1
|
Ayala R, García R, Ruiz G, García MJ, Soza Á, Gómez S, Udías JM, Ibáñez P. Dosimetric study of bevel factors in IOERT with mobile linacs: Towards a unified code of practice. Phys Med 2024; 127:104836. [PMID: 39481139 DOI: 10.1016/j.ejmp.2024.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/28/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Dosimetry in intraoperative electron radiotherapy (IOERT) poses distinct challenges, especially with inclined applicators deviating from international protocols. Ion recombination in ionization chambers, electron beam degradation due to scattering in cylindrical applicators, coupled with a lack of a well-defined beam quality surrogate, complicate output factor determination with ionization chambers. Synthetic diamond-based detectors, offer potential solutions; however, their suitability requires further exploration. PURPOSE This study addresses output factor determination for beveled applicators. Objectives include assessing the suitability of PTW microDiamond detectors and determining correction factors for ionization chamber measurements based on energy variations at the depth of maximum dose (zmax) for beveled applicators. Experimental data are compared against results obtained from Monte Carlo simulations. METHODS We conducted measurements using both PTW microDiamond and IBA CC01 detectors. In addition to benchmarking bevel factors with penEasy, we employed Monte Carlo simulations to determine angular response correction factors for microDiamond detectors and to evaluate energy variations at zmax for beveled applicators. RESULTS The findings indicate that angular response correction factors are unnecessary for microDiamond detectors with beveled applicators. However, variations in mean energy at zmax potentially impact absorbed dose calculations with ionization chambers, particularly with the most inclined applicators. CONCLUSIONS Based on our results, the study recommends using microDiamond detectors over cylindrical ionization chambers for output factor determination in IOERT with inclined applicators. Addressing energy variations at zmax is crucial to improve accuracy in ionization chamber measurements. These findings have implications for dosimetry protocols in IOERT, contributing to enhanced delivery in clinical practice.
Collapse
Affiliation(s)
- Rafael Ayala
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007, Madrid, Spain; Nuclear Physics Group and IPARCOS, Department of Structure of Matter, Thermal Physics and Electronics, CEI Moncloa, Universidad Complutense de Madrid, Madrid, Spain.
| | - Rocío García
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Gema Ruiz
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007, Madrid, Spain
| | - María Jesús García
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Álvaro Soza
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Susana Gómez
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007, Madrid, Spain
| | - José Manuel Udías
- Nuclear Physics Group and IPARCOS, Department of Structure of Matter, Thermal Physics and Electronics, CEI Moncloa, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Paula Ibáñez
- Nuclear Physics Group and IPARCOS, Department of Structure of Matter, Thermal Physics and Electronics, CEI Moncloa, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
2
|
Muir B, Davis S, Dhanesar S, Hillman Y, Iakovenko V, Kim GGY, Alves VGL, Lei Y, Lowenstein J, Renaud J, Sarfehnia A, Siebers J, Tantôt L. AAPM WGTG51 Report 385: Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy electron beams. Med Phys 2024; 51:5840-5857. [PMID: 38980220 DOI: 10.1002/mp.17277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
An Addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water is presented for electron beams with energies between 4 MeV and 22 MeV (1.70 cm ≤ R 50 ≤ 8.70 cm $1.70\nobreakspace {\rm cm} \le R_{\text{50}} \le 8.70\nobreakspace {\rm cm}$ ). This updated formalism allows simplified calibration procedures, including the use of calibrated cylindrical ionization chambers in all electron beams without the use of a gradient correction. Newk Q $k_{Q}$ data are provided for electron beams based on Monte Carlo simulations. Implementation guidance is provided. Components of the uncertainty budget in determining absorbed dose to water at the reference depth are discussed. Specifications for a reference-class chamber in electron beams include chamber stability, settling, ion recombination behavior, and polarity dependence. Progress in electron beam reference dosimetry is reviewed. Although this report introduces some major changes (e.g., gradient corrections are implicitly included in the electron beam quality conversion factors), they serve to simplify the calibration procedure. Results for absorbed dose per linac monitor unit are expected to be up to approximately 2 % higher using this Addendum compared to using the original TG-51 protocol.
