1
|
Marchesini R, Bettega D, Calzolari P, Pignoli E. Calculation of Nuclear Particles Production at High-Energy Photon Beams from a Linac Operating at 6, 10 and 15 MV. RADIATION PROTECTION DOSIMETRY 2017; 174:471-477. [PMID: 27522047 DOI: 10.1093/rpd/ncw230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
Production of photonuclear particles in a tissue-equivalent medium has been calculated for linacs at 6, 10 and 15 MV from Varian TrueBeam. Based on the knowledge of bremsstrahlung fluence spectra and linac photon beam parameters, numerical integration was performed on the cross sections for photoparticle production of the constituent elements of tissue (2H,12C,13C,16O,17O,18O,14N,15N). At 15 MV, at the depth of photon maximum dose, the total absorbed dose due to neutrons, protons, alphas and residual nuclei from photon reactions in tissue (5.5E-05 Gy per Gy of photons) is comparable to that due to neutrons from accelerator head. Results reasonably agree with data reported in the literature using Monte Carlo models simulating linac head components. This work suggests a simple method to estimate the dose contributed by the photon-induced nuclear particles for high-energy photon beams produced by linacs in use, as it might be relevant for late stochastic effects.
Collapse
Affiliation(s)
| | - Daniela Bettega
- Department of Physics, University of Milan, Milan I-20133, Italy
| | - Paola Calzolari
- Department of Physics, University of Milan, Milan I-20133, Italy
| | - Emanuele Pignoli
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133, Italy
| |
Collapse
|
2
|
Chadwick MB, Young PG, MacFarlane RE, White MC, Little RC. Photonuclear Physics in Radiation Transport—I: Cross Sections and Spectra. NUCL SCI ENG 2017. [DOI: 10.13182/nse144-157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- M. B. Chadwick
- University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - P. G. Young
- University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - R. E. MacFarlane
- University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - M. C. White
- University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - R. C. Little
- University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| |
Collapse
|
3
|
Polaczek-Grelik K, Nowacka M, Raczkowski M. Activation of Dosimeters Used in qa of Medical Linear Accelerators. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201715301027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
4
|
Lindborg L, Hultqvist M, Carlsson Tedgren Å, Nikjoo H. Lineal energy and radiation quality in radiation therapy: model calculations and comparison with experiment. Phys Med Biol 2013; 58:3089-105. [DOI: 10.1088/0031-9155/58/10/3089] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
Solberg T, DeMarco J, Chetty I, Mesa A, Cagnon C, Li A, Mather K, Medin P, Arellano A, Smathers J. A review of radiation dosimetry applications using the MCNP Monte Carlo code. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.2001.89.4-5.337] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Monte Carlo code MCNP (Monte Carlo N-Particle) has a significant history dating to the early years of the Manhattan Project. More recently, MCNP has been used successfully to solve many problems in the field of medical physics. In radiotherapy applications MCNP has been used successfully to calculate the bremsstrahlung spectra from medical linear accelerators, for modeling the dose distributions around high dose rate brachytherapy sources, and for evaluating the dosimetric properties of new radioactive sources used in intravascular irradiation for prevention of restenosis following angioplasty. MCNP has also been used for radioimmunotherapy and boron neutron capture therapy applications. It has been used to predict fast neutron activation of shielding and biological materials. One area that holds tremendous clinical promise is that of radiotherapy treatment planning. In diagnostic applications, MCNP has been used to model X-ray computed tomography and positron emission tomography scanners, to compute the dose delivered from CT procedures, and to determine detector characteristics of nuclear medicine devices. MCNP has been used to determine particle fluxes around radiotherapy treatment devices and to perform shielding calculations in radiotherapy treatment rooms. This manuscript is intended to provide to the reader a comprehensive summary of medical physics applications of the MCNP code.
Collapse
|
6
|
Alghamdi AA, Ma A, Spyrou NM. Calculation of the photonuclear yield using an anthropomorphic phantom. J Radioanal Nucl Chem 2007. [DOI: 10.1007/s10967-007-0319-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Janek S, Svensson R, Jonsson C, Brahme A. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy. Phys Med Biol 2006; 51:5769-83. [PMID: 17068364 DOI: 10.1088/0031-9155/51/22/004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11C and 15O but also 13N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12C, 16O and 14N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12C, 16O and 14N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be applicable provided that biological transport processes such as capillary blood flow containing mobile 15O and 11C in the activated tissue volume can be accounted for.
