinia of selfers are released from the anther and slide down onto the suberect rostellum, where pollen tube growth preferentially occurs through the non-vascularized, i.e. rear (adaxial) and (semi-) lateral parts. This penetrated tissue is comprised of a thin layer of elongate and loosely arranged cells, embedded in stigmatic exudates, as also observed in the stigmatic cavity of both selfing and outcrossing variants. CONCLUSIONS Our results provide the first solid evidence of a stigmatic function for the rostellum in orchid flowers, thereby demonstrating for the first time the feasibility of the micro-CT technique for accurately visualizing pollen tube growth in flowering plants. Rostellum receptivity in B. bicoloratum probably uniquely evolved as an adaptation for reproductive assurance from an outcrossing ancestor possessing an erect (non-receptive) rostellum. These findings open up new avenues in the investigation of an organ that apparently re-gained its 'primordial function' of being penetrated by pollen tubes.
Collapse
Affiliation(s)
- Alexander Gamisch
- Department of Organismic Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Barnacles are intriguing, not only with respect to their importance as fouling organisms, but also in terms of the mechanism of underwater adhesion, which provides a platform for biomimetic and bioinspired research. These aspects have prompted questions regarding how adult barnacles attach to surfaces under water. The multidisciplinary and interdisciplinary nature of the studies makes an overview covering all aspects challenging. This mini-review, therefore, attempts to bring together aspects of the adhesion of adult barnacles by looking at the achievements of research focused on both fouling and adhesion. Biological and biochemical studies, which have been motivated mainly by understanding the nature of the adhesion, indicate that the molecular characteristics of barnacle adhesive are unique. However, it is apparent from recent advances in molecular techniques that much remains undiscovered regarding the complex event of underwater attachment. Barnacles attached to silicone-based elastomeric coatings have been studied widely, particularly with respect to fouling-release technology. The fact that barnacles fail to attach tenaciously to silicone coatings, combined with the fact that the mode of attachment to these substrata is different to that for most other materials, indicates that knowledge about the natural mechanism of barnacle attachment is still incomplete. Further research on barnacles will enable a more comprehensive understanding of both the process of attachment and the adhesives used. Results from such studies will have a strong impact on technology aimed at fouling prevention as well as adhesion science and engineering.
Collapse
Affiliation(s)
- Kei Kamino
- Department of Biotechnology, National Institute of Technology and Evaluation, Kisarazu, Japan.
| |
Collapse
|