1
|
Zhao Y, Haworth A, Reynolds HM, Williams SG, Finnegan R, Rowshanfarzad P, Ebert MA. Towards optimal heterogeneous prostate radiotherapy dose prescriptions based on patient-specific or population-based biological features. Med Phys 2024; 51:3766-3781. [PMID: 38224317 DOI: 10.1002/mp.16936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Escalation of prescribed dose in prostate cancer (PCa) radiotherapy enables improvement in tumor control at the expense of increased toxicity. Opportunities for reduction of treatment toxicity may emerge if more efficient dose escalation can be achieved by redistributing the prescribed dose distribution according to the known heterogeneous, spatially-varying characteristics of the disease. PURPOSE To examine the potential benefits, limitations and characteristics of heterogeneous boost dose redistribution in PCa radiotherapy based on patient-specific and population-based spatial maps of tumor biological features. METHOD High-resolution prostate histology images, from a cohort of 63 patients, annotated with tumor location and grade, provided patient-specific "maps" and a population-based "atlas" of cell density and tumor probability. Dose prescriptions were derived for each patient based on a heterogeneous redistribution of the boost dose to the intraprostatic lesions, with the prescription maximizing patient tumor control probability (TCP). The impact on TCP was assessed under scenarios where the distribution of population-based biological data was ignored, partially included, or fully included in prescription generation. Heterogeneous dose prescriptions were generated for three combinations of maps and atlas, and for conventional fractionation (CF), extreme hypo-fractionation (EH), moderate hypo-fractionation (MH), and whole Pelvic RT + SBRT Boost (WPRT + SBRT). The predicted efficacy of the heterogeneous prescriptions was compared with equivalent homogeneous dose prescriptions. RESULTS TCPs for heterogeneous dose prescriptions were generally higher than those for homogeneous dose prescriptions. TCP escalation by heterogeneous dose prescription was the largest for CF. When only using population-based atlas data, the generated heterogeneous dose prescriptions of 55 to 58 patients (out of 63) had a higher TCP than for the corresponding homogeneous dose prescriptions. The TCPs of the heterogeneous dose prescriptions generated with the population-based atlas and tumor probability maps did not differ significantly from those using patient-specific biological information. The generated heterogeneous dose prescriptions achieved significantly higher TCP than homogeneous dose prescriptions in the posterior section of the prostate. CONCLUSION Heterogeneous dose prescriptions generated via biologically-optimized dose redistribution can produce higher TCP than the homogeneous dose prescriptions for the majority of the patients in the studied cohort. For scenarios where patient-specific biological information was unavailable or partially available, the generated heterogeneous dose prescriptions can still achieve TCP improvement relative to homogeneous dose prescriptions.
Collapse
Affiliation(s)
- Yutong Zhao
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Western Australia, Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hayley M Reynolds
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Scott G Williams
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Robert Finnegan
- Institute of Medical Physics, School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Western Australia, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- 5D Clinics, Claremont, Western Australia, Australia
| |
Collapse
|
2
|
Her EJ, Ebert MA, Kennedy A, Reynolds HM, Sun Y, Williams S, Haworth A. Standard versus hypofractionated intensity-modulated radiotherapy for prostate cancer: assessing the impact on dose modulation and normal tissue effects when using patient-specific cancer biology. Phys Med Biol 2021; 66:045007. [PMID: 32408293 DOI: 10.1088/1361-6560/ab9354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypofractionation of prostate cancer radiotherapy achieves tumour control at lower total radiation doses, however, increased rectal and bladder toxicities have been observed. To realise the radiobiological advantage of hypofractionation whilst minimising harm, the potential reduction in dose to organs at risk was investigated for biofocused radiotherapy. Patient-specific tumour location and cell density information were derived from multiparametric imaging. Uniform-dose plans and biologically-optimised plans were generated for a standard schedule (78 Gy/39 fractions) and hypofractionated schedules (60 Gy/20 fractions and 36.25 Gy/5 fractions). Results showed that biologically-optimised plans yielded statistically lower doses to the rectum and bladder compared to isoeffective uniform-dose plans for all fractionation schedules. A reduction in the number of fractions increased the target dose modulation required to achieve equal tumour control. On average, biologically-optimised, moderately-hypofractionated plans demonstrated 15.3% (p-value: <0.01) and 23.8% (p-value: 0.02) reduction in rectal and bladder dose compared with standard fractionation. The tissue-sparing effect was more pronounced in extreme hypofractionation with mean reduction in rectal and bladder dose of 43.3% (p-value: < 0.01) and 41.8% (p-value: 0.02), respectively. This study suggests that the ability to utilise patient-specific tumour biology information will provide greater incentive to employ hypofractionation in the treatment of localised prostate cancer with radiotherapy. However, to exploit the radiobiological advantages given by hypofractionation, greater attention to geometric accuracy is required due to increased sensitivity to treatment uncertainties.
