1
|
Sensui N, Itoh Y, Okura N, Shiba K, Baba SA, Inaba K, Yoshida M. Spawning-Induced pH Increase Activates Sperm Attraction and Fertilization Abilities in Eggs of the Ascidian, Phallusia philippinensis and Ciona intestinalis. Int J Mol Sci 2023; 24:2666. [PMID: 36768985 PMCID: PMC9917126 DOI: 10.3390/ijms24032666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
In Phlebobranchiata ascidians, oocytes and spermatozoa are stored in the oviduct and spermiduct, respectively, until spawning occurs. Gametes in the gonoducts are mature and fertilizable; however, it was found that the gametes of the ascidians Phallusia philippinensis and Ciona intestinalis could not undergo fertilization in the gonoductal fluids. The body fluids of the ascidians, especially in the gonoducts, were much more acidic (pH 5.5-6.8) than seawater (pH 8.2), and the fertilization rate was low under such acidic conditions. Hence, we examined the effect of pH on gametes. Pre-incubation of gonoductal eggs at pH 8.2 prior to insemination increased fertilization rates, even when insemination was performed under low pH conditions. Furthermore, an increase in ambient pH induced an increase in the intracellular pH of the eggs. It was also found that an increase in ambient pH triggered the release of sperm attractants from the egg and is therefore necessary for sperm chemotaxis. Hence, acidic conditions in the gonoductal fluids keep the gametes, especially eggs, infertile, and the release of eggs into seawater upon spawning induces an increase in ambient pH, which enables egg fertilization.
Collapse
Affiliation(s)
- Noburu Sensui
- Department of Human Biology and Anatomy, Faculty of Medicine, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Yosinori Itoh
- Department of Human Biology and Anatomy, Faculty of Medicine, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Faculty of Medicine, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Shoji A. Baba
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura 238-0225, Japan
| |
Collapse
|
2
|
Ikenaga J, Aratake S, Yoshida K, Yoshida M. A novel role for ATP2B in ascidians: Ascidian-specific mutations in ATP2B contribute to sperm chemotaxis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:430-437. [PMID: 35468255 DOI: 10.1002/jez.b.23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Sperm chemotaxis, in which sperms are attracted to conspecific eggs via species-specific attractants, plays an important role in fertilization. This phenomenon has been observed in various animals and species-specific sperm attractants have been reported in some species. However, the mechanisms involved in the reception and recognition of the species-specific attractant by the sperms is poorly studied. Previously, we found that the plasma membrane-type Ca2+ /ATPase (PMCA) is the receptor for the sperm-activating and -attracting factor (SAAF) in the ascidian Ciona intestinalis. To determine the role of PMCA in species-specific sperm chemotaxis, we identified the amino acid sequences of PMCAs derived from six Phlebobranchia species. The testis-specific splice variant of PMCA was found to be present in all the species investigated and the ascidian-specific sequence was detected near the 3'-terminus. Moreover, dN/dS analysis revealed that the extracellular loops 1, 2, and 4 in ascidian PMCA underwent a positive selection. These findings suggest that PMCA recognizes the species-specific structure of SAAF at the extracellular loops 1, 2, and 4, and its testis-specific C-terminal region is involved in the activation and chemotaxis of ascidian sperms.