Collapse
Affiliation(s)
- Bryan Muir
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Stephen Davis
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Sandeep Dhanesar
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texa, USA
| | - Yair Hillman
- Department of Radiation Oncology, Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Grace Gwe-Ya Kim
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, San Diego, California, USA
| | | | - Yu Lei
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jessica Lowenstein
- Department of Radiation Physics, UT M.D. Anderson Cancer Center, Houston, Texa, USA
| | - James Renaud
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Arman Sarfehnia
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jeffrey Siebers
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia, USA
| | - Laurent Tantôt
- Département de radio-oncologie, CIUSSS de l'Est-de-l'Île-de-Montréal - Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Failing T, Hensley FW, Keil B, Zink K. Investigations on the beam quality correction factor for ionization chambers in high-energy brachytherapy dosimetry. Phys Med Biol 2024; 69:165002. [PMID: 39009012 DOI: 10.1088/1361-6560/ad638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Objective. To enhance the investigations on MC calculated beam quality correction factors of thimble ionization chambers from high-energy brachytherapy sources and to develop reliable reference conditions in source and detector setups in water.Approach. The response of five different ionization chambers from PTW-Freiburg and Standard Imaging was investigated for irradiation by a high dose rate Ir-192 Flexisource in water. For a setup in a Beamscan water phantom, Monte Carlo simulations were performed to calculate correction factors for the chamber readings. After exact positioning of source and detector the absorbed dose rate at the TG-43 reference point at one centimeter nominal distance from the source was measured using these factors and compared to the specification of the calibration certificate. The Monte Carlo calculations were performed using the restricted cema formalism to gain further insight into the chamber response. Calculations were performed for the sensitive volume of the chambers, determined by the methods currently used in investigations of dosimetry in magnetic fields.Main results. Measured dose rates and values from the calibration certificate agreed within the combined uncertainty (k= 2) for all chambers except for one case in which the full air cavity was simulated. The chambers showed a distinct directional dependence. With the restricted cema formalism calculations it was possible to examine volume averaging and energy dependence of the perturbation factors contributing to the beam quality correction factor also differential in energy.Significance. This work determined beam quality correction factors to measure the absorbed dose rate from a brachytherapy source in terms of absorbed dose to water for a variety of ionization chambers. For the accurate dosimetry of brachytherapy sources with ionization chambers it is advisable to use correction factors based on the sensitive volume of the chambers and to take account for the directional dependence of chamber response.
Collapse
Affiliation(s)
- T Failing
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
| | - F W Hensley
- Department for Radiotherapy and Radiooncology, University Medical Center Heidelberg, Heidelberg, Germany
| | - B Keil
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
- Department for Diagnostic and Interventional Radiology, Philipps-University Marburg, Marburg, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - K Zink
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
- Department for Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany
- Marburg Iontherapy Center (MIT), Marburg, Germany
| |
Collapse
|
4
|
Parikh S, Limbachiya C. Electron interaction with DNA constituents in aqueous phase. Chemphyschem 2024; 25:e202300916. [PMID: 38259215 DOI: 10.1002/cphc.202300916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/24/2024]
Abstract
Electron driven chemistry of biomolecules in aqueous phase presents the realistic picture to study molecular processes. In this study we have investigated the interactions of electrons with the DNA constituents in their aqueous phase in order to obtain the quantities useful for DNA damage assessment. We have computed the inelastic mean free path (IMFP), mass stopping power (MSP) and absorbed dose (D) for the DNA constituents (Adenine, Cytosine, Guanine, Thymine and Uracil) in the aqueous medium from ionisation threshold to 5000 eV. We have modified complex optical potential formalism to include band gap of the systems to calculate inelastic cross sections which are used to estimate these entities. This is the maiden attempt to report these important quantities for the aqueous DNA constituents. We have compared our results with available data in gas and other phase and have observed explicable accord for IMFP and MSP. Since these are the first results of absorbed dose (D) for these compounds, we have explored present results vis-a-vis dose absorption in water.
Collapse
Affiliation(s)
- Smruti Parikh
- The Maharaja Sayajirao University of Baroda, Vadodara, 390 001
| | | |
Collapse
|
5
|
Nagake Y, Yasui K, Ooe H, Ichihara M, Iwase K, Toshito T, Hayashi N. Investigation of ionization chamber perturbation factors using proton beam and Fano cavity test for the Monte Carlo simulation code PHITS. Radiol Phys Technol 2024; 17:280-287. [PMID: 38261133 DOI: 10.1007/s12194-024-00777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
The reference dose for clinical proton beam therapy is based on ionization chamber dosimetry. However, data on uncertainties in proton dosimetry are lacking, and multifaceted studies are required. Monte Carlo simulations are useful tools for calculating ionization chamber dosimetry in radiation fields and are sensitive to the transport algorithm parameters when particles are transported in a heterogeneous region. We aimed to evaluate the proton transport algorithm of the Particle and Heavy Ion Transport Code System (PHITS) using the Fano test. The response of the ionization chamber f Q and beam quality correction factors k Q were calculated using the same parameters as those in the Fano test and compared with those of other Monte Carlo codes for verification. The geometry of the Fano test consisted of a cylindrical gas-filled cavity sandwiched between two cylindrical walls. f Q was calculated as the ratio of the absorbed dose in water to the dose in the cavity in the chamber. We compared the f Q calculated using PHITS with that of a previous study, which was calculated using other Monte Carlo codes (Geant4, FULKA, and PENH) under similar conditions. The flight mesh, a parameter for charged particle transport, passed the Fano test within 0.15%. This was shown to be sufficiently accurate compared with that observed in previous studies. The f Q calculated using PHITS were 1.116 ± 0.002 and 1.124 ± 0.003 for NACP-02 and PTW-30013, respectively, and the k Q were 0.981 ± 0.008 and 1.027 ± 0.008, respectively, at 150 MeV. Our results indicate that PHITS can calculate the f Q and k Q with high precision.