Collapse
Affiliation(s)
- E J Her
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia
| | | | | | | | | | | | | |
Collapse
|
3
|
Her EJ, Haworth A, Reynolds HM, Sun Y, Kennedy A, Panettieri V, Bangert M, Williams S, Ebert MA. Voxel-level biological optimisation of prostate IMRT using patient-specific tumour location and clonogen density derived from mpMRI. Radiat Oncol 2020; 15:172. [PMID: 32660504 PMCID: PMC7805066 DOI: 10.1186/s13014-020-01568-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
AIMS This study aimed to develop a framework for optimising prostate intensity-modulated radiotherapy (IMRT) based on patient-specific tumour biology, derived from multiparametric MRI (mpMRI). The framework included a probabilistic treatment planning technique in the effort to yield dose distributions with an improved expected treatment outcome compared with uniform-dose planning approaches. METHODS IMRT plans were generated for five prostate cancer patients using two inverse planning methods: uniform-dose to the planning target volume and probabilistic biological optimisation for clinical target volume tumour control probability (TCP) maximisation. Patient-specific tumour location and clonogen density information were derived from mpMRI and geometric uncertainties were incorporated in the TCP calculation. Potential reduction in dose to sensitive structures was assessed by comparing dose metrics of uniform-dose plans with biologically-optimised plans of an equivalent level of expected tumour control. RESULTS The planning study demonstrated biological optimisation has the potential to reduce expected normal tissue toxicity without sacrificing local control by shaping the dose distribution to the spatial distribution of tumour characteristics. On average, biologically-optimised plans achieved 38.6% (p-value: < 0.01) and 51.2% (p-value: < 0.01) reduction in expected rectum and bladder equivalent uniform dose, respectively, when compared with uniform-dose planning. CONCLUSIONS It was concluded that varying the dose distribution within the prostate to take account for each patient's clonogen distribution was feasible. Lower doses to normal structures compared to uniform-dose plans was possible whilst providing robust plans against geometric uncertainties. Further validation in a larger cohort is warranted along with considerations for adaptive therapy and limiting urethral dose.
Collapse
Affiliation(s)
- E J Her
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia.
| | - A Haworth
- Institute of Medical Physics, University of Sydney, Sydney, Australia
| | - H M Reynolds
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Y Sun
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - A Kennedy
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - V Panettieri
- Alfred Health Radiation Oncology, Melbourne, Australia
| | - M Bangert
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany
| | - S Williams
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - M A Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia.,Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia.,5D Clinics, Perth, Australia
| |
Collapse
|
4
|
Her EJ, Reynolds HM, Mears C, Williams S, Moorehouse C, Millar JL, Ebert MA, Haworth A. Radiobiological parameters in a tumour control probability model for prostate cancer LDR brachytherapy. Phys Med Biol 2018; 63:135011. [PMID: 29799812 DOI: 10.1088/1361-6560/aac814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To provide recommendations for the selection of radiobiological parameters for prostate cancer treatment planning. Recommendations were based on validation of the previously published values, parameter estimation and a consideration of their sensitivity within a tumour control probability (TCP) model using clinical outcomes data from low-dose-rate (LDR) brachytherapy. The proposed TCP model incorporated radiosensitivity (α) heterogeneity and a non-uniform distribution of clonogens. The clinical outcomes data included 849 prostate cancer patients treated with LDR brachytherapy at four Australian centres between 1995 and 2012. Phoenix definition of biochemical failure was used. Validation of the published values from four selected literature and parameter estimation was performed with a maximum likelihood estimation method. Each parameter was varied to evaluate the change in calculated TCP to quantify the sensitivity of the model to its radiobiological parameters. Using a previously published parameter set and a total clonogen number of 196 000 provided TCP estimates that best described the patient cohort. Fitting of all parameters with a maximum likelihood estimation was not possible. Variations in prostate TCP ranged from 0.004% to 0.67% per 1% change in each parameter. The largest variation was caused by the log-normal distribution parameters for α (mean, [Formula: see text], and standard deviation, σ α ). Based on the results using the clinical cohort data, we recommend a previously published dataset is used for future application of the TCP model with inclusion of a patient-specific, non-uniform clonogen density distribution which could be derived from multiparametric imaging. The reduction in uncertainties in these parameters will improve the confidence in using biological models for clinical radiotherapy planning.
