1
|
Zhang X, He N, Zhang L, Dai T, Sun Z, Shi Y, Li S, Yu N. Application of high intensity focused ultrasound combined with nanomaterials in anti-tumor therapy. Drug Deliv 2024; 31:2342844. [PMID: 38659328 PMCID: PMC11047217 DOI: 10.1080/10717544.2024.2342844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
High intensity focused ultrasound (HIFU) has demonstrated its safety, efficacy and noninvasiveness in the ablation of solid tumor. However, its further application is limited by its inherent deficiencies, such as postoperative recurrence caused by incomplete ablation and excessive intensity affecting surrounding healthy tissues. Recent research has indicated that the integration of nanomaterials with HIFU exhibits a promising synergistic effect in tumor ablation. The concurrent utilization of nanomaterials with HIFU can help overcome the limitations of HIFU by improving targeting and ablation efficiency, expanding operation area, increasing operation accuracy, enhancing stability and bio-safety during the process. It also provides a platform for multi-therapy and multi-mode imaging guidance. The present review comprehensively expounds upon the synergistic mechanism between nanomaterials and HIFU, summarizes the research progress of nanomaterials as cavitation nuclei and drug carriers in combination with HIFU for tumor ablation. Furthermore, this review highlights the potential for further exploration in the development of novel nanomaterials that enhance the synergistic effect with HIFU on tumor ablation.
Collapse
Affiliation(s)
- Xuehui Zhang
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Liang Zhang
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Dai
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zihan Sun
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yuqing Shi
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ning Yu
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Ramesh R, Thimonier C, Desgranges S, Faugeras V, Coulouvrat F, Laurent J, Marrelec G, Contino-Pépin C, Urbach W, Tribet C, Taulier N. Acoustic Droplet Vaporization of Perfluorohexane Emulsions Induced by Heterogeneous Nucleation at an Ultrasonic Frequency of 1.1 MHz. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15716-15729. [PMID: 37889478 DOI: 10.1021/acs.langmuir.3c02272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Droplets made of liquid perfluorocarbon undergo a phase transition and transform into microbubbles when triggered by ultrasound of intensity beyond a critical threshold; this mechanism is called acoustic droplet vaporization (ADV). It has been shown that if the intensity of the signal coming from high ultrasonic harmonics are sufficiently high, superharmonic focusing is the mechanism leading to ADV for large droplets (>3 μm) and high frequencies (>1.5 MHz). In such a scenario, ADV is initiated due to a nucleus occurring at a specific location inside the droplet volume. But the question on what induces ADV in the case of nanometer-sized droplets and/or at low ultrasonic frequencies (<1.5 MHz) still remains. We investigated ADV of perfluorohexane (PFH) nano- and microdroplets at a frequency of 1.1 MHz and at conditions where there is no superharmonic focusing. Three types of droplets produced by microfluidics were studied: plain PFH droplets, PFH droplets containing many nanometer-sized water droplets, and droplets made of a PFH corona encapsulating a single micron-sized water droplet. The probability to observe a vaporization event was measured as a function of acoustic pressure. As our experiments were performed on droplet suspensions containing a population of monodisperse droplets, we developed a statistical model to extrapolate, from our experimental curves, the ADV pressure thresholds in the case where only one droplet would be insonified. We observed that the value of ADV pressure threshold decreases as the radius of a plain PFH droplet increases. This value was further reduced when a PFH droplet encapsulates a micron-sized water droplet, while the encapsulation of many nanometer-sized water droplets did not modify the threshold. These results cannot be explained by a model of homogeneous nucleation. However, we developed a heterogeneous nucleation model, where the nucleus appears at the surface in contact with PFH, that successfully predicts our experimental ADV results.
Collapse
Affiliation(s)
- R Ramesh
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, F-75006 Paris, France
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, F-75005 Paris, France
| | - C Thimonier
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, F-75006 Paris, France
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, F-75005 Paris, France
- Département de Chimie, P.A.S.T.E.U.R., École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - S Desgranges
- Équipe Systèmes Amphiphiles Bioactifs et Formulations Eco-compatibles, UPRI, Avignon Université, 84000 Avignon, France
| | - V Faugeras
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, F-75005 Paris, France
| | - F Coulouvrat
- Institut Jean le Rond d'Alembert, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - J Laurent
- Laboratoire de Physique et Mécanique des Milieux Hétérogénes, CNRS, ESPCI Paris, PSL Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - G Marrelec
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, F-75006 Paris, France
| | - C Contino-Pépin
- Équipe Systèmes Amphiphiles Bioactifs et Formulations Eco-compatibles, UPRI, Avignon Université, 84000 Avignon, France
| | - W Urbach
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - C Tribet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - N Taulier
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, F-75006 Paris, France
| |
Collapse
|
3
|
Ferreira Felloni Borges Y, Cheyuo C, Lozano AM, Fasano A. Essential Tremor - Deep Brain Stimulation vs. Focused Ultrasound. Expert Rev Neurother 2023; 23:603-619. [PMID: 37288812 DOI: 10.1080/14737175.2023.2221789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Essential Tremor (ET) is one of the most common tremor syndromes typically presented as action tremor, affecting mainly the upper limbs. In at least 30-50% of patients, tremor interferes with quality of life, does not respond to first-line therapies and/or intolerable adverse effects may occur. Therefore, surgery may be considered. AREAS COVERED In this review, the authors discuss and compare unilateral ventral intermedius nucleus deep brain stimulation (VIM DBS) and bilateral DBS with Magnetic Resonance-guided Focused Ultrasound (MRgFUS) thalamotomy, which comprises focused acoustic energy generating ablation under real-time MRI guidance. Discussion includes their impact on tremor reduction and their potential complications. Finally, the authors provide their expert opinion. EXPERT OPINION DBS is adjustable, potentially reversible and allows bilateral treatments; however, it is invasive requires hardware implantation, and has higher surgical risks. Instead, MRgFUS is less invasive, less expensive, and requires no hardware maintenance. Beyond these technical differences, the decision should also involve the patient, family, and caregivers.
Collapse
Affiliation(s)
- Yuri Ferreira Felloni Borges
- Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
| | - Cletus Cheyuo
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Department of Parkinson's Disease & Movement Disorders Rehabilitation, Moriggia-Pelascini Hospital, Gravedona Ed Uniti, Como, Italy
| |
Collapse
|
4
|
Kagami S, Kanagawa T. Weakly nonlinear focused ultrasound in viscoelastic media containing multiple bubbles. ULTRASONICS SONOCHEMISTRY 2023; 97:106455. [PMID: 37271029 PMCID: PMC10248557 DOI: 10.1016/j.ultsonch.2023.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
To facilitate practical medical applications such as cancer treatment utilizing focused ultrasound and bubbles, a mathematical model that can describe the soft viscoelasticity of human body, the nonlinear propagation of focused ultrasound, and the nonlinear oscillations of multiple bubbles is theoretically derived and numerically solved. The Zener viscoelastic model and Keller-Miksis bubble equation, which have been used for analyses of single or few bubbles in viscoelastic liquid, are used to model the liquid containing multiple bubbles. From the theoretical analysis based on the perturbation expansion with the multiple-scales method, the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, which has been used as a mathematical model of weakly nonlinear propagation in single phase liquid, is extended to viscoelastic liquid containing multiple bubbles. The results show that liquid elasticity decreases the magnitudes of the nonlinearity, dissipation, and dispersion of ultrasound and increases the phase velocity of the ultrasound and linear natural frequency of the bubble oscillation. From the numerical calculation of resultant KZK equation, the spatial distribution of the liquid pressure fluctuation for the focused ultrasound is obtained for cases in which the liquid is water or liver tissue. In addition, frequency analysis is carried out using the fast Fourier transform, and the generation of higher harmonic components is compared for water and liver tissue. The elasticity suppresses the generation of higher harmonic components and promotes the remnant of the fundamental frequency components. This indicates that the elasticity of liquid suppresses shock wave formation in practical applications.
Collapse
Affiliation(s)
- Shunsuke Kagami
- Department of Engineering Mechanics and Energy, Degree Program of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
| | - Tetsuya Kanagawa
- Department of Engineering Mechanics and Energy, Degree Program of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
| |
Collapse
|
5
|
Kagami S, Kanagawa T. Weakly nonlinear propagation of focused ultrasound in bubbly liquids with a thermal effect: Derivation of two cases of Khokolov-Zabolotskaya-Kuznetsoz equations. ULTRASONICS SONOCHEMISTRY 2022; 88:105911. [PMID: 35810619 PMCID: PMC9696949 DOI: 10.1016/j.ultsonch.2022.105911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 05/06/2023]
Abstract
A physico-mathematical model composed of a single equation that consistently describes nonlinear focused ultrasound, bubble oscillations, and temperature fluctuations is theoretically proposed for microbubble-enhanced medical applications. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation that has been widely used as a simplified model for nonlinear propagation of focused ultrasound in pure liquid is extended to that in liquid containing many spherical microbubbles, by applying the method of multiple scales to the volumetric averaged basic equations for bubbly liquids. As a result, for two-dimensional and three-dimensional cases, KZK equations composed of the linear combination of nonlinear, dissipation, dispersion, and focusing terms are derived. Especially, the dissipation term depends on three factors, i.e., interfacial liquid viscosity, liquid compressibility, and thermal conductivity of gas inside bubbles; the thermal conduction is evaluated by using four types of temperature gradient models. Finally, we numerically solve the derived KZK equation and show a moderate temperature rise appropriate to medical applications.