Collapse
Affiliation(s)
- Yuya Nagake
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Keisuke Yasui
- School of Medical Sciences, Fujita Health University, Toyoake, Japan.
| | - Hiromu Ooe
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | | | - Kaito Iwase
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Toshiyuki Toshito
- Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Naoki Hayashi
- School of Medical Sciences, Fujita Health University, Toyoake, Japan
| |
Collapse
|
6
|
Mahfirotin DA, Ferliano B, Handika AD, Asril YS, Fadli M, Ryangga D, Nelly N, Kurniawan E, Wibowo WE, Yadav P, Pawiro SA. A multicenter study of modified electron beam output calibration. J Appl Clin Med Phys 2024; 25:e14232. [PMID: 38088260 PMCID: PMC10795448 DOI: 10.1002/acm2.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 01/19/2024] Open
Abstract
PURPOSE This study aims to assess the accuracy of a modified electron beam calibration based on the IAEA TRS-398 and AAPM-TG-51 in multicenter radiotherapy. METHODS This study was performed using the Elekta and Varian Linear Accelerator electron beams with energies of 4-22 MeV under reference conditions using cylindrical (PTW 30013, IBA FC65-G, and IBA FC65-P) and parallel-plate (PTW 34045, PTW 34001, and IBA PPC-40) chambers. The modified calibration used a cylindrical chamber and an updatedk ' Q $k{^{\prime}}_Q$ based on Monte Carlo calculations, whereas TRS-398 and TG-51 used cylindrical and parallel-plate chambers for reference dosimetry. The dose ratio of the modified calibration procedure, TRS-398 and TG-51 were obtained by comparing the dose at the maximum depth of the modified calibration to TRS-398 and TG-51. RESULTS The study found that all cylindrical chambers' beam quality conversion factors determined with the modified calibration( k ' Q ) $( {{{k^{\prime}}}_Q} )$ to the TRS-398 and TG-51 vary from 0.994 to 1.003 and 1.000 to 1.010, respectively. The dose ratio of modified/TRS-398cyl and modified/TRS-398parallel-plate, the variation ranges were 0.980-1.014 and 0.981-1.019, while for the counterpart modified/TG-51cyl was found varying between 0.991 and 1.017 and the ratio of modified/TG-51parallel-plate varied in the range of 0.981-1.019. CONCLUSION This multi-institutional study analyzed a modified calibration procedure utilizing new data for electron beam calibrations at multiple institutions and evaluated existing calibration protocols. Based on observed variations, the current calibration protocols should be updated with detailed metrics on the stability of linac components.
Collapse
Affiliation(s)
- Dwi Aprilia Mahfirotin
- Department of PhysicsFaculty of Mathematics and Natural SciencesUniversitas Indonesia, DepokWest JavaIndonesia
- Department of Radiation OncologyMitra Keluarga Bekasi Timur Hospital, BekasiWest JavaIndonesia
| | - Brian Ferliano
- Department of Radiation OncologyGading Pluit HospitalJakartaIndonesia
| | - Andrian Dede Handika
- Department of Radiation OncologyPersahabatan Central General HospitalJakartaIndonesia
| | - Yosi Sudarsi Asril
- Department of Radiation OncologyMayapada Hospital Jakarta SelatanJakartaIndonesia
| | - Muhamad Fadli
- Department of Radiation OncologyMRCCC Siloam Hospital SemanggiJakartaIndonesia
| | - Dea Ryangga
- Department of Radiation OncologyPasar Minggu Regional HospitalJakartaIndonesia
| | - Nelly Nelly
- Department of Radiation OncologySiloam Hospital TB SimatupangJakartaIndonesia
| | - Eddy Kurniawan
- Department of Radiation OncologyTzu Chi HospitalJakartaIndonesia
| | - Wahyu Edy Wibowo
- Department of Radiation OncologyDr. Cipto Mangunkusumo National General Hospital CentralFaculty of MedicineUniversitas IndonesiaJakartaIndonesia
| | - Poonam Yadav
- Department of Radiation OncologyNorthwestern Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Supriyanto Ardjo Pawiro
- Department of PhysicsFaculty of Mathematics and Natural SciencesUniversitas Indonesia, DepokWest JavaIndonesia
| |
Collapse
|
7
|
Baumann KS, Derksen L, Witt M, Adeberg S, Zink K. The influence of different versions of FLUKA and GEANT4 on the calculation of response functions of ionization chambers in clinical proton beams. Phys Med Biol 2023; 68:24NT01. [PMID: 37939402 DOI: 10.1088/1361-6560/ad0ad4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Objective.To investigate the influence of different versions of the Monte Carlo codesgeant4 andflukaon the calculation of overall response functionsfQof air-filled ionization chambers in clinical proton beams.Approach. fQfactors were calculated for six plane-parallel and four cylindrical ionization chambers withgeant4 andfluka. These factors were compared to already published values that were derived using older versions of these codes.Main results.Differences infQfactors calculated with different versions of the same Monte Carlo code can be up to ∼1%. Especially forgeant4, the updated version leads to a more pronounced dependence offQon proton energy and to smallerfQfactors for high energies.Significance.Different versions of the same Monte Carlo code can lead to differences in the calculation offQfactors of up to ∼1% without changing the simulation setup, transport parameters, ionization chamber geometry modeling, or employed physics lists. These findings support the statement that the dominant contributor to the overall uncertainty of Monte Carlo calculatedfQfactors are type-B uncertainties.