Collapse
Affiliation(s)
- S Janek
- Medical Radiation Physics, Department of Oncology and Pathology, Karolinska Institutet and Stockholm University, 171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
8
|
Abstract
This paper presents a numerical investigation of the effective point of measurement of thimble ionization chambers in megavoltage photon beams using Monte Carlo simulations with the EGSNRC system. It is shown that the effective point of measurement for relative photon beam dosimetry depends on every detail of the chamber design, including the cavity length, the mass density of the wall material, and the size of the central electrode, in addition to the cavity radius. Moreover, the effective point of measurement also depends on the beam quality and the field size. The paper therefore argues that the upstream shift of 0.6 times the cavity radius, recommended in current dosimetry protocols, is inadequate for accurate relative photon beam dosimetry, particularly in the build-up region. On the other hand, once the effective point of measurement is selected appropriately, measured depth-ionization curves can be equated to measured depth-dose curves for all depths within +/- 0.5%.
Collapse
|
9
|
Zanini A, Fasolo F, Visca L, Durisi E, Perosino M, Annand JRM, Burn KW. Test of a bubble passive spectrometer for neutron dosimetry. Phys Med Biol 2005; 50:4287-97. [PMID: 16148394 DOI: 10.1088/0031-9155/50/18/004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A passive system for neutron spectrometry has been tested in view of neutron dose evaluation in mixed radiation fields. This system, based on bubble detectors (Bubble Technology Industries, Ontario, Canada), is suitable to evaluate the neutron energy distribution in the range 10 keV-20 MeV even in the presence of intense gamma radiation, as required in various fields: medical x-ray accelerators, nuclear reactors, cosmic ray exposures on commercial high-altitude flights and space missions. A new unfolding code BUNTO has been especially developed for this application. In the present work, the results of two experimental tests are summarized. In the first one, the device has been exposed to a standard AmBe neutron source (Joint Research Centre, Ispra, Varese, Italy). In the second one, measurements have been carried out at the MAX-Lab photonuclear facility in Sweden, with a bremsstrahlung photon beam impinging on thick targets of different materials and generating a giant dipole resonance neutron spectrum. Simulations of the experimental apparatus have been performed with MCNP4B (AmBe source) and with MCNP4B-GN (MAX-Lab). Results of the comparison between experimental and calculated spectra are shown and discussed. A good agreement between measurements and simulation data is obtained in both the experiments.
Collapse
Affiliation(s)
- A Zanini
- INFN Sez. Torino, V P Giuria 1, 10125 Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Carinou E, Stamatelatos IE, Kamenopoulou V, Georgolopoulou P, Sandilos P. An MCNP-based model for the evaluation of the photoneutron dose in high energy medical electron accelerators. Phys Med 2005; 21:95-9. [DOI: 10.1016/s1120-1797(05)80009-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 02/07/2005] [Accepted: 04/01/2005] [Indexed: 11/25/2022] Open
|
11
|
Zanini A, Durisi E, Fasolo F, Ongaro C, Visca L, Nastasi U, Burn KW, Scielzo G, Adler JO, Annand JRM, Rosner G. Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems. Phys Med Biol 2004; 49:571-82. [PMID: 15005166 DOI: 10.1088/0031-9155/49/4/008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bremsstrahlung photon beams produced by linac accelerators are currently the most commonly used method of radiotherapy for tumour treatments. When the photon energy exceeds 10 MeV the patient receives an undesired dose due to photoneutron production in the accelerator head. In the last few decades, new sophisticated techniques such as multileaf collimators have been used for a better definition of the target volume. In this case it is crucial to evaluate the photoneutron dose produced after giant dipole resonance (GDR) excitation of the high Z materials (mainly tungsten and lead) constituting the collimator leaves in view of the optimization of the radiotherapy treatment. A Monte Carlo approach has been used to calculate the photoneutron dose arising from the GDR reaction during radiotherapy with energetic photon beams. The simulation has been performed using the code MCNP4B-GN which is based on MCNP4B, but includes a new routine GAMMAN to model photoneutron production. Results for the facility at IRCC (Istituto per la Ricerca e la Cura del Cancro) Candiolo (Turin), which is based on 18 MV x-rays from a Varian Clinac 2300 C/D, are presented for a variety of different collimator configurations.
Collapse
Affiliation(s)
- A Zanini
- INFN Turin, Via P Giuria 1, 10125 Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. An important component in the treatment planning process is the accurate calculation of dose distributions. The most accurate way to do this is by Monte Carlo calculation of particle transport, first in the geometry of the external or internal source followed by tracking the transport and energy deposition in the tissues of interest. Additionally, Monte Carlo simulations allow one to investigate the influence of source components on beams of a particular type and their contaminant particles. Since the mid 1990s, there has been an enormous increase in Monte Carlo studies dealing specifically with the subject of the present review, i.e., external photon beam Monte Carlo calculations, aided by the advent of new codes and fast computers. The foundations for this work were laid from the late 1970s until the early 1990s. In this paper we will review the progress made in this field over the last 25 years. The review will be focused mainly on Monte Carlo modelling of linear accelerator treatment heads but sections will also be devoted to kilovoltage x-ray units and 60Co teletherapy sources.