Collapse
Affiliation(s)
- Jumpei Ikenaga
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Satoe Aratake
- Department of Urology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kaoru Yoshida
- Faculty of Biomedical Engineering, Toin University of Yokohama, 225-8503, Yokohama, Kanagawa, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
3
|
Sawada H, Saito T. Mechanisms of Sperm-Egg Interactions: What Ascidian Fertilization Research Has Taught Us. Cells 2022; 11:2096. [PMID: 35805180 PMCID: PMC9265791 DOI: 10.3390/cells11132096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Fertilization is an essential process in terrestrial organisms for creating a new organism with genetic diversity. Before gamete fusion, several steps are required to achieve successful fertilization. Animal spermatozoa are first activated and attracted to the eggs by egg-derived chemoattractants. During the sperm passage of the egg's extracellular matrix or upon the sperm binding to the proteinaceous egg coat, the sperm undergoes an acrosome reaction, an exocytosis of acrosome. In hermaphrodites such as ascidians, the self/nonself recognition process occurs when the sperm binds to the egg coat. The activated or acrosome-reacted spermatozoa penetrate through the proteinaceous egg coat. The extracellular ubiquitin-proteasome system, the astacin-like metalloproteases, and the trypsin-like proteases play key roles in this process in ascidians. In the present review, we summarize our current understanding and perspectives on gamete recognition and egg coat lysins in ascidians and consider the general mechanisms of fertilization in animals and plants.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Department of Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya 463-8521, Japan
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
4
|
Sperm Accumulation Induced by the Female Reproductive Fluid: Putative Evidence of Chemoattraction Using a New Tool. Cells 2021; 10:cells10092472. [PMID: 34572122 PMCID: PMC8467055 DOI: 10.3390/cells10092472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
There is considerable evidence that female reproductive fluid (FRF) interacts intimately with sperm, affecting several sperm traits, including sperm motility and longevity, and ultimately fertilization success. One of the first documented interactions between FRF and sperm is the ability of FRF to attract and guide sperm towards the eggs. However, most of the evidence of FRF’s chemoattraction proprieties comes from a limited number of taxa, specifically mammals and invertebrate broadcasting spawners. In other species, small FRF volumes and/or short sperm longevity often impose methodological difficulties resulting in this gap in chemoattraction studies in non-model species. One of the outcomes of sperm chemotaxis is sperm accumulation towards high chemoattractant concentrations, which can be easily quantified by measuring sperm concentration. Here, we tested sperm accumulation towards FRF in the zebrafish, Danio rerio, using an ad hoc developed, 3D printed, device (‘sperm selection chamber’). This easy-to-use tool allows to select and collect the sperm that swim towards a chemical gradient, and accumulate in a chemoattractant-filled well thus providing putative evidence for chemoattraction. We found that sperm accumulate in FRF in zebrafish. We also found that none of the sperm quality traits we measured (sperm swimming velocity and trajectory, sperm motility, and longevity) were correlated with this response. Together with the 3D printable project, we provide a detailed protocol for using the selection chamber. The chamber is optimized for the zebrafish, but it can be easily adapted for other species. Our device lays the foundation for a standardized way to measure sperm accumulation and in general chemoattraction, stimulating future research aimed at understanding the role and the mechanisms of sperm chemoattraction by FRF.
Collapse
|
5
|
Abstract
The perpetuation and preservation of distinct species rely on mechanisms that ensure that only interactions between gametes of the same species can give rise to viable and fertile offspring. Species-specificity can act at various stages, ranging from physical/behavioral pre-copulatory mechanisms, to pre-zygotic incompatibility during fertilization, to post-zygotic hybrid incompatibility. Herein, we focus on our current knowledge of the molecular mechanisms responsible for species-specificity during fertilization. While still poorly understood, decades of research have led to the discovery of molecules implicated in species-specific gamete interactions, starting from initial sperm-egg attraction to the binding of sperm and egg. While many of these molecules have been described as species-specific in their mode of action, relatively few have been demonstrated as such with definitive evidence. Thus, we also raise remaining questions that need to be addressed in order to characterize gamete interaction molecules as species-specific.
Collapse
|
6
|
Abstract
In many species, sperm must locate the female gamete to achieve fertilization. Molecules diffusing from the egg envelope, or the female genital tract, guide the sperm toward the oocyte through a process called chemotaxis. Sperm chemotaxis has been studied for more than 100 years being a widespread phenomenon present from lower plants to mammals. This process has been mostly studied in external fertilizers where gametes undergo a significant dilution, as compared to internal fertilizers where the encounter is more defined by the topology of the female tract and only a small fraction of sperm appear to chemotactically respond. Here, we summarize the main methods to measure sperm swimming responses to a chemoattractant, both in populations and in individual sperm. We discuss a novel chemotactic index (CI) to score sperm chemotaxis in external fertilizers having circular trajectories. This CI is based on the sperm progressive displacement and its orientation angle to the chemoattractant source.
Collapse
Affiliation(s)
- Héctor Vicente Ramírez-Gómez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Idán Tuval
- Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Adán Guerrero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico; Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
7
|
Lüpold S, Pitnick S. Sperm form and function: what do we know about the role of sexual selection? Reproduction 2018; 155:R229-R243. [DOI: 10.1530/rep-17-0536] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Sperm morphological variation has attracted considerable interest and generated a wealth of predominantly descriptive studies over the past three centuries. Yet, apart from biophysical studies linking sperm morphology to swimming velocity, surprisingly little is known about the adaptive significance of sperm form and the selective processes underlying its tremendous diversification throughout the animal kingdom. Here, we first discuss the challenges of examining sperm morphology in an evolutionary context and why our understanding of it is far from complete. Then, we review empirical evidence for how sexual selection theory applies to the evolution of sperm form and function, including putative secondary sexual traits borne by sperm.