Collapse
Affiliation(s)
- E J Her
- School of Physics and Astrophysics, University of Western Australia, Perth, Australia
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu J, Dwyer T, Marriott K, Millar J, Haworth A. Understanding the Relationship Between Interactive Optimisation and Visual Analytics in the Context of Prostate Brachytherapy. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:319-329. [PMID: 28866546 DOI: 10.1109/tvcg.2017.2744418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The fields of operations research and computer science have long sought to find automatic solver techniques that can find high-quality solutions to difficult real-world optimisation problems. The traditional workflow is to exactly model the problem and then enter this model into a general-purpose "black-box" solver. In practice, however, many problems cannot be solved completely automatically, but require a "human-in-the-loop" to iteratively refine the model and give hints to the solver. In this paper, we explore the parallels between this interactive optimisation workflow and the visual analytics sense-making loop. We assert that interactive optimisation is essentially a visual analytics task and propose a problem-solving loop analogous to the sense-making loop. We explore these ideas through an in-depth analysis of a use-case in prostate brachytherapy, an application where interactive optimisation may be able to provide significant assistance to practitioners in creating prostate cancer treatment plans customised to each patient's tumour characteristics. However, current brachytherapy treatment planning is usually a careful, mostly manual process involving multiple professionals. We developed a prototype interactive optimisation tool for brachytherapy that goes beyond current practice in supporting focal therapy - targeting tumour cells directly rather than simply seeking coverage of the whole prostate gland. We conducted semi-structured interviews, in two stages, with seven radiation oncology professionals in order to establish whether they would prefer to use interactive optimisation for treatment planning and whether such a tool could improve their trust in the novel focal therapy approach and in machine generated solutions to the problem.
Collapse
|
6
|
Miksys N, Haidari M, Vigneault E, Martin AG, Beaulieu L, Thomson RM. Coupling I-125 permanent implant prostate brachytherapy Monte Carlo dose calculations with radiobiological models. Med Phys 2017; 44:4329-4340. [PMID: 28455849 DOI: 10.1002/mp.12306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/23/2016] [Accepted: 04/04/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To investigate the coupling of radiobiological models with patient-specific Monte Carlo (MC) dose calculations for permanent implant prostate brachytherapy (PIPB). To compare radiobiological indices evaluated with different radiobiological models using MC and simulated AAPM TG-43 dose calculations. METHODS Three-dimensional dose distributions previously computed using MC techniques with two types of patient models, TG43sim (AAPM TG-43 water-based conditions) and MCDmm (realistic tissues and interseed effects), for 613 PIPB patients are coupled with biological dose and tumour control probability (TCP) models. Two approaches and their extensions are considered to evaluate biological doses, biologically effective dose (BED) and isoeffective dose (IED), as well as two methods to evaluate TCP. Three novel extensions of equivalent uniform biologically effective dose (EUBED) are suggested which consider the spatial distribution of doses within the target volume. Adopted radiobiological model parameter values (α, β, etc) are those suggested by AAPM TG-137, and sensitivity to parameter choice is discussed. RESULTS MCDmm dose calculations can reveal low doses in the prostate target volume, due to tissue heterogeneities or inter-seed effects; considering these low doses in EUBED calculations can lower TCP estimates by up to 70%, with largest differences in patients with calcifications. There are large variations in biological doses and TCPs evaluated over the 613 patient cohort for each radiobiological model considered, reflecting the spectrum of physical doses calculated for these patients with either MCDmm or TG43sim. Depending on the model details, BED, IED and EUBED are, on average, 6.0-9.8%, 7.4-9.2% and 1.8-15% higher, respectively, with TG43sim than MCDmm. TCP estimates computed using MCDmm dose distributions are much lower than expected based on past treatment outcome studies, suggesting a need to re-assess model parameters when evaluating radiobiological indices coupled with heterogeneous tissue model-based dose calculations. CONCLUSIONS Cohort average differences in biological dose and TCP estimates between radiobiological models are generally larger than differences for any one radiobiological model evaluated with TG43sim or MCDmm dose calculations. However, heterogeneous tissue dose calculations, like MCDmm, can identify clinically-relevant low dose volumes, e.g., in patients with calcifications, which would otherwise be missed with TG-43. In addition to affecting physical dose distributions, these low dose volumes can largely impact radiobiological dose and TCP estimates, which further motivates the clinical implementation of model-based dose calculations for PIPB.