Collapse
Affiliation(s)
- Shunsuke Kagami
- Department of Engineering Mechanics and Energy, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
| | - Tetsuya Kanagawa
- Department of Engineering Mechanics and Energy, Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan.
| |
Collapse
|
6
|
He M, Zhong Z, Zeng D, Gong X, Wang Z, Li F. Effects of sub-atmospheric pressure and dissolved oxygen concentration on lesions generated in ex vivo tissues by high intensity focused ultrasound. Biomed Eng Online 2021; 20:91. [PMID: 34526014 PMCID: PMC8442382 DOI: 10.1186/s12938-021-00926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/28/2021] [Indexed: 11/12/2022] Open
Abstract
Background Acoustic cavitation plays an important role in the medical treatment using high-intensity focused ultrasound (HIFU), but unnecessarily strong cavitation also could deform the morphology and enlarge the size of lesions. It is known that the increase of ambient hydrostatic pressure (Pstat) can control the acoustic cavitation. But the question of how the decrease of Pstat and dissolved oxygen concentration (DOC) influence the strength of cavitation has not been thoroughly answered. In this study, we aimed to investigate the relationship among the Pstat, DOC and the strength of cavitation. Methods Ex vivo bovine liver tissues were immersed in degassed water with different DOC of 1.0 mg/L, 1.5 mg/L and 2.0 mg/L. Ultrasound (US) of 1 MHz and the spatial and temporal average intensity (Isata) of 6500 W/cm2 was used to expose two groups of in vitro bovine livers for 2 s; one group was under atmospheric pressure (Pstat = 1 bar) and the other was under sub-atmospheric pressure (Pstat = 0.1 bar). Acoustic cavitation was detected by a passive cavitation detector (PCD) during the exposure process. Echo signals at the focal zone of HIFU were monitored by B-mode ultrasound imaging before and after exposure. The difference between two pressure groups was tested using paired sample t-test. The difference among different DOC groups was evaluated by one-way analysis of variance (ANOVA). Results The results demonstrated a significant difference of broadband acoustic emissions from the cavitation bubbles, echo signals on B-mode image, morphology of lesions under various conditions of ambient pressure and DOC. The lesion volume in tissue was increased with the increase of ambient pressure and DOC. Conclusion Cavitation could be suppressed through sub-atmospheric pressure and low DOC level in liver tissue, which could provide a method of controlling cavitation in HIFU treatment to avoid unpredictable lesions.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiqiang Zhong
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Deping Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaobo Gong
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, People's Republic of China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | - Faqi Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Clark A, Bonilla S, Suo D, Shapira Y, Averkiou M. Microbubble-Enhanced Heating: Exploring the Effect of Microbubble Concentration and Pressure Amplitude on High-Intensity Focused Ultrasound Treatments. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2296-2309. [PMID: 33985825 PMCID: PMC8243806 DOI: 10.1016/j.ultrasmedbio.2021.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 05/11/2023]
Abstract
High-intensity focused ultrasound (HIFU) is a non-invasive tool that can be used for targeted thermal ablation treatments. Currently, HIFU is clinically approved for treatment of uterine fibroids, various cancers, and certain brain applications. However, for brain applications such as essential tremors, HIFU can only be used to treat limited areas confined to the center of the brain because of geometrical limitations (shape of the transducer and skull). A major obstacle to advancing this technology is the inability to treat non-central brain locations without causing damage to the skin and/or skull. Previous research has indicated that cavitation-induced bubbles or microbubble contrast agents can be used to enhance HIFU treatments by increasing ablation regions and shortening acoustic exposures at lower acoustic pressures. However, little research has been done to explore the interplay between microbubble concentration and pressure amplitude on HIFU treatments. We developed an in vitro experimental setup to study lesion formation at three different acoustic pressures and three microbubble concentrations. Real-time ultrasound imaging was integrated to monitor initial microbubble concentration and subsequent behavior during the HIFU treatments. Depending on the pressure used for the HIFU treatment, there was an optimal concentration of microbubbles that led to enhanced heating in the focal area. If the concentration of microbubbles was too high, the treatment was detrimentally affected because of non-linear attenuation by the pre-focal microbubbles. Additionally, the real-time ultrasound imaging provided a reliable method to monitor microbubble activity during the HIFU treatments, which is important for translation to in vivo HIFU applications with microbubbles.
Collapse
Affiliation(s)
- Alicia Clark
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Sierra Bonilla
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Dingjie Suo
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | | | - Michalakis Averkiou
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
8
|
Karunakaran CP, Burgess MT, Rao MB, Holland CK, Mast TD. Effect of Overpressure on Acoustic Emissions and Treated Tissue Histology in ex Vivo Bulk Ultrasound Ablation. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2360-2376. [PMID: 34023187 PMCID: PMC8243850 DOI: 10.1016/j.ultrasmedbio.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Bulk ultrasound ablation is a thermal therapy approach in which tissue is heated by unfocused or weakly focused sonication (average intensities on the order of 100 W/cm2) to achieve coagulative necrosis within a few minutes exposure time. Assessing the role of bubble activity, including acoustic cavitation and tissue vaporization, in bulk ultrasound ablation may help in making bulk ultrasound ablation safer and more effective for clinical applications. Here, two series of ex vivo ablation trials were conducted to investigate the role of bubble activity and tissue vaporization in bulk ultrasound ablation. Fresh bovine liver tissue was ablated with unfocused, continuous-wave ultrasound using ultrasound image-ablate arrays sonicating at 31 W/cm2 (0.9 MPa amplitude) for either 20 min at a frequency of 3.1 MHz or 10 min at 4.8 MHz. Tissue specimens were maintained at a static overpressure of either 0.52 or 1.2 MPa to suppress bubble activity and tissue vaporization or at atmospheric pressure for control groups. A passive cavitation detector was used to record subharmonic (1.55 or 2.4 MHz), broadband (1.2-1.5 MHz) and low-frequency (5-20 kHz) acoustic emissions. Treated tissue was stained with 2% triphenyl tetrazolium chloride to evaluate thermal lesion dimensions. Subharmonic emissions were significantly reduced in overpressure groups compared with control groups. Correlations observed between acoustic emissions and lesion dimensions were significant and positive for the 3.1-MHz series, but significant and negative for the 4.8-MHz series. The results indicate that for bulk ultrasound ablation, where both acoustic cavitation and tissue vaporization are possible, bubble activity can enhance ablation in the absence of tissue vaporization, but can reduce thermal lesion dimensions in the presence of vaporization.
Collapse
Affiliation(s)
| | - Mark T Burgess
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Marepalli B Rao
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christy K Holland
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
9
|
Zeng Z, Liu JB, Peng CZ. Phase-changeable nanoparticle-mediated energy conversion promotes highly efficient high-intensity focused ultrasound ablation. Curr Med Chem 2021; 29:1369-1378. [PMID: 34238143 DOI: 10.2174/0929867328666210708085110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
This review describes how phase-changeable nanoparticles enable highly efficient high-intensity focused ultrasound ablation (HIFU). HIFU is effective in the clinical treatment of solid malignant tumors. However, it has intrinsic disadvantages for treating some deep lesions, such as damage to surrounding normal tissues. When phase-changeable nanoparticles are used in HIFU treatment, they could serve as good synergistic agents because they are transported in the blood and permeated and accumulated effectively in tissues. HIFU's thermal effects can trigger nanoparticles to undergo a special phase transition, thus enhancing HIFU ablation efficiency. Nanoparticles can also carry anticancer agents and release them in the targeted area to achieve chemo-synergistic therapy response. Although the formation of nanoparticles is complicated and HIFU applications are still in an early stage, the potential for their use in synergy with HIFU treatment shows promising results.
Collapse
Affiliation(s)
- Zeng Zeng
- Department of Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, United States
| | - Cheng-Zhong Peng
- Department of Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Keller SB, Sheeran PS, Averkiou MA. Cavitation Therapy Monitoring of Commercial Microbubbles With a Clinical Scanner. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1144-1154. [PMID: 33112743 DOI: 10.1109/tuffc.2020.3034532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to monitor cavitation activity during ultrasound and microbubble-mediated procedures is of high clinical value. However, there has been little reported literature comparing the cavitation characteristics of different clinical microbubbles, nor have current clinical scanners been used to perform passive cavitation detection in real time. The goal of this work was to investigate and characterize standard microbubble formulations (Optison, Sonovue, Sonazoid, and a custom microbubble made with similar components as Definity) with a custom passive cavitation detector (two confocal single-element focused transducers) and with a Philips EPIQ scanner with a C5-1 curvilinear probe passively listening. We evaluated three different methods for investigating cavitation thresholds, two from previously reported work and one developed in this work. For all three techniques, it was observed that the inertial cavitation thresholds were between 0.1 and 0.3 MPa for all agents when detected with both systems. Notably, we found that most microbubble formulations in bulk solution behaved generally similarly, with some differences. We show that these characteristics and thresholds are maintained when using a diagnostic ultrasound system for detecting cavitation activity. We believe that a systematic evaluation of the frequency response of the cavitation activity of different microbubbles in order to inform real-time therapy monitoring using a clinical ultrasound device could make an immediate clinical impact.
Collapse
|
11
|
Development of a Simple In Vitro Artery Model and an Evaluation of the Impact of Pulsed Flow on High-Intensity Focused Ultrasound Ablation. Ing Rech Biomed 2021. [DOI: 10.1016/j.irbm.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Lafon C, Moore D, Eames MDC, Snell J, Drainville RA, Padilla F. Evaluation of Pseudorandom Sonications for Reducing Cavitation With a Clinical Neurosurgery HIFU Device. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1224-1233. [PMID: 33166253 DOI: 10.1109/tuffc.2020.3036774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transcranial high-intensity focused ultrasound is used in clinics for treating essential tremor (ET) and proposed for many other brain disorders. This promising treatment modality requires high energy resulting eventually in undesired cavitation and potential side effects. The goals of the present work were: 1) to evaluate the potential increase of the cavitation threshold using pseudorandom gated sonications and 2) to assess the heating capabilities with such sonications. The experiments were performed with the transcranial magnetic resonance (MR)-compatible ExAblate Neuro system (InSightec, Haifa, Israel) operating at a frequency of 670 kHz, either in continuous wave (CW) or with pseudorandom gated sonications of 50% duty cycle. Cavitation activity with the two types of sonications was compared using chemical dosimetry of hydroxyl radical production at the focus of the transducer, after propagation in water or through a human skull. Heating trials were performed in a hydrogel tissue-mimicking material embedded in a human skull to mimic a clinical situation. The temperature was measured by MR-thermometry when focusing at the geometrical focus and steering off focus up to 15 mm. Compared with CW sonications, the use of gated sonication did not affect the efficiency (60%) nor the steering abilities of the transducer. After propagation through a human skull, gated sonication required a higher pressure level (10 MPa) to initiate cavitation as compared with CW (5.8 MPa). Moreover, at equivalent acoustic power above the cavitation threshold, the level of cavitation activity initiated with gated sonications was much lower with gated sonication than with continuous sonications, almost half after propagation through water and one-third after propagation through a skull. This lowered cavitation activity may be attributed to a breaking of the dynamic of the bubbles moving from monochromatic to more broadband sonications and to the removal of residual cavitation nuclei between pulses with gated sonications. The heating capability was not affected by the gated sonications, and similar temperature increases were reached at focus with both types of sonications when sonicating at equivalent acoustic power, both in water or after propagation through a human skull (+15 °C at 325 W for 10 s). These data, acquired with a clinical system, suggest that gated sonication could be an alternative to continuous sonications when cavitation onset is an issue.