Collapse
|
8
|
Watanabe T, Shibata H, Ebine M, Tsuchikawa H, Matsumori N, Murata M, Yoshida M, Morisawa M, Lin S, Yamauchi K, Sakai K, Oishi T. Synthesis and Complete Structure Determination of a Sperm-Activating and -Attracting Factor Isolated from the Ascidian Ascidia sydneiensis. JOURNAL OF NATURAL PRODUCTS 2018; 81:985-997. [PMID: 29589931 DOI: 10.1021/acs.jnatprod.7b01052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For the complete structure elucidation of an endogenous sperm-activating and -attracting factor isolated from eggs of the ascidian Ascidia sydneiensis ( Assydn-SAAF), its two possible diastereomers with respect to C-25 were synthesized. Starting from ergosterol, the characteristic steroid backbone was constructed by using an intramolecular pinacol coupling reaction and stereoselective reduction of a hydroxy ketone as key steps, and the side chain was introduced by Julia-Kocienski olefination. Comparison of the NMR data of the two diastereomers with those of the natural product led to the elucidation of the absolute configuration as 25 S; thus the complete structure was determined and the first synthesis of Assydn-SAAF was achieved.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Faculty and Graduate School of Science , Kyushu University , 744 Motooka , Nishi-ku , Fukuoka 819-0395 , Japan
| | - Hajime Shibata
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Makoto Ebine
- Faculty and Graduate School of Science , Kyushu University , 744 Motooka , Nishi-ku , Fukuoka 819-0395 , Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Nobuaki Matsumori
- Faculty and Graduate School of Science , Kyushu University , 744 Motooka , Nishi-ku , Fukuoka 819-0395 , Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, Graduate School of Science , University of Tokyo , 1024 Koajiro , Misaki, Miura , Kanagawa 238-0225 , Japan
| | - Masaaki Morisawa
- Tokyo Kasei Gakuin University , 2600 Aihara , Machida , Tokyo 194-0292 , Japan
| | - Shu Lin
- Faculty and Graduate School of Science , Kyushu University , 744 Motooka , Nishi-ku , Fukuoka 819-0395 , Japan
| | - Kosei Yamauchi
- Faculty and Graduate School of Science , Kyushu University , 744 Motooka , Nishi-ku , Fukuoka 819-0395 , Japan
| | - Ken Sakai
- Faculty and Graduate School of Science , Kyushu University , 744 Motooka , Nishi-ku , Fukuoka 819-0395 , Japan
| | - Tohru Oishi
- Faculty and Graduate School of Science , Kyushu University , 744 Motooka , Nishi-ku , Fukuoka 819-0395 , Japan
| |
Collapse
|
9
|
Kosman ET, Hipp B, Levitan DR. Chemoattractant-Mediated Preference of Non-Self Eggs in Ciona robusta Sperm. THE BIOLOGICAL BULLETIN 2017; 233:183-189. [PMID: 29553818 DOI: 10.1086/696217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-fertilization in hermaphroditic species might or might not be advantageous based on the level of inbreeding or outbreeding depression and the opportunity to outcross. This study examined whether chemoattractants can influence selfing rates through changes in sperm swimming behavior in the hermaphroditic tunicate Ciona robusta. The first set of experiments tested sperm preference in a dichotomous choice chamber by allowing the sperm to choose between wells with no eggs and wells with eggs, while the second experiment gave sperm a choice between self eggs and non-self eggs from another C. robusta individual. We found that sperm were about 5 times more likely to be captured in wells with eggs than in empty wells (P < 0.001) and that they were about 1.6 times more likely to be captured in wells with non-self eggs than in those with self eggs (P = 0.002). Additionally, we found that although sperm were activated by water pretreated with eggs, there was no difference in sperm swimming speed and motility in water treated with pooled-egg water compared to self-egg-treated water (P = 0.636 and P = 0.854, respectively). Our results indicate that while chemoattractant identity does not affect the basic mechanics of sperm activation and thus fertilization ability, it can cause sperm to aggregate near non-self eggs in greater numbers. This may allow for sperm to fertilize non-self eggs in greater numbers when available while still retaining the ability to fertilize self eggs.
