Steele JA, Lewis RA. Laser-induced oxidation kinetics of bismuth surface microdroplets on GaAsBi studied in situ by Raman microprobe analysis.
OPTICS EXPRESS 2014;
22:32261-32275. [PMID:
25607191 DOI:
10.1364/oe.22.032261]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the cw-laser-induced oxidation of molecular-beam-epitaxy grown GaAsBi bismuth surface microdroplets investigated in situ by micro-Raman spectroscopy under ambient conditions as a function of irradiation power and time. Our results reveal the surface droplets are high-purity crystalline bismuth and the resultant Bi2O3 transformation to be β-phase and stable at room temperature. A detailed Raman study of Bi microdroplet oxidation kinetics yields insights into the laser-induced oxidation process and offers useful real-time diagnostics. The temporal evolution of new β-Bi2O3 Raman modes is shown to be well described by Johnson-Mehl-Avrami-Kolmogorov kinetic transformation theory and while this study limits itself to the laser-induced oxidation of GaAsBi bismuth surface droplets, the results will find application within the wider context of bismuth laser-induced oxidation and direct Raman laser processing.
Collapse