Collapse
|
13
|
Battais A, Barrère V, N'Djin WA, Dupré A, Rivoire M, Melodelima D. Fast and Selective Ablation of Liver Tumors by High-Intensity Focused Ultrasound Using a Toroidal Transducer Guided by Ultrasound Imaging: The Results of Animal Experiments. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3286-3295. [PMID: 32891425 DOI: 10.1016/j.ultrasmedbio.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
This study demonstrated that high-intensity focused ultrasound (HIFU) produced with an intra-operative toroidal-shaped transducer causes fast, selective liver tumor ablations in an animal model. The HIFU device is composed of 256 emitters working at 3 MHz. A 7.5 MHz ultrasound imaging probe centered on the HIFU transducer guided treatment. VX2 tumor segments (25 mg) were implanted into the right lateral liver lobes of 45 New Zealand rabbits. The animals were evenly divided into groups 1 (toroidal HIFU ablation), 2 (surgical resection) and 3 (untreated control). Therapeutic responses were evaluated with gross pathology and histology 11 d post-treatment. Toroidal transducer-produced HIFU ablation (average ablation rate 10.5 cc/min) allowed fast and homogeneous tumor treatment. Sonograms showed all ablations. VX2 tumors were completely coagulated and surrounded by safety margins without surrounding-organ secondary HIFU lesions. HIFU group tumor volumes at autopsy (39 mm3) were significantly lower than control group volumes (2610 mm3, p < 0.0001). HIFU group tumor metastasis (27%) was lower than resected (33%) and control (67%) group metastasis. Ultrasound imaging, gross pathology and histology results supported these outcomes. HIFU procedures had no complications. Rabbit liver tumor ablation using a toroidal HIFU transducer under ultrasound imaging guidance might therefore be an effective intra-operative treatment for localized liver metastases.
Collapse
Affiliation(s)
- Amélie Battais
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - Victor Barrère
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - W Apoutou N'Djin
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - Aurélien Dupré
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - Michel Rivoire
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France.
| |
Collapse
|
14
|
Zhu L, Lam D, Pacia CP, Gach HM, Partanen A, Talcott MR, Greco SC, Zoberi I, Hallahan DE, Chen H, Altman MB. Characterization of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced large-volume hyperthermia in deep and superficial targets in a porcine model. Int J Hyperthermia 2020; 37:1159-1173. [DOI: 10.1080/02656736.2020.1825836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Lifei Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dao Lam
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - H. Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| | - Ari Partanen
- Clinical Science, Profound Medical Inc, Mississauga, Ontario, Canada
| | - Michael R. Talcott
- Division of Comparative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Suellen C. Greco
- Division of Comparative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| | - Dennis E. Hallahan
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| | - Michael B. Altman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Clinical and Microbiological Effects of Weekly Supragingival Irrigation with Aerosolized 0.5% Hydrogen Peroxide and Formation of Cavitation Bubbles in Gingival Tissues after This Irrigation: A Six-Month Randomized Clinical Trial. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3852431. [PMID: 32802264 PMCID: PMC7415088 DOI: 10.1155/2020/3852431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 11/30/2022]
Abstract
Introduction The study investigated the effect of weekly supragingival irrigation with aerosolized 0.5% hydrogen peroxide (H2O2) solution as a maintenance periodontal therapy on clinical and microbiological parameters in patients with chronic periodontitis. The other purpose was to investigate whether cavitation bubbles can penetrate not only into periodontitis-damaged tissues but also into ex vivo porcine healthy periodontal tissues. Materials and Methods The study included 35 systemically healthy patients with chronic periodontitis (CP). After nonsurgical periodontal debridement (NSPD), all patients were randomized into two groups: the Control group (NSDP alone, n = 18) and the Test group (NSDP plus supragingival irrigation, n = 17). Clinical (Approximal Plaque Index (API), Bleeding Index (BI), and Modified Gingival Index (MGI)) and microbiological (Polymerase Chain Reaction technology (using a micro-IDent® kit)) measurements were performed at the initial time point, 3 months, and 6 months after NSPD. The impact of supragingival irrigation on diseased gingival tissues of CP patients (n = 5) and on ex vivo porcine healthy gingival tissue samples (n = 3) was evaluated to estimate morphological changes in healthy and diseased gingival tissues. Results Morphological data revealed that supragingival irrigation caused the formation of cavitation bubbles in diseased gingival tissue of CP patients and in healthy porcine gingival tissues. The decrease in API, BI, and MGI scores after 6 months in the Test group significantly (p ≤ 0.01, p ≤ 0.05, and p ≤ 0.01, respectively) exceeded that in the Control group. Test group patients demonstrated a decrease in periodontal sites showing Pocket Probing Depth > 4 mm and, after 6 months, a statistically significant decrease in the proportion of periopathogenic bacteria. Conclusion The effectiveness of mechanical periodontal treatment combined with weekly supragingival irrigation with aerosolized 0.5% H2O2 solution on clinical and microbiological parameters of periodontal tissues of periodontitis patients is reliably higher than that of mechanical periodontal debridement alone. It has been found that cavitation bubbles as a result of irrigation with the aerosolized 0.5% hydrogen peroxide solution can form not only in periodontal tissues of periodontitis patients but also in ex vivo porcine healthy gingival tissues.
Collapse
|
16
|
Rathod VT. A Review of Acoustic Impedance Matching Techniques for Piezoelectric Sensors and Transducers. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4051. [PMID: 32708159 PMCID: PMC7411934 DOI: 10.3390/s20144051] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 01/28/2023]
Abstract
The coupling of waves between the piezoelectric generators, detectors, and propagating media is challenging due to mismatch in the acoustic properties. The mismatch leads to the reverberation of waves within the transducer, heating, low signal-to-noise ratio, and signal distortion. Acoustic impedance matching increases the coupling largely. This article presents standard methods to match the acoustic impedance of the piezoelectric sensors, actuators, and transducers with the surrounding wave propagation media. Acoustic matching methods utilizing active and passive materials have been discussed. Special materials such as nanocomposites, metamaterials, and metasurfaces as emerging materials have been presented. Emphasis is placed throughout the article to differentiate the difference between electric and acoustic impedance matching and the relation between the two. Comparison of various techniques is made with the discussion on capabilities, advantages, and disadvantages. Acoustic impedance matching for specific and uncommon applications has also been covered.
Collapse
Affiliation(s)
- Vivek T Rathod
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Allen SP, Steeves T, Fergusson A, Moore D, Davis RM, Vlaisialjevich E, Meyer CH. Novel acoustic coupling bath using magnetite nanoparticles for MR-guided transcranial focused ultrasound surgery. Med Phys 2019; 46:5444-5453. [PMID: 31605643 DOI: 10.1002/mp.13863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/26/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Acoustic coupling baths, nominally composed of degassed water, play important roles during transcranial focused ultrasound surgery. However, this large water bolus also degrades the quality of intraoperative magnetic resonance (MR) guidance imaging. In this study, we test the feasibility of using dilute, aqueous magnetite nanoparticle suspensions to suppress these image degradations while preserving acoustic compatibility. We examine the effects of these suspensions on metrics of image quality and acoustic compatibility for two types of transcranial focused ultrasound insonation regimes: low-duty cycle histotripsy procedures and high-duty cycle thermal ablation procedures. METHODS Magnetic resonance guidance imaging was used to monitor thermal ablations of in vitro gel targets using a coupling bath composed of various concentrations of aqueous, suspended, magnetite nanoparticles in a clinical transcranial transducer under stationary and flowing conditions. Thermal deposition was monitored using MR thermometry simultaneous to insonation. Then, using normal degassed water as a coupling bath, various concentrations of aqueous, suspended, magnetite nanoparticles were placed at the center of this same transducer and insonated using high-duty cycle pulsing parameters. Passive cavitation detectors recorded cavitation emissions, which were then used to estimate the relative number of cavitation events per insonation (cavitation duty cycle) and the cavitation dose estimates of each nanoparticle concentration. Finally, the nanoparticle mixtures were exposed to low-duty cycle, histotripsy pulses. Passive cavitation detectors monitored cavitation emissions, which were used to estimate cavitation threshold pressures. RESULTS The nanoparticles reduced the MR signal of the coupling bath by 90% in T2- and T2*-weighted images and also removed almost all imaging artifacts caused by coupling bath motion. The coupling baths caused <5% changes in peak temperature change achieved during sonication, as observed via MR thermometry. At low duty cycle insonations, the nanoparticles decreased the cavitation threshold pressure by about 15 ± 7% in a manner uncorrelated with nanoparticle concentration. At high duty cycle insonations, the 0.5 cavitation duty cycle acoustic power threshold varied linearly with nanoparticle concentration. CONCLUSIONS Dilute aqueous magnetite nanoparticle suspensions effectively reduced MR imaging artifacts caused by the acoustic coupling bath. They also attenuated acoustic power deposition by <5%. For low duty cycle insonation regimes, the nanoparticles decreased the cavitation threshold by 15 ± 7%. However, for high-duty cycle regimes, the nanoparticles decreased the threshold for cavitation in proportion to nanoparticle concentration.
Collapse
Affiliation(s)
- Steven P Allen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Tom Steeves
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Austin Fergusson
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Dave Moore
- The Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Richey M Davis
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Eli Vlaisialjevich
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA.,Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
18
|
Chen Q, Li Y, Jiang R, Zou C, Tie C, Wen J, Yang X, Zhang X, Liu X, Zheng H. A flexible 9-channel coil array for fast 3D MR thermometry in MR-guided high-intensity focused ultrasound (HIFU) studies on rabbits at 3 T. Magn Reson Imaging 2019; 65:37-44. [PMID: 31655140 DOI: 10.1016/j.mri.2019.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023]
Abstract
Signal-to-noise ratio (SNR) is a critical factor in MR-guided high-intensity focused ultrasound (HIFU) for local heating, which can affect the accuracy of temperature measurement. In order to achieve high SNR and higher temporal resolution, dedicated coil arrays for MR-guided HIFU applications need to be developed. In this work, a flexible 9-channel coil array was designed, and constructed at 3 T to achieve fast temperature mapping for MR-guided HIFU applications on rabbit leg muscle. Coil performance was evaluated for SNR, and parallel imaging capability by in-vivo studies. Compared to a commercially available 4-channel flexible coil array, the dedicated 9-channel coil array has a much higher SNR, with at least a 2.6-fold increment in the region of interest (ROI). The inverse g-factors maps demonstrated that the dedicated 9-channel coil array has a better parallel imaging capability than the Flex Small 4. With accelerations normal to the array direction, both coil arrays showed much higher g-factors than those of accelerations along the array direction. Room temperature mapping was implemented to evaluate the temperature measurement accuracy by in-vivo experiments. The precisions of the 9-channel coil, ±0.18 °C for un-acceleration and ± 0.56 °C for acceleration at R = 2 × 2, both improved by an order of magnitude than these of the 4-channel coil, which were ± 1.45 °C for un-acceleration and ± 3.52 °C for acceleration at R = 2 × 2. In the fast temperature imaging on the rabbit leg muscle with heating, a high temporal resolution of 3.3 s with a temperature measurement precision of ±0.56 °C has been achieved using the dedicated 9-channel coil. This study demonstrates that the dedicated 9-channel coil array for rabbit leg imaging provides improved performance in SNR, parallel imaging capability, and the accuracy of temperature measurement compared to a commercial 4-channel coil, and it also achieves fast temperature mapping in practical MR-guided HIFU applications.