Collapse
Affiliation(s)
- Kilian-Simon Baumann
- University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg, Germany
- University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany
- Marburg Ion-Beam Therapy Center (MIT), Marburg, Germany
| | - Larissa Derksen
- University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Matthias Witt
- University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany
- Marburg Ion-Beam Therapy Center (MIT), Marburg, Germany
| | - Sebastian Adeberg
- University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg, Germany
- Marburg Ion-Beam Therapy Center (MIT), Marburg, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt - Marburg, Germany
| | - Klemens Zink
- University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg, Germany
- University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany
- Marburg Ion-Beam Therapy Center (MIT), Marburg, Germany
| |
Collapse
|
8
|
Urago Y, Sakama M, Sakata D, Fukuda S, Katayose T, Chang W. Monte Carlo-calculated beam quality and perturbation correction factors validated against experiments for Farmer and Markus type ionization chambers in therapeutic carbon-ion beams. Phys Med Biol 2023; 68:185013. [PMID: 37579752 DOI: 10.1088/1361-6560/acf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Objective. In current dosimetry protocols, the estimated uncertainty of the measured absorbed dose to waterDwin carbon-ion beams is approximately 3%. This large uncertainty is mainly contributed by the standard uncertainty of the beam quality correction factorkQ. In this study, thekQvalues in four cylindrical chambers and two plane-parallel chambers were calculated using Monte Carlo (MC) simulations in the plateau region. The chamber-specific perturbation correction factorPof each chamber was also determined through MC simulations.Approach.kQfor each chamber was calculated using MC code Geant4. The simulatedkQratios in subjected chambers and reference chambers were validated through comparisons against our measured values. In the measurements in Heavy-Ion Medical Accelerator in Chiba,kQratios were obtained fromDwvalues of60Co, 290- and 400 MeV u-1carbon-ion beams that were measured with the subjected ionization chamber and the reference chamber. In the simulations,fQ(the product of the water-to-air stopping power ratio andP) was acquired fromDwand the absorbed dose to air calculated in the sensitive volume of each chamber.kQvalues were then calculated from the simulatedfQand the literature-extractedWairand compared with previous publications.Main results. The calculatedkQratios in the subjected chambers to the reference chamber agreed well with the measuredkQratios. ThekQuncertainty was reduced from the current recommendation of approximately 3% to 1.7%. ThePvalues were close to unity in the cylindrical chambers and nearly 1% above unity in the plane-parallel chambers.Significance. ThekQvalues of carbon-ion beams were accurately calculated in MC simulations and thekQratios were validated through ionization chamber measurements. The results indicate a need for updating the current recommendations, which assume a constantPof unity in carbon-ion beams, to recommendations that consider chamber-induced differences.
Collapse
Affiliation(s)
- Yuka Urago
- Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, Tokyo, Japan
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Sakama
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Shigekazu Fukuda
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Weishan Chang
- Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
9
|
Baumann KS, Gomà C, Wulff J, Kretschmer J, Zink K. Monte Carlo calculated ionization chamber correction factors in clinical proton beams - deriving uncertainties from published data. Phys Med 2023; 113:102655. [PMID: 37603909 DOI: 10.1016/j.ejmp.2023.102655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/16/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023] Open
Abstract
For the update of the IAEA TRS-398 Code of Practice (CoP), global ionization chamber factors (fQ) and beam quality correction factors (kQ) for air-filled ionization chambers in clinical proton beams have been calculated with different Monte Carlo codes. In this study, average Monte Carlo calculated fQ and kQ factors are provided and the uncertainty of these factors is estimated. Average fQ factors in monoenergetic proton beams with energies between 60 MeV and 250 MeV were derived from Monte Carlo calculated fQ factors published in the literature. Altogether, 195 fQ factors for six plane-parallel and three cylindrical ionization chambers calculated with penh, fluka and geant4 were incorporated. Additionally, a weighted standard deviation of fQ factors was calculated, where the same weight was assigned to each Monte Carlo code. From average fQ factors, kQ factors were derived and compared to the values from the IAEA TRS-398 CoP published in 2000 as well as to the values of the upcoming version. Average Monte Carlo calculated fQ factors are constant within 0.6% over the energy range investigated. In general, the different Monte Carlo codes agree within 1% for low energies and show larger differences up to 2% for high energies. As a result, the standard deviation of fQ factors increases with energy and is ∼0.3% for low energies and ∼0.8% for high energies. kQ factors derived from average Monte Carlo calculated fQ factors differ from the values presented in the IAEA TRS-398 CoP by up to 2.4%. The overall estimated uncertainty of Monte Carlo calculated kQ factors is ∼0.5%-1% smaller than the uncertainties estimated in IAEA TRS-398 CoP since the individual ionization chamber characteristics (e.g. fluence perturbations) are considered in detail in Monte Carlo calculations. The agreement between Monte Carlo calculated kQ factors and the values of the upcoming version of IAEA TRS-398 CoP is better with deviations smaller than 1%.