Collapse
Affiliation(s)
- Frank Verhaegen
- Medical Physics Unit, McGill University, 1650 Cedar Av Montreal, Québec, H3G1A4, Canada.
| | | |
Collapse
|
13
|
Chibani O, Ma CMC. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs. Med Phys 2003; 30:1990-2000. [PMID: 12945965 DOI: 10.1118/1.1590436] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The dose from photon-induced nuclear particles (neutrons, protons, and alpha particles) generated by high-energy photon beams from medical linacs is investigated. Monte Carlo calculations using the MCNPX code are performed for three different photon beams from two different machines: Siemens 18 MV, Varian 15 MV, and Varian 18 MV. The linac head components are simulated in detail. The dose distributions from photons, neutrons, protons, and alpha particles are calculated in a tissue-equivalent phantom. Neutrons are generated in both the linac head and the phantom. This study includes (a) field size effects, (b) off-axis dose profiles, (c) neutron contribution from the linac head, (d) dose contribution from capture gamma rays, (e) phantom heterogeneity effects, and (f) effects of primary electron energy shift. Results are presented in terms of absolute dose distributions and also in terms of DER (dose equivalent ratio). The DER is the maximum dose from the particle (neutron, proton, or alpha) divided by the maximum photon dose, multiplied by the particle quality factor and the modulation scaling factor. The total DER including neutrons, protons, and alphas is about 0.66 cSv/Gy for the Siemens 18 MV beam (10 cm x 10 cm). The neutron DER decreases with decreasing field size while the proton (or alpha) DER does not vary significantly except for the 1 cm x 1 cm field. Both Varian beams (15 and 18 MV) produce more neutrons, protons, and alphas particles than the Siemens 18 MV beam. This is mainly due to their higher primary electron energies: 15 and 18.3 MeV, respectively, vs 14 MeV for the Siemens 18 MV beam. For all beams, neutrons contribute more than 75% of the total DER, except for the 1 cm x 1 cm field (approximately 50%). The total DER is 1.52 and 2.86 cSv/Gy for the 15 and 18 MV Varian beams (10 cm x 10 cm), respectively. Media with relatively high-Z elements like bone may increase the dose from heavy charged particles by a factor 4. The total DER is sensitive to primary electron energy shift. A Siemens 18 MV beam with 15 MeV (instead of 14 MeV) primary electrons would increase by 40% the neutron DER and by 210% the proton + alpha DER. Comparisons with measurements (neutron yields from different materials and neutron dose equivalent) are also presented. Using the NCRP risk assessment method, we found that the dose equivalent from leakage neutrons (at 50-cm off-axis distance) represent 1.1, 1.1, and 2.0% likelihood of fatal secondary cancer for a 70 Gy treatment delivered by the Siemens 18 MV, Varian 15 MV, and Varian 18 MV beams, respectively.
Collapse
Affiliation(s)
- Omar Chibani
- Department of Radiation Oncology, Massy Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298, USA.
| | | |
Collapse
|
14
|
Chetty IJ, Moran JM, Nurushev TS, McShan DL, Fraass BA, Wilderman SJ, Bielajew AF. Experimental validation of the DPM Monte Carlo code using minimally scattered electron beams in heterogeneous media. Phys Med Biol 2002; 47:1837-51. [PMID: 12108770 DOI: 10.1088/0031-9155/47/11/301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A comprehensive set of measurements and calculations has been conducted to investigate the accuracy of the Dose Planning Method (DPM) Monte Carlo code for electron beam dose calculations in heterogeneous media. Measurements were made using 10 MeV and 50 MeV minimally scattered, uncollimated electron beams from a racetrack microtron. Source distributions for the Monte Carlo calculations were reconstructed from in-air ion chamber scans and then benchmarked against measurements in a homogeneous water phantom. The in-air spatial distributions were found to have FWHM of 4.7 cm and 1.3 cm, at 100 cm from the source, for the 10 MeV and 50 MeV beams respectively. Energy spectra for the electron beams were determined by simulating the components of the microtron treatment head using the code MCNP4B. Profile measurements were made using an ion chamber in a water phantom with slabs of lung or bone-equivalent materials submerged at various depths. DPM calculations are, on average, within 2% agreement with measurement for all geometries except for the 50 MeV incident on a 6 cm lung-equivalent slab. Measurements using approximately monoenergetic, 50 MeV, 'pencil-beam'-type electrons in heterogeneous media provide conditions for maximum electronic disequilibrium and hence present a stringent test of the code's electron transport physics; the agreement noted between calculation and measurement illustrates that the DPM code is capable of accurate dose calculation even under such conditions.
Collapse
Affiliation(s)
- Indrin J Chetty
- Department of Radiation Oncology, The University of Michigan, Ann Arbor 48109-0010, USA.
| | | | | | | | | | | | | |
Collapse
|