Collapse
Affiliation(s)
- Qiaoyan Chen
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Ye Li
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Rui Jiang
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Chao Zou
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Changjun Tie
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Jianhong Wen
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Xing Yang
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, United States; UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, United States
| | - Xin Liu
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Hairong Zheng
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China.
| |
Collapse
|
19
|
Desgranges S, Lorton O, Gui-Levy L, Guillemin P, Celicanin Z, Hyacinthe JN, Breguet R, Crowe LA, Becker CD, Soulié M, Taulier N, Contino-Pépin C, Salomir R. Micron-sized PFOB liquid core droplets stabilized with tailored-made perfluorinated surfactants as a new class of endovascular sono-sensitizers for focused ultrasound thermotherapy. J Mater Chem B 2019; 7:927-939. [DOI: 10.1039/c8tb01491d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The effect of micro-droplet concentration on HIFU beam absorption.
Collapse
|
20
|
Wang M, Lei Y, Zhou Y. High-intensity focused ultrasound (HIFU) ablation by the frequency chirps: Enhanced thermal field and cavitation at the focus. ULTRASONICS 2019; 91:134-149. [PMID: 30146323 DOI: 10.1016/j.ultras.2018.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
High-intensity focused ultrasound (HIFU) has become popular in the noninvasive ablation of a variety of solid tumors and cancers with promising clinical outcomes. Its ablation efficiency should be improved for the reduced treatment duration, especially for a large target. The frequency chirps were proposed and investigated for the enhanced lesion production and bubble cavitation at the focus during HIFU ablation. First, a nonlinear wave model was used to simulate the acoustic field using different excitation strategies (at the constant frequency excitation, downward and upward frequency chirps) and subsequently, the bubble dynamics and cavitation-enhanced temperature elevation were calculated by the Gilmore and Bioheat equations, respectively. Then the temperature rises and the produced lesion in the gel phantom were measured by the thermocouple and recorded photographically, respectively. Bubble activities at the focus were measured by passive cavitation detection (PCD) to quantify the scattering and inertial cavitation levels using short-time Fourier-transform (STFT). Finally, the enhanced temperature elevation, lesion production, and bubble cavitation were further confirmed in the ex vivo tissue samples. It is found that the frequency sweeping time plays a more important role in the enhancement of HIFU-produced lesion in the gel phantom while the frequency sweeping range seems more critical in the tissue. Altogether, large frequency sweeping range in a short time is preferable, and the frequency sweeping direction has little influence on the lesion enhancement.
Collapse
Affiliation(s)
- Mingjun Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Yisheng Lei
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
21
|
Berlinda Law SK, Zhou Y. High-Intensity Focused Ultrasound Ablation by the Dual-Frequency Excitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:18-25. [PMID: 30334792 DOI: 10.1109/tuffc.2018.2876331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High-intensity focused ultrasound (HIFU) has emerged as an effective and noninvasive therapeutic modality for cancer and solid tumor. Despite its promising clinical outcomes and the approval of the Food and Drug Administration of many countries, the ablation time of a large target is long, so enhancement of the lesion production is highly desired. In this study, dual-frequency (or amplitude modulation) excitation was evaluated both numerically and experimentally, and its performance was compared with that using single-frequency excitation at the same power output. The nonlinear wave propagation model was used to simulate the acoustic field of HIFU exposure, the Gilmore model was used to determine the induced bubble dynamics, and then absorbed acoustic energy and bubble-enhanced heating were put into the BioHeat equation to calculate the temperature elevation. HIFU-produced lesion in the bovine serum albumin-embedded polyacrylamide was recorded photographically. It is found that dual-frequency excitation (3.16 + 3.20MHz) can increase the lesion area by 35%-65% compared to single-frequency excitation (3.18 MHz) at the same power output. The lesion enhancement increases with the pulse repetition frequency, duty cycle, and modulation depth and decreases with the frequency difference. In summary, dual-frequency excitation can increase the bubble cavitation and the associated heating for HIFU ablation for large lesion production.
Collapse
|
22
|
Santos MA, Wu SK, Li Z, Goertz DE, Hynynen K. Microbubble-assisted MRI-guided focused ultrasound for hyperthermia at reduced power levels. Int J Hyperthermia 2018; 35:599-611. [PMID: 30295119 DOI: 10.1080/02656736.2018.1514468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Ultrasound contrast agent microbubbles were combined with magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS) as a means to achieve mild hyperthermia at reduced power levels. METHODS MRgFUS hyperthermia (42°C for 20 min) was evaluated in rabbit thigh muscle or Vx2 tumors using infusions of microbubbles (Definity, 20 µL/kg) or saline (sham) administered over 5 min. The impact of treatments on drug uptake was assessed with liposomal doxorubicin (Caelyx, 2.5 mg/kg). Applied power levels before and after the injection of microbubbles or saline were compared, and drug uptake was evaluated with fluorometry of tissues harvested 24 hr post-treatment. RESULTS MRgFUS hyperthermia in muscle and tumors resulted in accurate temperature control (mean =42.0°C, root mean square error (RMSE) = 0.3°C). The power dropped significantly following the injection of microbubbles in muscle and tumors compared to exposures without microbubbles (-21.9% ± 12.5% vs -5.9% ± 7.8%, p = .009 in muscle; -33.8% ± 9.9% vs -3.0% ± 7.2%, p < .001 in tumors). Cavitation monitoring indicated emission of subharmonic, ultraharmonic, and elevated levels of fourth to sixth harmonic frequencies following microbubble injection. The drug delivery was elevated significantly in muscle with the use of microbubble-assisted relative to conventional heating (0.5 ± 0.5 ng/mg vs 0.20 ± 0.04 ng/mg, p = .05), whereas in tumors similar levels were found (11 ± 3 ng/mg vs 16 ± 4 ng/mg, p = .13). CONCLUSIONS The finding that microbubbles reduce the applied power requirements for hyperthermia has considerable clinical implications. The elevated levels of drug found in muscle but not tumor tissue suggest a complex interplay between the heating effects of microbubbles with those of enhanced permeabilization and possible vascular damage.
Collapse
Affiliation(s)
- Marc A Santos
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , Canada
| | - Sheng-Kai Wu
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , Canada
| | - Zhe Li
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada
| | - David E Goertz
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , Canada
| | - Kullervo Hynynen
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , Canada.,c Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto , Canada
| |
Collapse
|
23
|
Lafond M, Asquier N, Mestas JL, Carpentier A, Umemura SI, Lafon C. Evaluation of a Three Hydrophones Method for 2-Dimensional Cavitation Localization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1093-1101. [PMID: 29993829 DOI: 10.1109/tuffc.2018.2825233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cavitation is a critical parameter in various therapeutic applications involving ultrasound (US) such as histotrispy, lithothripsy, drug delivery, and cavitation-enhanced hyperthermia. A cavitation exposure outside the region of interest may lead to suboptimal treatment efficacy or in a worse case, to safety issues. Current methods of localizing cavitation are based on imaging approaches, such as beamforming the cavitation signals received passively by a US imager. These methods, although efficient, require expensive equipment, which may discourage potential future developments. We propose a threehydrophone method to localize the cavitation cloud source. Firstly, the delays between the three receptors are measured by detecting the maximum of their inter-correlations. Then, the position of the source is calculated by either minimizing a cost function or solving hyperbolic equations. After a numerical validation, the method was assessed experimentally. This method was able to track a source displacement with accuracy similar to the size of the cavitation cloud (2-4 millimeters). This light and versatile method provides interesting perspectives since localization can be executed in real time and the extension to three-dimensional localization seems straightforward.
Collapse
|
24
|
Abstract
Radiofrequency ablation (RFA) has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received the most attention in the past decade. The coefficient k, connecting the temperature change and the echo time shift, is a medium-dependent parameter used to describe the confounding effects of changes in the speed of sound and thermal expansion as temperature increases. The current algorithm of temperature estimate based on echo time shift detection typically uses a constant k, resulting in estimation errors when ablation temperatures are higher than 50°C. This study proposes an adaptive-k algorithm that enables the automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine liver samples (total n = 15) were performed using ablation powers of 10, 15, and 20 W. During RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used to collect backscattered signals for ultrasound temperature imaging using the constant- and adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were used to measure surface temperature distribution of the sample and internal ablation temperatures for comparisons with ultrasound estimates. Experimental results demonstrated that the proposed adaptive-k method improved the performance in visualizing the temperature distribution. In particular, the estimation errors were also reduced even when the temperature of the tissue is higher than 50°C. The proposed adaptive-k ultrasound temperature imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring high-temperature RFA.
Collapse
|
25
|
Liu YD, Li Q, Zhou Z, Yeah YW, Chang CC, Lee CY, Tsui PH. Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation. PLoS One 2017; 12:e0182457. [PMID: 28837584 PMCID: PMC5570358 DOI: 10.1371/journal.pone.0182457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022] Open
Abstract
Radiofrequency ablation (RFA) has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received the most attention in the past decade. The coefficient k, connecting the temperature change and the echo time shift, is a medium-dependent parameter used to describe the confounding effects of changes in the speed of sound and thermal expansion as temperature increases. The current algorithm of temperature estimate based on echo time shift detection typically uses a constant k, resulting in estimation errors when ablation temperatures are higher than 50°C. This study proposes an adaptive-k algorithm that enables the automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine liver samples (total n = 15) were performed using ablation powers of 10, 15, and 20 W. During RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used to collect backscattered signals for ultrasound temperature imaging using the constant- and adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were used to measure surface temperature distribution of the sample and internal ablation temperatures for comparisons with ultrasound estimates. Experimental results demonstrated that the proposed adaptive-k method improved the performance in visualizing the temperature distribution. In particular, the estimation errors were also reduced even when the temperature of the tissue is higher than 50°C. The proposed adaptive-k ultrasound temperature imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring high-temperature RFA.