Collapse
Affiliation(s)
- Nelson Miksys
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Mehan Haidari
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Eric Vigneault
- Centre de recherche sur le cancer, Université Laval, Québec, QC, G1R 3S3, Canada.,Département de Radio-Oncologie et Centre de recherche du CHU de Québec, Québec, QC, G1R 2J6, Canada
| | - Andre-Guy Martin
- Centre de recherche sur le cancer, Université Laval, Québec, QC, G1R 3S3, Canada.,Département de Radio-Oncologie et Centre de recherche du CHU de Québec, Québec, QC, G1R 2J6, Canada
| | - Luc Beaulieu
- Département de Radio-Oncologie et Centre de recherche du CHU de Québec, Québec, QC, G1R 2J6, Canada.,Département de Physique et Centre de recherche sur le cancer, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
7
|
Haworth A, Mears C, Betts JM, Reynolds HM, Tack G, Leo K, Williams S, Ebert MA. A radiobiology-based inverse treatment planning method for optimisation of permanent l-125 prostate implants in focal brachytherapy. Phys Med Biol 2015; 61:430-44. [PMID: 26675313 DOI: 10.1088/0031-9155/61/1/430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Treatment plans for ten patients, initially treated with a conventional approach to low dose-rate brachytherapy (LDR, 145 Gy to entire prostate), were compared with plans for the same patients created with an inverse-optimisation planning process utilising a biologically-based objective. The 'biological optimisation' considered a non-uniform distribution of tumour cell density through the prostate based on known and expected locations of the tumour. Using dose planning-objectives derived from our previous biological-model validation study, the volume of the urethra receiving 125% of the conventional prescription (145 Gy) was reduced from a median value of 64% to less than 8% whilst maintaining high values of TCP. On average, the number of planned seeds was reduced from 85 to less than 75. The robustness of plans to random seed displacements needs to be carefully considered when using contemporary seed placement techniques. We conclude that an inverse planning approach to LDR treatments, based on a biological objective, has the potential to maintain high rates of tumour control whilst minimising dose to healthy tissue. In future, the radiobiological model will be informed using multi-parametric MRI to provide a personalised medicine approach.
Collapse
Affiliation(s)
- Annette Haworth
- Department Physical Sciences Peter MacCallum Cancer Centre, Vic, 3002, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Vic, 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Haworth A, Williams S, Reynolds H, Waterhouse D, Duchesne GM, Bucci J, Joseph D, Bydder S, Ebert M. Validation of a radiobiological model for low-dose-rate prostate boost focal therapy treatment planning. Brachytherapy 2013; 12:628-36. [DOI: 10.1016/j.brachy.2013.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
|
9
|
An NTCP Analysis of Urethral Complications from Low Doserate Mono- and Bi-Radionuclide Brachytherapy. Prostate Cancer 2011; 2011:128360. [PMID: 22096647 PMCID: PMC3195343 DOI: 10.1155/2011/128360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 05/02/2011] [Indexed: 11/22/2022] Open
Abstract
Urethral NTCP has been determined for three prostates implanted with seeds based on 125I (145 Gy), 103Pd (125 Gy), 131Cs (115 Gy), 103Pd-125I (145 Gy), or 103Pd-131Cs (115 Gy or 130 Gy).