Collapse
Affiliation(s)
- Kilian-Simon Baumann
- University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg, Germany; University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany; Marburg Ion-Beam Therapy Center, Marburg, Germany.
| | - Carles Gomà
- Hospital Clínic de Barcelona, Department of Radiation Oncology, Barcelona, Spain
| | - Jörg Wulff
- West German Proton Therapy Center (WPE), Essen, Germany
| | - Jana Kretschmer
- Carl-von-Ossietzky University, University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Oldenburg, Germany; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Klemens Zink
- University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg, Germany; University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany; Marburg Ion-Beam Therapy Center, Marburg, Germany
| |
Collapse
|
10
|
Palmans H, Lourenço A, Medin J, Vatnitsky S, Andreo P. Current best estimates of beam quality correction factors for reference dosimetry of clinical proton beams. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To review the currently available data on beam quality correction factors,
k
Q
,
for ionization chambers in clinical proton beams and derive their current best estimates for the updated recommendations of the IAEA TRS-398 Code of Practice. Approach. The reviewed data come from 20 publications from which
k
Q
values can be derived either directly from calorimeter measurements, indirectly from comparison with other chambers or from Monte Carlo calculated overall chamber factors,
f
Q
.
For cylindrical ionization chambers, a distinction is made between data obtained in the centre of a spread-out Bragg peak and those obtained in the plateau region of single-energy fields. For the latter, the effect of depth dose gradients has to be considered. To this end an empirical model for previously published displacement correction factors for single-layer scanned beams was established, while for unmodulated scattered beams experimental data were used. From all the data, chamber factors,
f
Q
,
and chamber perturbation correction factors,
p
Q
,
were then derived and analysed. Main results. The analysis showed that except for the beam quality dependence of the water-to-air mass stopping power ratio and, for cylindrical ionization chambers in unmodulated beams, of the displacement correction factor, there is no remaining beam quality dependence of the chamber perturbation correction factors
p
Q
.
Based on this approach, average values of the beam quality independent part of the perturbation factors were derived to calculate
k
Q
values consistent with the data in the literature. Significance. The resulting data from this analysis are current best estimates of
k
Q
values for modulated scattered beams and single-layer scanned beams used in proton therapy. Based on this, a single set of harmonized values is derived to be recommended in the update of IAEA TRS-398.
Collapse
|
11
|
Vedelago J, Karger CP, Jäkel O. A review on reference dosimetry in radiation therapy with proton and light ion beams: status and impact of new developments. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Hartmann GH, Andreo P, Kapsch RP, Zink K. Cema-based formalism for the determination of absorbed dose for high-energy photon beams. Med Phys 2021; 48:7461-7475. [PMID: 34613620 DOI: 10.1002/mp.15266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/26/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Determination of absorbed dose is well established in many dosimetry protocols and considered to be highly reliable using ionization chambers under reference conditions. If dosimetry is performed under other conditions or using other detectors, however, open questions still remain. Such questions frequently refer to appropriate correction factors. A converted energy per mass (cema)-based approach to formulate such correction factors offers a good understanding of the specific response of a detector for dosimetry under various measuring conditions and thus an estimate of pros and cons of its application. METHODS Determination of absorbed dose requires the knowledge of the beam quality correction factor kQ,Qo , where Q denotes the quality of a user beam and Qo is the quality of the radiation used for calibration. In modern Monte Carlo (MC)-based methods, kQ,Qo is directly derived from the MC-calculated dose conversion factor, which is the ratio between the absorbed dose at a point of interest in water and the mean absorbed dose in the sensitive volume of an ion chamber. In this work, absorbed dose is approximated by the fundamental quantity cema. This approximation allows the dose conversion factor to be substituted by the cema conversion factor. Subsequently, this factor is decomposed into a product of cema ratios. They are identified as the stopping power ratio water to the material in the sensitive detector volume, and as the correction factor for the fluence perturbation of the secondary charged particles in the detector cavity caused by the presence of the detector. This correction factor is further decomposed with respect to the perturbation caused by the detector cavity and that caused by external detector properties. The cema-based formalism was subsequently tested by MC calculations of the spectral fluence of the secondary charged particles (electrons and positrons) under various conditions. RESULTS MC calculations demonstrate that considerable fluence perturbation may occur particularly under non-reference conditions. Cema-based correction factors to be applied in a 6-MV beam were obtained for a number of ionization chambers and for three solid-state detectors. Feasibility was shown at field sizes of 4 × 4 and 0.5 cm × 0.5 cm. Values of the cema ratios resulting from the decomposition of the dose conversion factor can be well correlated with detector response. Under the small field conditions, the internal fluence correction factor of ionization chambers is considerably dependent on volume averaging and thus on the shape and size of the cavity volume. CONCLUSIONS The cema approach is particularly useful at non-reference conditions including when solid-state detectors are used. Perturbation correction factors can be expressed and evaluated by cema ratios in a comprehensive manner. The cema approach can serve to understand the specific response of a detector for dosimetry to be dependent on (a) radiation quality, (b) detector properties, and (c) electron fluence changes caused by the detector. This understanding may also help to decide which detector is best suited for a specific measurement situation.