Collapse
Affiliation(s)
- Yi-Da Liu
- School of Electronic Information Engineering, Tianjin University, Tianjin, China
| | - Qiang Li
- School of Electronic Information Engineering, Tianjin University, Tianjin, China
| | - Zhuhuang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Yao-Wen Yeah
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Chien-Cheng Chang
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
- * E-mail: (PHT); (CCC)
| | - Chia-Yen Lee
- Department of Electrical Engineering, National United University, Miao-Li, Taiwan
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- * E-mail: (PHT); (CCC)
| |
Collapse
|
26
|
Crake C, Meral FC, Burgess MT, Papademetriou IT, McDannold NJ, Porter TM. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy. Phys Med Biol 2017; 62:6144-6163. [PMID: 28590938 DOI: 10.1088/1361-6560/aa77df] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.
Collapse
Affiliation(s)
- Calum Crake
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, United States of America
| | | | | | | | | | | |
Collapse
|
27
|
Dai H, Chen F, Yan S, Ding X, Ma D, Wen J, Xu D, Zou J. In Vitro and In Vivo Investigation of High-Intensity Focused Ultrasound (HIFU) Hat-Type Ablation Mode. Med Sci Monit 2017; 23:3373-3382. [PMID: 28699626 PMCID: PMC5519222 DOI: 10.12659/msm.902528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The aim of this study was to investigate the feasibility of the application of high-intensity focused ultrasound (HIFU) hat-type ablation mode in in vitro and in vivo models, and to compare the ablation effects of different parameter combinations. Material/Methods HIFU hat-type ablation was performed in isolated bovine liver tissue and in the liver tissue in living rabbits, and the coagulative necrosis for different parameter combinations (plane angles and irradiation order) was investigated. We also analyzed and compared the ablation effects of traditional ablation and hat-type ablation modes. Coagulative necrosis morphology was detected with TTC staining, and the coagulative necrosis volume and energy efficiency factor (EEF) were calculated and compared. Results Coagulative necrosis was observed in all the ablated groups, and the coagulative necrosis volume was much larger than the irradiation area. The coagulative necrosis induced by the hat-type ablation was more regular and controllable than the traditional ablation. The angles between the ablation planes determined the coagulative necrosis morphology, but did not affect the coagulative necrosis volume. Moreover, the irradiation order significantly influenced the coagulative necrosis. Importantly, under certain conditions, hat-type ablation achieved higher efficiency compared with the traditional ablation mode. Conclusions Compared with the traditional ablation mode, HIFU hat-type ablation effectively shortened the irradiation time, reduced the over-accumulation of energy, and increased the HIFU ablation efficiency.
Collapse
Affiliation(s)
- Hongya Dai
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Fei Chen
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Sijing Yan
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Xiaoya Ding
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Dazhao Ma
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Jing Wen
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Die Xu
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| | - Jianzhong Zou
- College of Biomedical Engineering, Chongqing Medical University, State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing, China (mainland)
| |
Collapse
|
28
|
Nguyen VP, Oh J, Park S, Wook Kang H. Feasibility of photoacoustic evaluations on dual-thermal treatment of ex vivo bladder tumors. JOURNAL OF BIOPHOTONICS 2017; 10:577-588. [PMID: 27136046 DOI: 10.1002/jbio.201600045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/22/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
A variety of thermal therapeutic methods have been investigated to treat bladder tumors but often cause bowel injury and bladder wall perforation due to high treatment dosage and limited clinical margins. The objective of the current study is to develop a dual-thermal modality to deeply coagulate the bladder tumors at low thermal dosage and to evaluate therapeutic outcomes with high contrast photoacoustic imaging (PAI). High intensity focused ultrasound (HIFU) is combined with 532 nm laser light to enhance therapeutic depth during thermal treatments on artificial tumor-injected bladder tissue ex vivo. PAI is employed to identify the margins of the tumors pre- and post-treatments. The dual-thermal modality achieves 3- and 1.8-fold higher transient temperature changes and 2.2- and 1.5-fold deeper tissue denaturation than laser and HIFU, respectively. PAI vividly identifies the position of the injected tumor and entails approximately 7.9 times higher image contrast from the coagulated tumor as that from the untreated tumor. Spectroscopic analysis exhibits that both 740 nm and 760 nm attains the maximum photoacoustic amplitudes from the treated areas. The proposed PAI-guided dual-thermal treatments (laser and HIFU) treatments can be a feasible therapeutic modality to treat bladder tumors in a controlled and efficient manner.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 608-737, South Korea
| | - Junghwan Oh
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 608-737, South Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, 608-737, South Korea
| | - Suhyun Park
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon, 443-803, South Korea
| | - Hyun Wook Kang
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 608-737, South Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, 608-737, South Korea
| |
Collapse
|
29
|
Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7030288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Bour P, Marquet F, Ozenne V, Toupin S, Dumont E, Aubry JF, Lepetit-Coiffe M, Quesson B. Real-time monitoring of tissue displacement and temperature changes during MR-guided high intensity focused ultrasound. Magn Reson Med 2017; 78:1911-1921. [DOI: 10.1002/mrm.26588] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/26/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Pierre Bour
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- Image Guided Therapy SA; Pessac France
| | - Fabrice Marquet
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
| | - Valéry Ozenne
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
| | - Solenn Toupin
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- Siemens Healthineers France; Saint-Denis France
| | | | - Jean-François Aubry
- Institut Langevin, CNRS UMR 7587, INSERM U979, ESPCI ParisTech; Paris France
| | | | - Bruno Quesson
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
| |
Collapse
|
31
|
Žekonis G, Žekonis J, Gleiznys A, Noreikienė V, Balnytė I, Šadzevičienė R, Narbutaitė J. Effect of Supragingival Irrigation with Aerosolized 0.5% Hydrogen Peroxide on Clinical Periodontal Parameters, Markers of Systemic Inflammation, and Morphology of Gingival Tissues in Patients with Periodontitis. Med Sci Monit 2016; 22:3713-3721. [PMID: 27743448 PMCID: PMC5070619 DOI: 10.12659/msm.900338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Various studies have shown that non-surgical periodontal treatment is correlated with reduction in clinical parameters and plasma levels of inflammatory markers. The aim of this study was to evaluate the effect of long-term weekly supragingival irrigations with aerosolized 0.5% hydrogen peroxide as maintenance therapy followed by non-surgical periodontal treatment on clinical parameters, plasma levels of inflammatory markers, and morphological changes in gingival tissues of patients with periodontitis. MATERIAL AND METHODS In total, 43 patients with chronic periodontitis were randomly allocated to long-term maintenance therapy. The patients' periodontal status was assessed using clinical parameters of approximal plaque index, modified gingival index, bleeding index, pocket probing depth, and plasma levels of inflammatory markers (high-sensitivity C-reactive protein and white blood cell count) at baseline and after 1, 2, and 3 years. The morphological status of gingival tissues (immediately after supragingival irrigation) was assessed microscopically. RESULTS Complete data were obtained on 34 patients. A highly statistically significant and consistent reduction was observed in all long-term clinical parameters and plasma levels of inflammatory markers. Morphological data showed abundant spherical bubbles in gingival tissues. CONCLUSIONS 1. The present study showed that non-surgical periodontal treatment with long-term weekly supragingival irrigations with aerosolized 0.5% hydrogen peroxide improved clinical periodontal status and plasma levels of inflammatory markers and may be a promising method in periodontology. 2. We found that supragingival irrigation with aerosolized 0.5% hydrogen peroxide created large numbers of spherical bubbles in gingival tissues.
Collapse
Affiliation(s)
- Gediminas Žekonis
- Clinic of Dental and Maxillofacial Orthopedics, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jonas Žekonis
- Clinic of Dental and Maxillofacial Orthopedics, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alvydas Gleiznys
- Clinic of Dental and Maxillofacial Orthopedics, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Viktorija Noreikienė
- Clinic of Dental and Maxillofacial Orthopedics, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Renata Šadzevičienė
- Clinic of Dental and Oral Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julija Narbutaitė
- Clinic of Oral Health and Pediatric Dentistry, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
32
|
Yin H, Chang N, Xu S, Wan M. Sonoluminescence characterization of inertial cavitation inside a BSA phantom treated by pulsed HIFU. ULTRASONICS SONOCHEMISTRY 2016; 32:158-164. [PMID: 27150756 DOI: 10.1016/j.ultsonch.2016.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the inertial cavitation inside a phantom treated by pulsed HIFU (pHIFU). Basic bovine serum albumin (BSA) phantoms without any inherent ultrasound contrast agents (UCAs) or phase-shift nano-emulsions (PSNEs) were used. During the treatment, sonoluminescence (SL) recordings were performed to characterize the spatial distribution of inertial cavitation adjacent to the focal region. High-speed photographs and thermal coagulations, comparing with the SL results, were also recorded and presented. A series of pulse parameters (pulse duration (PD) was between 1 and 23 cycles and pulse repetition frequency (PRF) was between 0.5kHz and 100kHz) were performed to make a systematic investigation under certain acoustic power (APW). Continuous HIFU (cHIFU) investigation was also performed to serve as control group. It was found that, when APW was 19.5W, pHIFU with short PD was much easier to form SL adjacent to the focal region inside the phantom, while it was difficult for cHIFU to generate cavitation bubbles. With appropriate PD and PRF, the residual bubbles of the previous pulses could be stimulated by the incident pulses to oscillate in a higher level and even violently collapse, resulting to enhanced physical thermogenesis. The experimental results showed that the most violent inertial cavitation occurs when PD was set to 6 cycles (5μs) and PRF to 10kHz, while the highest level of thermal coagulation was observed when PD was set to 10 cycles. The cavitational and thermal characteristics were in good correspondence, exhibiting significant potentiality regarding to inject-free cavitation bubble enhanced thermal ablation under lower APW, compared to the conventional thermotherapy.