First, DU20, meaning that 20% of the urhral volume receive a dose of at least DU20, is converted into an I-125 LDR equivalent DU20 in order to use the urethral NTCP model.
Second, the propagation of uncertainties through the steps in the NTCP calculation was assessed in order to identify the parameters responsible for large data uncertainties. Two sets of radiobiological parameters were studied. The NTCP results all fall in the 19%–23% range and are associated with large uncertainties, making the comparison difficult. Depending on the dataset chosen, the ranking of NTCP values among the six seed implants studied changes. Moreover, the large uncertainties on the fitting parameters of the urethral NTCP model result in large uncertainty on the NTCP value. In conclusion, the use of NTCP model for permanent brachytherapy is feasible but it is essential that the uncertainties on the parameters in the model be reduced.
Collapse
|
10
|
Radiobiological model comparison of 3D conformal radiotherapy and IMRT plans for the treatment of prostate cancer. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2009; 32:51-61. [PMID: 19623855 DOI: 10.1007/bf03178629] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The main aim of radiotherapy is to deliver a dose of radiation that is high enough to destroy the tumour cells while at the same time minimising the damage to normal healthy tissues. Clinically, this has been achieved by assigning a prescription dose to the tumour volume and a set of dose constraints on critical structures. Once an optimal treatment plan has been achieved the dosimetry is assessed using the physical parameters of dose and volume. There has been an interest in using radiobiological parameters to evaluate and predict the outcome of a treatment plan in terms of both a tumour control probability (TCP) and a normal tissue complication probability (NTCP). In this study, simple radiobiological models that are available in a commercial treatment planning system were used to compare three dimensional conformal radiotherapy treatments (3D-CRT) and intensity modulated radiotherapy (IMRT) treatments of the prostate. Initially both 3D-CRT and IMRT were planned for 2 Gy/fraction to a total dose of 60 Gy to the prostate. The sensitivity of the TCP and the NTCP to both conventional dose escalation and hypo-fractionation was investigated. The biological responses were calculated using the Källman S-model. The complication free tumour control probability (P+) is generated from the combined NTCP and TCP response values. It has been suggested that the alpha/beta ratio for prostate carcinoma cells may be lower than for most other tumour cell types. The effect of this on the modelled biological response for the different fractionation schedules was also investigated.
Collapse
|
11
|
Butler WM, Stewart RR, Merrick GS. A detailed radiobiological and dosimetric analysis of biochemical outcomes in a case-control study of permanent prostate brachytherapy patients. Med Phys 2009; 36:776-87. [PMID: 19378738 DOI: 10.1118/1.3077161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study is to determine dosimetric and radiobiological predictors of biochemical control after recalculation of prostate implant dosimetry using updated AAPM Task Group 43 (TG-43) parameters and the radiobiological parameters recommended by TG-137. All biochemical failures among patients implanted with 125I Or 103Pd sources between 1994 and March 2006 were matched 2:1 with nonfailure controls. The individual matching was by risk group, radionuclide, prescribed dose, and time of implant (one match before and one after the failed patient) resulting in a median follow-up of 10.9 years. Complete dose volume histogram (DVH) data were recalculated for all 55 cases and 110 controls after updating the original source strength by the retrospectively determined ratios of TG-43. Differential DVH data were acquired in 179 increments of prostate volume versus percentage prescribed dose. At each incremental dose level i, the biologically equivalent dose BEDi, equivalent uniform dose EUDi, and tumor control probability TCPi were calculated from the implant dose plus any external beam delivered to the patient. Total BED, EUD, and TCP were then derived from the incremental values for comparison with single point dosimetric quality parameters and DVH-based averages. There was no significant difference between failures and controls in terms of total BED (143 vs 142 Gy), EUD (95 vs 94 Gy), or TCP (0.87 vs 0.89). Conditional logistic regression analysis factored out the matching variables and stratified the cohort into each case and its controls, but no radiobiological parameter was predictive of biochemical failure. However, there was a significant difference between radiobiological parameters of 125I and 103Pd due to less complete coverage of the target volume by the former isotope. The implant BED and TCP were highly correlated with the D90 and natural prescription doses and a series of mean DVH-based doses such as the harmonic mean and expressions of the generalized EUD. In this case-control study of prostate brachytherapy biochemical failures and nonfailures, there were no radiobiological parameters derived from detailed DVH-based analysis that predicted for biochemical control. This may indicate that in our approach, implant dosimetry is at or near the limits of clinically effective dose escalation.