Collapse
Affiliation(s)
- Günther H Hartmann
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pedro Andreo
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Klemens Zink
- Institut fuer Medizinische Physik und Strahlenschutz (IMPS), University of Applied Sciences, Giessen, Giessen, Germany.,Department for Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany.,Marburg Iontherapy Center (MIT), Marburg, Germany
| |
Collapse
|
13
|
Baumann KS, Derksen L, Witt M, Michael Burg J, Engenhart-Cabillic R, Zink K. Monte Carlo calculation of beam quality correction factors in proton beams using FLUKA. Phys Med Biol 2021; 66. [PMID: 34378546 DOI: 10.1088/1361-6560/ac1c4b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/10/2021] [Indexed: 11/12/2022]
Abstract
Purpose.To provide Monte Carlo calculated beam quality correction factors (kQ) for monoenergetic proton beams using the Monte Carlo codefluka.Materials and methods.The Monte Carlo codeflukawas used to calculate the dose absorbed in a water-filled reference volume and the air-filled cavities of six plane-parallel and four cylindrical ionization chambers. The chambers were positioned at the entrance region of monoenergetic proton beams with energies between 60 and 250 MeV. Based on these dose values,fQas well askQfactors were calculated whilefQ0factors were taken from Andreoet al(2020Phys. Med. Biol.65095011).Results. kQfactors calculated in this work were found to agree with experimentally determinedkQfactors on the 1%-level, with only two exceptions with deviations of 1.4% and 1.9%. The comparison offQfactors calculated usingflukawithfQfactors calculated using the Monte Carlo codesgeant4 andpenhshowed a general good agreement for low energies, while differences for higher energies were pronounced. For high energies, in most cases the Monte Carlo codesflukaandgeant4 lead to comparable results while thefQfactors calculated withpenhare larger.Conclusion.flukacan be used to calculatekQfactors in clinical proton beams. The divergence of Monte Carlo calculatedkQfactors for high energies suggests that the role of nuclear interaction models implemented in the different Monte Carlo codes needs to be investigated in more detail.
Collapse
Affiliation(s)
- Kilian-Simon Baumann
- University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg, Germany.,University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany.,Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Larissa Derksen
- University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Matthias Witt
- University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany.,Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Jan Michael Burg
- University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg, Germany.,University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Rita Engenhart-Cabillic
- University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg, Germany.,Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Klemens Zink
- University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg, Germany.,University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany.,Marburg Ion-Beam Therapy Center, Marburg, Germany
| |
Collapse
|
14
|
Ding GX. Stopping-power ratios for electron beams used in total skin electron therapy. Med Phys 2021; 48:5472-5478. [PMID: 34287969 DOI: 10.1002/mp.15121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The electron beams for total skin electron therapy (TSET) are often degraded by a scatter plate in addition to extended distances. For electron dosimetry, both the AAPM TG-51 and IAEA TRS-398 recommend the use of two formulas developed by Burns et al [Med. Phys. 23, 489-501 (1996)] to estimate the water-to-air stopping-power ratios (SPRs). Both formulas are based on a fit to SPRs calculated for standard electron beams. This study aims to find: (1) if the formulas are applicable to beams used in TSET and (2) the impact of the ICRU report 90 recommendations on the SPRs for these beams. METHODS The EGSnrc Monte Carlo code system is used to generate 6 MeV high dose rate total skin electron (HDTSe) beams used in TSET. The simulated beams are used to calculate dose distributions and SPRs as a function of depth in a water phantom. The fitted SPRs using the empirical formulas are compared with MC-calculated SPRs. RESULTS The electron beam quality specifier, the depth in water at which the absorbed dose falls to 50% of its maximum value, R50 , decreases approximately 1 mm for each additional 100-cm extended distance ranging from 2.24 cm at SSD = 100 to 1.72 cm at SSD = 700 cm. For beams passing through a scatter plate, R50 is 1.76 cm (1.14) at SSD = 300 and 1.48 cm (0.85 cm) at SSD = 600 cm with an Acrylic plate thickness of 3 mm (9 mm), respectively. The discrepancy between fitted and MC-calculated SPRs at dref as a function of R50 is <0.8%, and in many cases <0.4%. The difference between fitted and MC-calculated SPRs as a function of depth and R50 is within 1% at depths <0.8R50 for beams with R50 ≥ 1.14 cm. The ICRU-90 recommendations decrease SPRs by 0.3%-0.4% compared to the use of data recommended in ICRU-37. CONCLUSION The formulas used by the major protocols are accurate enough for clinical beams used in TSET and the error caused using the formulas is <1% to estimate SPRs as a function of depth and R50 for depths <0.8R50 for beams used in TSET with R50 ≥ 1.14 cm. The impact of the ICRU-90 recommendations shows a decrease of SPRs by a fraction of a percent for beams used in TSET.