Collapse
Affiliation(s)
- Hui Yin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China
| | - Nan Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China.
| |
Collapse
|
33
|
CONSIGLIERI LUISA. ANALYTICAL SOLUTIONS IN THE MODELING OF THE LOCAL RF ABLATION. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416500718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coupled mathematical models for the radiofrequency (RF) ablation performed in biomedical sciences have been developed based on the bioheat transfer theory. The heat exchange problem is important to be analytically studied in order to control the size of the necrosis zone caused by RF ablation. This lesion size in the tissue may be predicted by the knowledge of the internal tissue temperature. We propose an analytical solution for the Pennes heat transfer equation in bi- and tri-region domains, applicable to the RF ablation of cancerigeneous tissue — a clinical relevant problem. The model consists of two partial differential equations describing the spatio-temporal interactions between the electric and thermic effects. The aim is to find simple algebraic expressions of analytical solutions that may allow to generate quantitative results which in turn may be interpreted (including uncertainties). The dependence of the temperature as function of the electrothermal parameters in both diseased and surrounding healthy tissues is pointed out. Two cases, namely the tumor–tissue and tumor–tissue–skin systems, are graphically computed, and important findings include the fact that the presence of tissue with smaller value parameters protects somehow healthy cells. Moreover, the graphical representations are conducted to highlight the link of the profile of current density distribution in the physiological problem with the (neither oval nor circular) shape of the temperature isoclinic lines.
Collapse
|
34
|
Liu R, Xu S, Hu H, Huo R, Wang S, Wan M. Wavelet-transform-based active imaging of cavitation bubbles in tissues induced by high intensity focused ultrasound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:798. [PMID: 27586712 DOI: 10.1121/1.4960519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cavitation detection and imaging are essential for monitoring high-intensity focused ultrasound (HIFU) therapies. In this paper, an active cavitation imaging method based on wavelet transform is proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The Yang-Church model, which is a combination of the Keller-Miksis equation with the Kelvin-Voigt equation for the pulsations of gas bubbles in simple linear viscoelastic solids, is utilized to construct the bubble wavelet. Experiments with porcine muscles demonstrate that image quality is associated with the initial radius of the bubble wavelet and the scale. Moreover, the Yang-Church model achieves a somewhat better performance compared with the Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model. Furthermore, the pulse inversion (PI) technique is combined with bubble wavelet transform to achieve further improvement. The cavitation-to-tissue ratio (CTR) of the best tissue bubble wavelet transform (TBWT) mode image is improved by 5.1 dB compared with that of the B-mode image, while the CTR of the best PI-based TBWT mode image is improved by 7.9 dB compared with that of the PI-based B-mode image. This work will be useful for better monitoring of cavitation in HIFU-induced therapies.
Collapse
Affiliation(s)
- Runna Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hong Hu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Rui Huo
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
35
|
Ishijima A, Tanaka J, Azuma T, Minamihata K, Yamaguchi S, Kobayashi E, Nagamune T, Sakuma I. The lifetime evaluation of vapourised phase-change nano-droplets. ULTRASONICS 2016; 69:97-105. [PMID: 27082763 DOI: 10.1016/j.ultras.2016.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 05/20/2023]
Abstract
Phase-change nano-droplets (PCNDs) are sub-micron particles that are coated with phospholipid and contain liquid-state perfluorocarbons such as perfluoropentane (boiling point=29°C) and perfluorohexane (boiling point=57°C), which can vapourise upon application of ultrasound. The bubbles generated by such reactions can serve as ultrasound contrast agents or HIFU sensitisers. However, the lifetime of bubbles generated from PCNDs on μs-order is not well known. Knowledge of the condition of PCND-derived bubbles on μs-order is essential for producing bubbles customised for specific purposes. In this study, we use an optical measurement system to measure the vapourisation and stability of the bubbles (bubble-lifetime) as well as the stability-controlling method of the nucleated bubbles on μs-order while changing the internal composition of PCNDs and the ambient temperature. PCND-derived bubbles remain in a bubble state when the boiling point of the internal composition is lower than the ambient temperature, but lose their optical contrast after approximately 10μs by re-condensation or dissolution when the boiling point of the internal composition is higher than the ambient temperature. We reveal that the superheating condition significantly affects the fate of vapourised PCNDs and that the bubble-lifetime can be controlled by changing both the ambient temperature conditions and the internal composition of PCNDs.
Collapse
Affiliation(s)
- Ayumu Ishijima
- Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | - Jun Tanaka
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | - Takashi Azuma
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan.
| | - Kosuke Minamihata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | - Satoshi Yamaguchi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, Japan
| | - Etsuko Kobayashi
- Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | - Ichiro Sakuma
- Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| |
Collapse
|
36
|
Hersh DS, Nguyen BA, Dancy JG, Adapa AR, Winkles JA, Woodworth GF, Kim AJ, Frenkel V. Pulsed ultrasound expands the extracellular and perivascular spaces of the brain. Brain Res 2016; 1646:543-550. [PMID: 27369449 DOI: 10.1016/j.brainres.2016.06.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Diffusion within the extracellular and perivascular spaces of the brain plays an important role in biological processes, therapeutic delivery, and clearance mechanisms within the central nervous system. Recently, ultrasound has been used to enhance the dispersion of locally administered molecules and particles within the brain, but ultrasound-mediated effects on the brain parenchyma remain poorly understood. We combined an electron microscopy-based ultrastructural analysis with high-resolution tracking of non-adhesive nanoparticles in order to probe changes in the extracellular and perivascular spaces of the brain following a non-destructive pulsed ultrasound regimen known to alter diffusivity in other tissues. Freshly obtained rat brain neocortical slices underwent sham treatment or pulsed, low intensity ultrasound for 5min at 1MHz. Transmission electron microscopy revealed intact cells and blood vessels and evidence of enlarged spaces, particularly adjacent to blood vessels, in ultrasound-treated brain slices. Additionally, ultrasound significantly increased the diffusion rate of 100nm, 200nm, and 500nm nanoparticles that were injected into the brain slices, while 2000nm particles were unaffected. In ultrasound-treated slices, 91.6% of the 100nm particles, 20.7% of the 200nm particles, 13.8% of the 500nm particles, and 0% of the 2000nm particles exhibited diffusive motion. Thus, pulsed ultrasound can have meaningful structural effects on the brain extracellular and perivascular spaces without evidence of tissue disruption.
Collapse
Affiliation(s)
- David S Hersh
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S Greene St Suite 12D, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA
| | - Ben A Nguyen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 419 W Redwood St Suite 110, Baltimore, MD 21201, USA
| | - Jimena G Dancy
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S Greene St Suite 12D, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA
| | - Arjun R Adapa
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S Greene St Suite 12D, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA
| | - Jeffrey A Winkles
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA; Department of Surgery, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, UMB BioPark, One Room 210, 800 West Baltimore Street Baltimore, MD 21201, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S Greene St Suite 12D, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S Greene St Suite 12D, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, HSFII Room 520, Baltimore, MD 21201, USA; Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St. Suite 104, Baltimore, MD 21201, USA.
| | - Victor Frenkel
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 419 W Redwood St Suite 110, Baltimore, MD 21201, USA.
| |
Collapse
|
37
|
Yoshizawa S, Matsuura K, Takagi R, Yamamoto M, Umemura SI. Detection of tissue coagulation by decorrelation of ultrasonic echo signals in cavitation-enhanced high-intensity focused ultrasound treatment. J Ther Ultrasound 2016; 4:15. [PMID: 27081486 PMCID: PMC4831115 DOI: 10.1186/s40349-016-0060-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A noninvasive technique to monitor thermal lesion formation is necessary to ensure the accuracy and safety of high-intensity focused ultrasound (HIFU) treatment. The purpose of this study is to ultrasonically detect the tissue change due to thermal coagulation in the HIFU treatment enhanced by cavitation microbubbles. METHODS An ultrasound imaging probe transmitted plane waves at a center frequency of 4.5 MHz. Ultrasonic radio-frequency (RF) echo signals during HIFU exposure at a frequency of 1.2 MHz were acquired. Cross-correlation coefficients were calculated between in-phase and quadrature (IQ) data of two B-mode images with an interval time of 50 and 500 ms for the estimation of the region of cavitation and coagulation, respectively. Pathological examination of the coagulated tissue was also performed to compare with the corresponding ultrasonically detected coagulation region. RESULTS The distribution of minimum hold cross-correlation coefficient between two sets of IQ data with 50-ms intervals was compared with a pulse inversion (PI) image. The regions with low cross-correlation coefficients approximately corresponded to those with high brightness in the PI image. The regions with low cross-correlation coefficients in 500-ms intervals showed a good agreement with those with significant change in histology. CONCLUSIONS The results show that the regions of coagulation and cavitation could be ultrasonically detected as those with low cross-correlation coefficients between RF frames with certain intervals. This method will contribute to improve the safety and accuracy of the HIFU treatment enhanced by cavitation microbubbles.
Collapse
Affiliation(s)
- Shin Yoshizawa
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Keiko Matsuura
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Ryo Takagi
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Mariko Yamamoto
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Shin-Ichiro Umemura
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579 Japan
| |
Collapse
|
38
|
Yao Y, Yang K, Cao Y, Zhou X, Xu J, Liu J, Wang Q, Wang Z, Wang D. Comparison of the synergistic effect of lipid nanobubbles and SonoVue microbubbles for high intensity focused ultrasound thermal ablation of tumors. PeerJ 2016; 4:e1716. [PMID: 26925336 PMCID: PMC4768712 DOI: 10.7717/peerj.1716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/30/2016] [Indexed: 01/20/2023] Open
Abstract
Microbubbles (MBs) are considered as an important enhancer for high intensity focused ultrasound (HIFU) treatment of benign or malignant tumors. Recently, different sizes of gas-filled bubbles have been investigated to improve the therapeutic efficiency of HIFU thermal ablation and reduce side effects associated with ultrasound power and irradiation time. However, nanobubbles (NBs) as an ultrasound contrast agent for synergistic therapy of HIFU thermal ablation remain controversial due to their small nano-size in diameter. In this study, phospholipid-shell and gas-core NBs with a narrow size range of 500–600 nm were developed. The synergistic effect of NBs for HIFU thermal ablation was carefully studied both in excised bovine livers and in breast tumor models of rabbits, and made a critical comparison with that of commercial SonoVue microbubbles (SonoVue MBs). In addition, the pathological changes of the targeted area in tumor tissue after HIFU ablation were further investigated. Phosphate buffer saline (PBS) was used as the control. Under the same HIFU parameters, the quantitative echo intensity of B-mode ultrasound image and the volume of coagulative necrosis in lipid NBs groups were significantly higher and larger than that in PBS groups, but could not be demonstrated a difference to that in SonoVue MBs groups both ex vivo and in vivo. These results showed that the synergistic effect of lipid NBs for HIFU thermal ablation were similar with that of SonoVue MBs, and further indicate that lipid NBs could potentially become an enhancer for HIFU thermal ablation of tumors.
