1
|
Scherf M, Lammer H, Spross L. Eta-Earth Revisited II: Deriving a Maximum Number of Earth-Like Habitats in the Galactic Disk. ASTROBIOLOGY 2024; 24:e916-e1061. [PMID: 39481023 DOI: 10.1089/ast.2023.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N2-O2-dominated atmospheres with minor amounts of CO2 can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO2 mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of 2.5 - 2.4 + 71.6 × 10 5 and 0.6 - 0.59 + 27.1 × 10 5 planets that can potentially host N2-O2-dominated atmospheres with maximum CO2 mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of ∼ 10 3 - 10 6 rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (e.g., the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be applied to infer that such life will be common in the galaxy.
Collapse
Affiliation(s)
- Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
| | - Laurenz Spross
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
2
|
Kamp I, Henning T, Arabhavi AM, Bettoni G, Christiaens V, Gasman D, Grant SL, Morales-Calderón M, Tabone B, Abergel A, Absil O, Argyriou I, Barrado D, Boccaletti A, Bouwman J, Caratti O Garatti A, van Dishoeck EF, Geers V, Glauser AM, Güdel M, Guadarrama R, Jang H, Kanwar J, Lagage PO, Lahuis F, Mueller M, Nehmé C, Olofsson G, Pantin E, Pawellek N, Perotti G, Ray TP, Rodgers-Lee D, Samland M, Scheithauer S, Schreiber J, Schwarz K, Temmink M, Vandenbussche B, Vlasblom M, Waelkens C, Waters LBFM, Wright G. The chemical inventory of the inner regions of planet-forming disks - the JWST/MINDS program. Faraday Discuss 2023; 245:112-137. [PMID: 37462069 DOI: 10.1039/d3fd00013c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The understanding of planet formation has changed recently, embracing the new idea of pebble accretion. This means that the influx of pebbles from the outer regions of planet-forming disks to their inner zones could determine the composition of planets and their atmospheres. The solid and molecular components delivered to the planet-forming region can be best characterized by mid-infrared spectroscopy. With Spitzer low-resolution (R = 100, 600) spectroscopy, this approach was limited to the detection of abundant molecules, such as H2O, C2H2, HCN and CO2. This contribution will present the first results of the MINDS (MIRI mid-INfrared Disk Survey, PI:Th Henning) project. Due do the sensitivity and spectral resolution provided by the James Webb Space Telescope (JWST), we now have a unique tool to obtain the full inventory of chemistry in the inner disks of solar-type stars and brown dwarfs, including also less-abundant hydrocarbons and isotopologues. The Integral Field Unit (IFU) capabilities will enable at the same time spatial studies of the continuum and line emission in extended sources such as debris disks, the flying saucer and also the search for mid-IR signatures of forming planets in systems such as PDS 70. These JWST observations are complementary to ALMA and NOEMA observations of outer-disk chemistry; together these datasets will provide an integral view of the processes occurring during the planet-formation phase.
Collapse
Affiliation(s)
- Inga Kamp
- Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands.
| | - Thomas Henning
- Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
| | - Aditya M Arabhavi
- Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands.