Collapse
Affiliation(s)
- George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Hachemi T, Chaoui ZEA, Khoudri S. PENELOPE simulations and experiment for 6 MV clinac iX accelerator for standard and small static fields. Appl Radiat Isot 2021; 174:109749. [PMID: 33940355 DOI: 10.1016/j.apradiso.2021.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022]
Abstract
The goal of this work was to produce accurate data for use as a 'gold standard' and a valid tool for measurements in reference dosimetry for standard/small static field sizes from 0.5 × 0.5 to 10 × 10 cm2. It is based on the accuracy of the phase space files (PSFs) as a key quantity. Because the IAEA general public database provides few PSFs for the Varian iX, we simulated the head through Monte Carlo (MC) simulations and calculated validated PSFs for 12 square field sizes including seven for small static fields. The resulting dosimetric calculations allowed us to reach a good level of agreement in comparison to our relative and absolute dose measurements performed on a Varian iX in water phantom. Measured and MC calculated output factors were investigated for different detectors. Based on the TRS 483 formalism and MC (PENELOPE/penEasy), we calculated output correction factors for the unshielded Diode-E (T60017) and the PinPoint-3D (T31016) micro-chamber according to manufacturers' blueprints. Our MC results were in agreement with the recommended data; they compete with recent measurements and MC simulations and in particular the TRS 483 MC data obtained from similar simulations. Moreover, our MC results provide supplemental data in comparison to TRS 483 data in particular for the PinPoint-3D (T31016). We suggest our MC output correction factors as new datasets for future TRS compilations. The work was substantial, used different robust MC strategies depending on the scoring regions, and led in most cases to uncertainties of less than 1%.
Collapse
Affiliation(s)
- Taha Hachemi
- Physics Department, Faculty of Sciences, Laboratory of Optoelectronic and Devices, University Ferhat Abbas Sétif 1, Algeria.
| | - Zine-El-Abidine Chaoui
- Physics Department, Faculty of Sciences, Laboratory of Optoelectronic and Devices, University Ferhat Abbas Sétif 1, Algeria
| | - Saad Khoudri
- Physics Department, Faculty of Sciences, Laboratory of Optoelectronic and Devices, University Ferhat Abbas Sétif 1, Algeria; Centre de Lutte Contre le Cancer de Sétif, Algeria
| |
Collapse
|
16
|
Bouchard H. Reference dosimetry of modulated and dynamic photon beams. Phys Med Biol 2021; 65:24TR05. [PMID: 33438582 DOI: 10.1088/1361-6560/abc3fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the late 1980s, a new technique was proposed that would revolutionize radiotherapy. Now referred to as intensity-modulated radiotherapy, it is at the core of state-of-the-art photon beam delivery techniques, such as helical tomotherapy and volumetric modulated arc therapy. Despite over two decades of clinical application, there are still no established guidelines on the calibration of dynamic modulated photon beams. In 2008, the IAEA-AAPM work group on nonstandard photon beam dosimetry published a formalism to support the development of a new generation of protocols applicable to nonstandard beam reference dosimetry (Alfonso et al 2008 Med. Phys. 35 5179-86). The recent IAEA Code of Practice TRS-483 was published as a result of this initiative and addresses exclusively small static beams. But the plan-class specific reference calibration route proposed by Alfonso et al (2008 Med. Phys. 35 5179-86) is a change of paradigm that is yet to be implemented in radiotherapy clinics. The main goals of this paper are to provide a literature review on the dosimetry of nonstandard photon beams, including dynamic deliveries, and to discuss anticipated benefits and challenges in a future implementation of the IAEA-AAPM formalism on dynamic photon beams.
Collapse
Affiliation(s)
- Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada. Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec H2X 0A9, Canada. Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montréal, Québec H2X 3E4, Canada
| |
Collapse
|
17
|
Giménez-Alventosa V, Giménez V, Ballester F, Vijande J, Andreo P. Monte Carlo calculation of beam quality correction factors for PTW cylindrical ionization chambers in photon beams. ACTA ACUST UNITED AC 2020; 65:205005. [DOI: 10.1088/1361-6560/ab9501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Andreo P, Burns DT, Kapsch RP, McEwen M, Vatnitsky S, Andersen CE, Ballester F, Borbinha J, Delaunay F, Francescon P, Hanlon MD, Mirzakhanian L, Muir B, Ojala J, Oliver CP, Pimpinella M, Pinto M, de Prez LA, Seuntjens J, Sommier L, Teles P, Tikkanen J, Vijande J, Zink K. Determination of consensus k Q values for megavoltage photon beams for the update of IAEA TRS-398. ACTA ACUST UNITED AC 2020; 65:095011. [DOI: 10.1088/1361-6560/ab807b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Tikkanen J, Zink K, Pimpinella M, Teles P, Borbinha J, Ojala J, Siiskonen T, Gomà C, Pinto M. Calculated beam quality correction factors for ionization chambers in MV photon beams. Phys Med Biol 2020; 65:075003. [PMID: 31995531 DOI: 10.1088/1361-6560/ab7107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The beam quality correction factor, [Formula: see text], which corrects for the difference in the ionization chamber response between the reference and clinical beam quality, is an integral part of radiation therapy dosimetry. The uncertainty of [Formula: see text] is one of the most significant sources of uncertainty in the dose determination. To improve the accuracy of available [Formula: see text] data, four partners calculated [Formula: see text] factors for 10 ionization chamber models in linear accelerator beams with accelerator voltages ranging from 6 MV to 25 MV, including flattening-filter-free (FFF) beams. The software used in the calculations were EGSnrc and PENELOPE, and the ICRU report 90 cross section data for water and graphite were included in the simulations. Volume averaging correction factors were calculated to correct for the dose averaging in the chamber cavities. A comparison calculation between partners showed a good agreement, as did comparison with literature. The [Formula: see text] values from TRS-398 were higher than our values for each chamber where data was available. The [Formula: see text] values for the FFF beams did not follow the same [Formula: see text], [Formula: see text] relation as beams with flattening filter (values for 10 MV FFF beams were below fits made to other data on average by 0.3%), although our FFF sources were only for Varian linacs.