Collapse
Affiliation(s)
- Yuanzhi Yao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University , Chongqing , China
| | - Ke Yang
- Department of Ultrasound, Children's Hospital of Chongqing Medical University, Chongqing Medical University , Chongqing , China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University , Chongqing , China
| | - Xuan Zhou
- Department of Emergency, Chinese PLA General Hospital , Beijing , China
| | - Jinshun Xu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University , Chongqing , China
| | - Jianxin Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University , Chongqing , China
| | - Qi Wang
- Institute of Ultrasound Engineering in Medical of Chongqing Medical University, Chongqing Medical University , Chongqing , China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University , Chongqing , China
| | - Dong Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China; Department of Ultrasound, Children's Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
Ramaekers P, de Greef M, van Breugel JMM, Moonen CTW, Ries M. Increasing the HIFU ablation rate through an MRI-guided sonication strategy using shock waves: feasibility in thein vivoporcine liver. Phys Med Biol 2016; 61:1057-77. [DOI: 10.1088/0031-9155/61/3/1057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Izadifar Z, Belev G, Babyn P, Chapman D. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit. Biomed Eng Online 2015; 14:91. [PMID: 26481447 PMCID: PMC4615869 DOI: 10.1186/s12938-015-0085-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/29/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The observation of ultrasound generated cavitation bubbles deep in tissue is very difficult. The development of an imaging method capable of investigating cavitation bubbles in tissue would improve the efficiency and application of ultrasound in the clinic. Among the previous imaging modalities capable of detecting cavitation bubbles in vivo, the acoustic detection technique has the positive aspect of in vivo application. However the size of the initial cavitation bubble and the amplitude of the ultrasound that produced the cavitation bubbles, affect the timing and amplitude of the cavitation bubbles' emissions. METHODS The spatial distribution of cavitation bubbles, driven by 0.8835 MHz therapeutic ultrasound system at output power of 14 Watt, was studied in water using a synchrotron X-ray imaging technique, Analyzer Based Imaging (ABI). The cavitation bubble distribution was investigated by repeated application of the ultrasound and imaging the water tank. The spatial frequency of the cavitation bubble pattern was evaluated by Fourier analysis. Acoustic cavitation was imaged at four different locations through the acoustic beam in water at a fixed power level. The pattern of cavitation bubbles in water was detected by synchrotron X-ray ABI. RESULTS The spatial distribution of cavitation bubbles driven by the therapeutic ultrasound system was observed using ABI X-ray imaging technique. It was observed that the cavitation bubbles appeared in a periodic pattern. The calculated distance between intervals revealed that the distance of frequent cavitation lines (intervals) is one-half of the acoustic wave length consistent with standing waves. CONCLUSION This set of experiments demonstrates the utility of synchrotron ABI for visualizing cavitation bubbles formed in water by clinical ultrasound systems working at high frequency and output powers as low as a therapeutic system.
Collapse
Affiliation(s)
- Zahra Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada.
| | - George Belev
- Biomedical Imaging and Therapy Beamlines, Canadian Light Source Inc., University of Saskatchewan, 44 Innovation, Boulevard, Saskatoon, SK, S7N 2V3, Canada.
| | - Paul Babyn
- Department of Medical Imaging, Royal University Hospital, University of Saskatchewan and Saskatoon Health Region, 103 Hospital Drive, Saskatoon, SK, S7N0W8, Canada.
| | - Dean Chapman
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada. .,Anatomy and Cell Biology, University of Saskatchewan, 3B34 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
41
|
A clinically feasible treatment protocol for magnetic resonance-guided high-intensity focused ultrasound ablation in the liver. Invest Radiol 2015; 50:24-31. [PMID: 25198833 DOI: 10.1097/rli.0000000000000091] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) allows for noninvasive thermal ablation under real-time temperature imaging guidance. The purpose of this study was to assess the feasibility and safety of MR-HIFU ablation of liver tissue in a clinically acceptable setting. The experimental protocol was designed with a clinical ablation procedure of a small malignant tumor in mind; the procedures were performed within a clinically feasible time frame and care was taken to avoid adverse events. The main outcome was the size and quality of the ablated liver tissue volume on imaging and histology. Secondary outcomes were safety and treatment time. MATERIALS AND METHODS Healthy pigs (n = 10) under general anesthesia were positioned on a clinical MR-HIFU system, which consisted of an HIFU tabletop with a skin cooling system integrated into a 1.5-T MR scanner. A liver tissue volume was ablated with multiple sonication cells (4 × 4 × 10 mm, 450 W). Both MR thermometry and sonication were respiratory-gated using a pencil beam navigator on the diaphragm. Contrast-enhanced T1-weighted (CE-T1w) imaging was performed for treatment evaluation. Targeted total treatment time was 3 hours. The abdominal wall, liver, and adjacent organs were inspected postmortem for thermal damage. Ablated tissue volumes were processed for cell viability staining. The ablated volumes were analyzed using MR imaging, MR thermometry, and cell viability histology. RESULTS Eleven volume ablations were performed in 10 animals, resulting in a median nonperfused volume (NPV) on CE-T1w imaging of 1.6 mL (interquartile range [IQR], 0.8-2.3; range, 0.7-3.0). Cell viability histology showed a damaged volume of 1.5 mL (IQR, 1.1-1.8; range, 0.7-2.3). The NPV was confluent in 10 of the 11 cases. The ablated tissue volume on cell viability histology was confluent in all 9 available cases. In all cases, there was a good correspondence between the aspects of the NPV on CE-T1w and the ablated volume on cell viability histology. Two treatment-related adverse events occurred: 1 animal had a 7-mm skin burn and 1 animal showed evidence of thermal damage on the surface of the spleen. Median ablation time was 108 minutes (IQR, 101-120; range, 96-181 minutes) and median total treatment time was 180 minutes (IQR, 165-224; 130-250 minutes). CONCLUSIONS Our results demonstrate the feasibility and safety of MR-HIFU ablation of liver tissue volumes. The imaging data and cell viability histology show, for the first time, that confluent ablation volumes can be achieved with motion-gated ablation and MR guidance. These results were obtained using a readily available MR-HIFU system with only minor modifications, within a clinically acceptable time frame, and with only minor adverse events. This shows that this technique is sufficiently reliable and safe to initiate a clinical trial.
Collapse
|
42
|
Wang G, Xu Y, Zhang L, Ye D, Feng X, Fu T, Bai Y. Enhancement of Apoptosis by Titanium Alloy Internal Fixations during Microwave Treatments for Fractures: An Animal Study. PLoS One 2015; 10:e0132046. [PMID: 26132082 PMCID: PMC4488932 DOI: 10.1371/journal.pone.0132046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 06/09/2015] [Indexed: 11/25/2022] Open
Abstract
Objective Microwaves are used in one method of physical therapy and can increase muscle tissue temperature which is useful for improving muscle, tendon and bone injuries. In the study, we sought to determine whether titanium alloy internal fixations influence apoptosis in tissues subjected to microwave treatments at 2,450 MHz and 40 W during the healing of fractures because this issue is not yet fully understood. Methods In this study, titanium alloy internal fixations were used to treat 3.0-mm transverse osteotomies in the middle of New Zealand rabbits’ femurs. After the operation, 30-day microwave treatments were applied to the 3.0 mm transverse osteotomies 3 days after the operation. The changes in the temperatures of the muscle tissues in front of the implants or the 3.0 mm transverse osteotomies were measured during the microwave treatments. To characterize the effects of titanium alloy internal fixations on apoptosis in the muscles after microwave treatment, we performed TUNEL assays, fluorescent real-time (quantitative) PCR, western blotting analyses, reactive oxygen species (ROS) detection and transmission electron microscopy examinations. Results The temperatures were markedly increased in the animals with the titanium alloy implants. Apoptosis in the muscle cells of the implanted group was significantly more extensive than that in the non-implanted control group at different time points. Transmission electron microscopy examinations of the skeletal muscles of the implanted groups revealed muscular mitochondrial swelling, vacuolization. ROS, Bax and Hsp70 were up-regulated, and Bcl-2 was down-regulated in the implanted group. Conclusion Our results suggest that titanium alloy internal fixations caused greater muscular tissue cell apoptosis following 2,450 MHz, 40 W microwave treatments in this rabbit femur fracture models.
Collapse
Affiliation(s)
- Gang Wang
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yiming Xu
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Lina Zhang
- Department of Biostatistics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongmei Ye
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xianxuan Feng
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Tengfei Fu
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuehong Bai
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- * E-mail:
| |
Collapse
|
43
|
Arvanitis CD, Clement GT, McDannold N. Transcranial Assessment and Visualization of Acoustic Cavitation: Modeling and Experimental Validation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1270-81. [PMID: 25546857 PMCID: PMC4481181 DOI: 10.1109/tmi.2014.2383835] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The interaction of ultrasonically-controlled microbubble oscillations with tissues and biological media has been shown to induce a wide range of bioeffects that may have significant impact on therapy and diagnosis of brain diseases and disorders. However, the inherently non-linear microbubble oscillations combined with the micrometer and microsecond scales involved in these interactions and the limited methods to assess and visualize them transcranially hinder both their optimal use and translation to the clinics. To overcome these challenges, we present a framework that combines numerical simulations with multimodality imaging to assess and visualize the microbubble oscillations transcranially. In the present work, microbubble oscillations were studied with an integrated US and MR imaging guided clinical FUS system. A high-resolution brain CT scan was also co-registered to the US and MR images and the derived acoustic properties were used as inputs to two- and three-dimensional Finite Difference Time Domain simulations that matched the experimental conditions and geometry. Synthetic point sources by either a Gaussian function or the output of a microbubble dynamics model were numerically excited and propagated through the skull towards a virtual US imaging array. Using passive acoustic mapping (PAM) that was refined to incorporate variable speed of sound, we were able to correct the aberrations introduced by the skull and substantially improve the PAM resolution. The good agreement between the simulations incorporating microbubble emissions and experimentally-determined PAMs suggest that this integrated approach can provide a clinically-relevant framework and more control over this nonlinear and dynamic process.
Collapse
Affiliation(s)
- Costas D. Arvanitis
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA ()
| | - Gregory T. Clement
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA )
| | - Nathan McDannold
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA ()
| |
Collapse
|
44
|
Abstract
Ultrasound therapy has been investigated for over half a century. Ultrasound can act on tissue through a variety of mechanisms, including thermal, shockwave and cavitation mechanisms, and through these can elicit different responses. Ultrasound therapy can provide a non-invasive or minimally invasive treatment option, and ultrasound technology has advanced to the point where devices can be developed to investigate a wide range of applications. This review focuses on non-cancer clinical applications of therapeutic ultrasound, with an emphasis on treatments that have recently reached clinical investigations, and preclinical research programmes that have great potential to impact patient care.