Collapse
|
10
|
Saggiorato G, Alvarez L, Jikeli JF, Kaupp UB, Gompper G, Elgeti J. Human sperm steer with second harmonics of the flagellar beat. Nat Commun 2017; 8:1415. [PMID: 29123094 PMCID: PMC5680276 DOI: 10.1038/s41467-017-01462-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022] Open
Abstract
Sperm are propelled by bending waves traveling along their flagellum. For steering in gradients of sensory cues, sperm adjust the flagellar waveform. Symmetric and asymmetric waveforms result in straight and curved swimming paths, respectively. Two mechanisms causing spatially asymmetric waveforms have been proposed: an average flagellar curvature and buckling. We image flagella of human sperm tethered with the head to a surface. The waveform is characterized by a fundamental beat frequency and its second harmonic. The superposition of harmonics breaks the beat symmetry temporally rather than spatially. As a result, sperm rotate around the tethering point. The rotation velocity is determined by the second-harmonic amplitude and phase. Stimulation with the female sex hormone progesterone enhances the second-harmonic contribution and, thereby, modulates sperm rotation. Higher beat frequency components exist in other flagellated cells; therefore, this steering mechanism might be widespread and could inspire the design of synthetic microswimmers.
Collapse
Affiliation(s)
- Guglielmo Saggiorato
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (CAESAR), 53175, Bonn, Germany
| | - Luis Alvarez
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (CAESAR), 53175, Bonn, Germany.
| | - Jan F Jikeli
- Laboratoire de Physique Théorique et Modèles Statistiques, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
- Biophysical Imaging, Institute of Innate Immunity, University Hospital Bonn, 53127, Bonn, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (CAESAR), 53175, Bonn, Germany
| | - Gerhard Gompper
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jens Elgeti
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
11
|
Alvarez L. The tailored sperm cell. JOURNAL OF PLANT RESEARCH 2017; 130:455-464. [PMID: 28357612 PMCID: PMC5406480 DOI: 10.1007/s10265-017-0936-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 05/28/2023]
Abstract
Sperm are ubiquitous and yet unique. Genes involved in sexual reproduction are more divergent than most genes expressed in non-reproductive tissues. It has been argued that sperm have been altered during evolution more than any somatic cell. Profound variations are found at the level of morphology, motility, search strategy for the egg, and the underlying signalling mechanisms. Sperm evolutionary adaptation may have arisen from sperm competition (sperm from rival males compete within the female's body to fertilize eggs), cryptic female choice (the female's ability to choose among different stored sperm), social cues tuning sperm quality or from the site of fertilization (internal vs. external fertilization), to name a few. Unquestionably, sperm represent an invaluable source for the exploration of biological diversity at the level of signalling, motility, and evolution. Despite the richness in sperm variations, only a few model systems for signalling and motility have been studied in detail. Using fast kinetic techniques, electrophysiological recordings, and optogenetics, the molecular players and the sequence of signalling events of sperm from a few marine invertebrates, mammals, and fish are being elucidated. Furthermore, recent technological advances allow studying sperm motility with unprecedented precision; these studies provide new insights into flagellar motility and navigation in three dimensions (3D). The scope of this review is to highlight variations in motile sperm across species, and discuss the great promise that 3D imaging techniques offer into unravelling sperm mysteries.
Collapse
Affiliation(s)
- Luis Alvarez
- Center of Advanced European Studies and Research (caesar). Institute affiliated with the Max Planck Society, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
12
|
Hussain YH, Sadilek M, Salad S, Zimmer RK, Riffell JA. Individual female differences in chemoattractant production change the scale of sea urchin gamete interactions. Dev Biol 2017; 422:186-197. [PMID: 28088316 DOI: 10.1016/j.ydbio.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/02/2017] [Accepted: 01/10/2017] [Indexed: 01/13/2023]
Abstract
Sperm selection by females is an important process influencing fertilization and, particularly in broadcast-spawning organisms, often occurs before sperm reach the egg. Waterborne sperm chemoattractants are one mechanism by which eggs selectively influence conspecific sperm behavior, but it remains an open question whether the eggs from different females produce different amounts of sperm chemoattractant, and how that might influence sperm behavior. Here, we quantify the differences in attractant production between females of the sea urchin species Lytechinus pictus and use computational models and microfluidic sperm chemotaxis assays to determine how differences in chemoattractant production between females affects their ability to attract sperm. Our study demonstrates that there is significant individual female variation in egg chemoattractant production, and that this variation changes the scope and strength of sperm attraction. These results provide evidence for the importance of individual female variability in differential sperm attraction and fertilization success.