| | - Giulio Bettoni
- Max-Planck Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748, Garching, Germany
| | | | - Danny Gasman
- Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Sierra L Grant
- Max-Planck Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748, Garching, Germany
| | - Maria Morales-Calderón
- Centro de Astrobiología (CAB), CSIC-INTA, ESAC Campus, Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain
| | - Benoît Tabone
- Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, 91405, Orsay, France
| | - Alain Abergel
- Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, 91405, Orsay, France
| | - Olivier Absil
- STAR Institute, Université de Liège, Allée du Six Août 19c, 4000 Liège, Belgium
| | - Ioannis Argyriou
- Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - David Barrado
- Centro de Astrobiología (CAB), CSIC-INTA, ESAC Campus, Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain
| | - Anthony Boccaletti
- LESIA, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 Place Jules Janssen, 92195 Meudon, France
| | - Jeroen Bouwman
- Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
| | - Alessio Caratti O Garatti
- INAF - Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy
- Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, D02 XF86 Dublin, Ireland
| | - Ewine F van Dishoeck
- Max-Planck Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748, Garching, Germany
- Leiden Observatory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Vincent Geers
- UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
| | - Adrian M Glauser
- ETH Zürich, Institute for Particle Physics and Astrophysics, Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland
| | - Manuel Güdel
- Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
- ETH Zürich, Institute for Particle Physics and Astrophysics, Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland
- Dept. of Astrophysics, University of Vienna, Türkenschanzstr 17, A-1180 Vienna, Austria
| | - Rodrigo Guadarrama
- Dept. of Astrophysics, University of Vienna, Türkenschanzstr 17, A-1180 Vienna, Austria
| | - Hyerin Jang
- Department of Astrophysics, IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Jayatee Kanwar
- Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands.
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz, Austria
| | - Pierre-Olivier Lagage
- Université Paris-Saclay, Université de Paris, CEA, CNRS, AIM, F-91191 Gif-sur-Yvette, France
| | - Fred Lahuis
- SRON Netherlands Institute for Space Research, PO Box 800, 9700 AV, Groningen, The Netherlands
| | - Michael Mueller
- Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands.
| | - Cyrine Nehmé
- CEA, DSM, Irfu, Service d'Astrophysique - Laboratoire AIM, France
| | - Göran Olofsson
- Department of Astronomy, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Eric Pantin
- IRFU, DAp Département D'Astrophysique CE Saclay, Gif-sur-Yvette, France
| | - Nicole Pawellek
- Dept. of Astrophysics, University of Vienna, Türkenschanzstr 17, A-1180 Vienna, Austria
- Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Eötvös Loránd Research Network (ELKH), Konkoly-Thege Miklós út 15-17, H-1121 Budapest, Hungary
| | - Giulia Perotti
- Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
| | - Tom P Ray
- Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, D02 XF86 Dublin, Ireland
| | - Donna Rodgers-Lee
- Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, D02 XF86 Dublin, Ireland
| | - Matthias Samland
- Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
| | - Silvia Scheithauer
- Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
| | - Jürgen Schreiber
- Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
| | - Kamber Schwarz
- Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
| | - Milou Temmink
- Leiden Observatory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Bart Vandenbussche
- Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Marissa Vlasblom
- Leiden Observatory, Leiden University, 2300 RA Leiden, The Netherlands
| | | | - L B F M Waters
- Department of Astrophysics, IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
- SRON Netherlands Institute for Space Research, Niels Bohrweg 4, NL-2333 CA Leiden, The Netherlands
| | - Gillian Wright
- UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
| |
Collapse
|
6
|
Sarafian AR, Hauri EH, McCubbin FM, Lapen TJ, Berger EL, Nielsen SG, Marschall HR, Gaetani GA, Righter K, Sarafian E. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20160209. [PMID: 28416730 PMCID: PMC5394258 DOI: 10.1098/rsta.2016.0209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2017] [Indexed: 05/23/2023]
Abstract
Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207Pb-206Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.
Collapse
Affiliation(s)
- Adam R Sarafian
- Massachusetts Institute of Technology - Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA 02139, USA
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Erik H Hauri
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| | | | - Thomas J Lapen
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
| | - Eve L Berger
- GeoControl Systems Inc., Jacobs JETS Contract, NASA JSC, Houston, TX, USA
| | - Sune G Nielsen
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Horst R Marschall
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Goethe Universität Frankfurt, Institut für Geowissenschaften, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Glenn A Gaetani
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Kevin Righter
- NASA JSC, Mailcode XI2, 2101 NASA Parkway, Houston, TX 77058, USA
| | - Emily Sarafian
- Massachusetts Institute of Technology - Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA 02139, USA
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|