Collapse
|
45
|
Ye D, Xu Y, Wang G, Feng X, Fu T, Zhang H, Jiang L, Bai Y. Thermal effects of 2450 MHz microwave exposure near a titanium alloy plate implanted in rabbit limbs. Bioelectromagnetics 2015; 36:309-18. [PMID: 25776031 DOI: 10.1002/bem.21912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 02/27/2015] [Indexed: 11/06/2022]
Abstract
This study aimed to examine the safety profile of microwave therapy on limbs with metal implants. New Zealand white rabbits were implanted with titanium alloy internal fixation plates. Femurs were exposed to 20, 40, 60, or 80 W of microwave radiation for 30 min (microwave applicator at 2450 MHz), and temperatures of the implants and muscles adjacent to implants were recorded. To evaluate thermal damage, nerves were electrodiagnostically assessed immediately after radiation, and histologic studies performed on nerve and muscle sections. As expected, implant temperature was highest in the exposure field. Temperatures of limbs with titanium alloy implants increased significantly at 60 and 80 W, with a significant decline in the nerve conduction velocity and acute thermal injuries in nerves and muscles adjacent to implants. However, temperature remained unchanged and no adverse effects were observed in nerves and muscles at 20 and 40 W. These findings are inconsistent with the current notion that surgical metal implants in the treatment field are contraindications for microwave therapy. Hence, we believe that a lower dose of continuous wave microwave irradiation is safe for limbs with titanium alloy implants.
Collapse
Affiliation(s)
- Dongmei Ye
- Department of Rehabilitation, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Xu Z, Carlson C, Snell J, Eames M, Hananel A, Lopes MB, Raghavan P, Lee CC, Yen CP, Schlesinger D, Kassell NF, Aubry JF, Sheehan J. Intracranial inertial cavitation threshold and thermal ablation lesion creation using MRI-guided 220-kHz focused ultrasound surgery: preclinical investigation. J Neurosurg 2015; 122:152-61. [PMID: 25380106 DOI: 10.3171/2014.9.jns14541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT In biological tissues, it is known that the creation of gas bubbles (cavitation) during ultrasound exposure is more likely to occur at lower rather than higher frequencies. Upon collapsing, such bubbles can induce hemorrhage. Thus, acoustic inertial cavitation secondary to a 220-kHz MRI-guided focused ultrasound (MRgFUS) surgery is a serious safety issue, and animal studies are mandatory for laying the groundwork for the use of low-frequency systems in future clinical trials. The authors investigate here the in vivo potential thresholds of MRgFUS-induced inertial cavitation and MRgFUS-induced thermal coagulation using MRI, acoustic spectroscopy, and histology. METHODS Ten female piglets that had undergone a craniectomy were sonicated using a 220-kHz transcranial MRgFUS system over an acoustic energy range of 5600-14,000 J. For each piglet, a long-duration sonication (40-second duration) was performed on the right thalamus, and a short sonication (20-second duration) was performed on the left thalamus. An acoustic power range of 140-300 W was used for long-duration sonications and 300-700 W for short-duration sonications. Signals collected by 2 passive cavitation detectors were stored in memory during each sonication, and any subsequent cavitation activity was integrated within the bandwidth of the detectors. Real-time 2D MR thermometry was performed during the sonications. T1-weighted, T2-weighted, gradient-recalled echo, and diffusion-weighted imaging MRI was performed after treatment to assess the lesions. The piglets were killed immediately after the last series of posttreatment MR images were obtained. Their brains were harvested, and histological examinations were then performed to further evaluate the lesions. RESULTS Two types of lesions were induced: thermal ablation lesions, as evidenced by an acute ischemic infarction on MRI and histology, and hemorrhagic lesions, associated with inertial cavitation. Passive cavitation signals exhibited 3 main patterns identified as follows: no cavitation, stable cavitation, and inertial cavitation. Low-power and longer sonications induced only thermal lesions, with a peak temperature threshold for lesioning of 53°C. Hemorrhagic lesions occurred only with high-power and shorter sonications. The sizes of the hemorrhages measured on macroscopic histological examinations correlated with the intensity of the cavitation activity (R2 = 0.74). The acoustic cavitation activity detected by the passive cavitation detectors exhibited a threshold of 0.09 V·Hz for the occurrence of hemorrhages. CONCLUSIONS This work demonstrates that 220-kHz ultrasound is capable of inducing a thermal lesion in the brain of living swines without hemorrhage. Although the same acoustic energy can induce either a hemorrhage or a thermal lesion, it seems that low-power, long-duration sonication is less likely to cause hemorrhage and may be safer. Although further study is needed to decrease the likelihood of ischemic infarction associated with the 220-kHz ultrasound, the threshold established in this work may allow for the detection and prevention of deleterious cavitations.
Collapse
|
47
|
Zhou Y. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor. Med Eng Phys 2015; 37:335-40. [PMID: 25659300 DOI: 10.1016/j.medengphy.2015.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/11/2015] [Accepted: 01/18/2015] [Indexed: 01/20/2023]
Abstract
The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.
Collapse
Affiliation(s)
- Yufeng Zhou
- Division of Engineering Mechanics, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore .
| |
Collapse
|
48
|
Chen Y, Chen H, Shi J. Nanobiotechnology promotes noninvasive high-intensity focused ultrasound cancer surgery. Adv Healthc Mater 2015; 4:158-65. [PMID: 24898413 DOI: 10.1002/adhm.201400127] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/12/2014] [Indexed: 01/20/2023]
Abstract
The successful cancer eradication in a noninvasive manner is the ultimate objective in the fight against cancer. As a "bloodless scalpel," high-intensity focused ultrasound (HIFU) is regarded as one of the most promising and representative noninvasive therapeutic modalities for cancer surgery. However, large-scale clinical applications of HIFU are still in their infancy because of critical efficiency and safety issues which remain to be solved. Fortunately, recently developed nanobiotechnology provides an alternative efficient approach to improve such important issues in HIFU, especially for cancer therapy. This Research News presents the very recent exciting progresses on the elaborate design and fabrication of organic, inorganic, and organic/inorganic hybrid nanoparticles for enhancing the HIFU ablation efficiency against tumor tissues. It is highly expected that this Research News can arouse more extensive research enthusiasm on the development of functional nanomaterials for highly efficient HIFU-based synergistic therapy, which will give a promising noninvasive therapeutic modality for the successful cancer therapy with minimal damage to surrounding normal tissues, due to the noninvasive and site-specific therapeutic features of HIFU.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures; Shanghai Institute of Ceramics, Chinese Academy of Sciences; 1295 Ding-Xi Road Shanghai 200050 P. R. China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures; Shanghai Institute of Ceramics, Chinese Academy of Sciences; 1295 Ding-Xi Road Shanghai 200050 P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures; Shanghai Institute of Ceramics, Chinese Academy of Sciences; 1295 Ding-Xi Road Shanghai 200050 P. R. China
| |
Collapse
|
49
|
Fan CH, Yeh CK. Microbubble-enhanced Focused Ultrasound-induced Blood–brain Barrier Opening for Local and Transient Drug Delivery in Central Nervous System Disease. J Med Ultrasound 2014. [DOI: 10.1016/j.jmu.2014.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
Johnston K, Tapia-Siles C, Gerold B, Postema M, Cochran S, Cuschieri A, Prentice P. Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal. ULTRASONICS 2014; 54:2151-8. [PMID: 25015000 DOI: 10.1016/j.ultras.2014.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/09/2014] [Accepted: 06/09/2014] [Indexed: 05/12/2023]
Abstract
Single clouds of cavitation bubbles, driven by 254kHz focused ultrasound at pressure amplitudes in the range of 0.48-1.22MPa, have been observed via high-speed shadowgraphic imaging at 1×10(6) frames per second. Clouds underwent repetitive growth, oscillation and collapse (GOC) cycles, with shock-waves emitted periodically at the instant of collapse during each cycle. The frequency of cloud collapse, and coincident shock-emission, was primarily dependent on the intensity of the focused ultrasound driving the activity. The lowest peak-to-peak pressure amplitude of 0.48MPa generated shock-waves with an average period of 7.9±0.5μs, corresponding to a frequency of f0/2, half-harmonic to the fundamental driving. Increasing the intensity gave rise to GOC cycles and shock-emission periods of 11.8±0.3, 15.8±0.3, 19.8±0.2μs, at pressure amplitudes of 0.64, 0.92 and 1.22MPa, corresponding to the higher-order subharmonics of f0/3, f0/4 and f0/5, respectively. Parallel passive acoustic detection, filtered for the fundamental driving, revealed features that correlated temporally to the shock-emissions observed via high-speed imaging, p(two-tailed) < 0.01 (r=0.996, taken over all data). Subtracting the isolated acoustic shock profiles from the raw signal collected from the detector, demonstrated the removal of subharmonic spectral peaks, in the frequency domain. The larger cavitation clouds (>200μm diameter, at maximum inflation), that developed under insonations of peak-to-peak pressure amplitudes >1.0MPa, emitted shock-waves with two or more fronts suggesting non-uniform collapse of the cloud. The observations indicate that periodic shock-emissions from acoustically driven cavitation clouds provide a source for the cavitation subharmonic signal, and that shock structure may be used to study intra-cloud dynamics at sub-microsecond timescales.
Collapse
Affiliation(s)
- Keith Johnston
- Institute for Medical Science and Technology, Division of Imaging and Technology, University of Dundee, Dundee DD2 1FD, UK
| | - Cecilia Tapia-Siles
- Institute for Medical Science and Technology, Division of Imaging and Technology, University of Dundee, Dundee DD2 1FD, UK
| | - Bjoern Gerold
- Institute for Medical Science and Technology, Division of Imaging and Technology, University of Dundee, Dundee DD2 1FD, UK; Diagnostic Sonar Ltd., Livingston EH54 7BX, UK
| | - Michiel Postema
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway
| | - Sandy Cochran
- Institute for Medical Science and Technology, Division of Imaging and Technology, University of Dundee, Dundee DD2 1FD, UK
| | - Alfred Cuschieri
- Institute for Medical Science and Technology, Division of Imaging and Technology, University of Dundee, Dundee DD2 1FD, UK
| | - Paul Prentice
- Institute for Medical Science and Technology, Division of Imaging and Technology, University of Dundee, Dundee DD2 1FD, UK; Diagnostic Sonar Ltd., Livingston EH54 7BX, UK.
| |
Collapse
|