Collapse
Affiliation(s)
- Wayne M Butler
- Schiffier Cancer Center, Wheeling Hospital, 1 Medical Park, Wheeling, West Virginia 26003-6300, USA.
| | | | | |
Collapse
|
12
|
Strigari L, Orlandini LC, Andriani I, d'Angelo A, Stefanacci M, Di Nallo AM, Benassi M. A mathematical approach for evaluating the influence of dose heterogeneity on TCP for prostate cancer brachytherapy treatment. Phys Med Biol 2008; 53:5045-59. [DOI: 10.1088/0031-9155/53/18/013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Zaider M, Cohen G, Meli J, Rosenfeld AB. Quality assurance/quality control issues for intraoperative planning and adaptive repeat planning of image-guided prostate implants. Int J Radiat Oncol Biol Phys 2008; 71:S152-6. [PMID: 18406916 DOI: 10.1016/j.ijrobp.2007.04.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/25/2007] [Accepted: 04/26/2007] [Indexed: 11/25/2022]
Abstract
The quality assurance/quality control purpose is this. We design a treatment plan, and we wish to be as certain as reasonably possible that the treatment is delivered as planned. In the case of conventionally planned prostate brachytherapy, implementing to the letter the implantation plan is rarely attainable and therefore can require adaptive replanning (a quality control issue). The reasons for this state of affairs include changes in the prostate shape and volume during implantation and treatment delivery (e.g., edema resolution) and unavoidable inaccuracy in the placement of the seeds in the prostate. As a result, quality-control activities (e.g., the need to monitor-ideally, on the fly-the target and urethral and rectal dosage) must be also addressed.
Collapse
Affiliation(s)
- Marco Zaider
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
14
|
Daşu A. Is the α/β Value for Prostate Tumours Low Enough to be Safely Used in Clinical Trials? Clin Oncol (R Coll Radiol) 2007; 19:289-301. [PMID: 17517328 DOI: 10.1016/j.clon.2007.02.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 01/22/2007] [Accepted: 02/05/2007] [Indexed: 12/30/2022]
Abstract
There has been an intense debate over the past several years on the relevant alpha/beta value that could be used to describe the fractionation response of prostate tumours. Previously it has been assumed that prostate tumours have high alpha/beta values, similar to most other tumours and the early reacting normal tissues. However, the proliferation behaviour of the prostate tumours is more like that of the late reacting tissues, with slow doubling times and low alpha/beta values. The analyses of clinical results carried out in the past few years have indeed suggested that the alpha/beta value that characterises the fractionation response of the prostate is low, possibly even below the 3 Gy commonly assumed for most late complications, and hence that hypofractionation of the radiation treatment might improve the therapeutic ratio (better control at the same or lower complication rate). However, hypofractionation might also increase the complication rates in the surrounding late responding tissues and if their alpha/beta value is not larger that of prostate tumours it could even lead to a decrease in the therapeutic ratio. Therefore, the important question is whether the alpha/beta value for the prostate is lower than the alpha/beta values of the surrounding late responding tissues at risk. This paper reviews the clinical and experimental data regarding the radiobiological differential that might exist between prostate tumours and the late normal tissues around them. Several prospective hypofractionated trials that have been initiated recently in order to determine the alpha/beta value or the range of values that describe the fractionation response of prostate tumours are also reviewed. In spite of several confounding factors that interfere with the derivation of a precise value, it seems that most data support a trend towards lower alpha/beta values for prostate tumours than for rectum or bladder.
Collapse
Affiliation(s)
- A Daşu
- Department of Radiation Physics, Norrland University Hospital, 901 85 Umeå, Sweden.
| |
Collapse
|