Collapse
Affiliation(s)
- Yasmeen H Hussain
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| | - Martin Sadilek
- University of Washington, Department of Chemistry, Seattle, WA 98195, USA
| | - Shukri Salad
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| | - Richard K Zimmer
- University of California Los Angeles, Department of Ecology and Evolutionary Biology, Los Angeles, CA 90095, USA
| | - Jeffrey A Riffell
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Hussain YH, Guasto JS, Zimmer RK, Stocker R, Riffell JA. Sperm chemotaxis promotes individual fertilization success in sea urchins. J Exp Biol 2016; 219:1458-66. [DOI: 10.1242/jeb.134924] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/24/2016] [Indexed: 12/17/2022]
Abstract
Reproductive success fundamentally shapes an organism's ecology and evolution, and gamete traits mediate fertilization, which is a critical juncture in reproduction. Individual male fertilization success is dependent on the ability of sperm from one male to outcompete the sperm of other males when searching for a conspecific egg. Sperm chemotaxis, the ability of sperm to navigate towards eggs using chemical signals, has been studied for over a century, but such studies have long assumed that this phenomenon improves individual male fitness without explicit evidence to support this claim. Here, we assess fertilization changes upon use of a chemoattractant-digesting peptidase and use a microfluidic device coupled with a fertilization assay to determine the effect of sperm chemotaxis on individual male fertilization success in the sea urchin Lytechinus pictus. We show that removing chemoattractant from the gametic environment decreases fertilization success. We further find that individual male differences in chemotaxis to a well-defined gradient of attractant correlate with individual male differences in fertilization success. These results demonstrate that sperm chemotaxis is an important contributor to individual reproductive success.
Collapse
Affiliation(s)
| | - Jeffrey S. Guasto
- Tufts University, Department of Mechanical Engineering, Medford, MA USA 02155
| | - Richard K. Zimmer
- University of California Los Angeles, Department of Ecology and Evolutionary Biology, Los Angeles CA 90095 USA
| | - Roman Stocker
- ETH Zurich, Department of Civil, Environmental and Geomatic Engineering, 8063 Zurich, Switzerland
| | | |
Collapse
|
14
|
Nakazawa S, Shirae-Kurabayashi M, Otsuka K, Sawada H. Proteomics of ionomycin-induced ascidian sperm reaction: Released and exposed sperm proteins in the ascidian Ciona intestinalis. Proteomics 2015. [DOI: 10.1002/pmic.201500162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shiori Nakazawa
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Kei Otsuka
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| |
Collapse
|
15
|
Gallego V, Pérez L, Asturiano JF, Yoshida M. Sperm motility parameters and spermatozoa morphometric characterization in marine species: a study of swimmer and sessile species. Theriogenology 2014; 82:668-76. [PMID: 25016411 DOI: 10.1016/j.theriogenology.2014.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022]
Abstract
The biodiversity of marine ecosystems is diverse and a high number of species coexist side by side. However, despite the fact that most of these species share a common fertilization strategy, a high variability in terms of the size, shape, and motion of spermatozoa can be found. In this study, we have analyzed both the sperm motion parameters and the spermatozoa morphometric features of two swimmer (pufferfish and European eel) and two sessile (sea urchin and ascidian) marine species. The most important differences in the sperm motion parameters were registered in the swimming period. Sessile species sperm displayed notably higher values than swimmer species sperm. In addition, the sperm motilities and velocities of the swimmer species decreased sharply once the sperm was activated, whereas the sessile species were able to maintain their initial values for a long time. These results are linked directly to the species-specific lifestyles. Although sessile organisms, which show limited or no movement, need sperm with a capacity to swim for long distances to find the oocytes, swimmer organisms can move toward the female and release gametes near it, and therefore the spermatozoa does not need to swim for such a long time. At the same time, sperm morphology is related to sperm motion parameters, and in this study an in-depth morphometric analysis of ascidian, sea urchin, and pufferfish spermatozoa, using computer-assisted sperm analysis software, has been carried out for the first time. A huge variability in shapes, sizes, and structures of the studied species was found using electron microscopy.
Collapse
Affiliation(s)
- V Gallego
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain; Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Japan
| | - L Pérez
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | - J F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain.
| | - M Yoshida
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Japan
| |
Collapse
|