Collapse
Affiliation(s)
- J Tikkanen
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland. Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Baumann KS, Kaupa S, Bach C, Engenhart-Cabillic R, Zink K. Monte Carlo calculation of beam quality correction factors in proton beams using TOPAS/GEANT4. ACTA ACUST UNITED AC 2020; 65:055015. [DOI: 10.1088/1361-6560/ab6e53] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Muir BR. A modified formalism for electron beam reference dosimetry to improve the accuracy of linac output calibration. Med Phys 2020; 47:2267-2276. [PMID: 31985833 DOI: 10.1002/mp.14048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To present and demonstrate the accuracy of a modified formalism for electron beam reference dosimetry using updated Monte Carlo calculated beam quality conversion factors. METHODS The proposed, simplified formalism allows the use of cylindrical ionization chambers in all electron beams (even those with low beam energies) and does not require a measured gradient correction factor. Data from a previous publication are used for beam quality conversion factors. The formalism is tested and compared to the present formalism in the AAPM TG-51 protocol with measurements made in Elekta Precise electron beams with energies between 4 MeV and 22 MeV and with fields shaped with a 10 × 10 cm2 clinical applicator as well as a 20 × 20 cm2 clinical applicator for the 18 MeV and 22 MeV beams. A set of six ionization chambers are used for measurements (two cylindical reference-class chambers, two scanning-type chambers and two parallel-plate chambers). Dose per monitor unit is derived using the data and formalism provided in the TG-51 protocol and with the proposed formalism and data and compared to that obtained using ionization chambers calibrated directly against primary standards for absorbed dose in electron beams. RESULTS The standard deviation of results using different chambers when TG-51 is followed strictly is on the order of 0.4% when parallel-plate chambers are cross-calibrated against cylindrical chambers. However, if parallel-plate chambers are directly calibrated in a cobalt-60 beam, the difference between results for these chambers is up to 2.2%. Using the proposed formalism and either directly calibrated or cross-calibrated parallel-plate chambers gives a standard deviation using different chambers of 0.4%. The difference between results that use TG-51 and the primary standard measurements are on the order of 0.6% with a maximum difference in the 4 MeV beam of 2.8%. Comparing the results obtained with the proposed formalism and the primary standard measurements are on the order of 0.4% with a maximum difference of 1.0% in the 4 MeV beam. CONCLUSIONS The proposed formalism and the use of updated data for beam quality conversion factors improves the consistency of results obtained with different chamber types and improves the accuracy of reference dosimetry measurements. Moreover, it is simpler than the present formalism and will be straightforward to implement clinically.
Collapse
Affiliation(s)
- Bryan R Muir
- NRC Metrology Research Centre, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
22
|
Baumann K, Horst F, Zink K, Gomà C. Comparison of penh, fluka, and Geant4/topas for absorbed dose calculations in air cavities representing ionization chambers in high-energy photon and proton beams. Med Phys 2019; 46:4639-4653. [PMID: 31350915 PMCID: PMC6851981 DOI: 10.1002/mp.13737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The purpose of this work is to analyze whether the Monte Carlo codes penh, fluka, and geant4/topas are suitable to calculate absorbed doses andf Q / f Q 0 ratios in therapeutic high-energy photon and proton beams. METHODS We used penh, fluka, geant4/topas, and egsnrc to calculate the absorbed dose to water in a reference water cavity and the absorbed dose to air in two air cavities representative of a plane-parallel and a cylindrical ionization chamber in a 1.25 MeV photon beam and a 150 MeV proton beam - egsnrc was only used for the photon beam calculations. The physics and transport settings in each code were adjusted to simulate the particle transport as detailed as reasonably possible. From these absorbed doses, f Q 0 factors, f Q factors, andf Q / f Q 0 ratios (which are the basis of Monte Carlo calculated beam quality correction factors k Q , Q 0 ) were calculated and compared between the codes. Additionally, we calculated the spectra of primary particles and secondary electrons in the reference water cavity, as well as the integrated depth-dose curve of 150 MeV protons in water. RESULTS The absorbed doses agreed within 1.4% or better between the individual codes for both the photon and proton simulations. The f Q 0 and f Q factors agreed within 0.5% or better for the individual codes for both beam qualities. The resultingf Q / f Q 0 ratios for 150 MeV protons agreed within 0.7% or better. For the 1.25 MeV photon beam, the spectra of photons and secondary electrons agreed almost perfectly. For the 150 MeV proton simulation, we observed differences in the spectra of secondary protons whereas the spectra of primary protons and low-energy delta electrons also agreed almost perfectly. The first 2 mm of the entrance channel of the 150 MeV proton Bragg curve agreed almost perfectly while for greater depths, the differences in the integrated dose were up to 1.5%. CONCLUSION penh, fluka, and geant4/topas are capable of calculating beam quality correction factors in proton beams. The differences in the f Q 0 and f Q factors between the codes are 0.5% at maximum. The differences in thef Q / f Q 0 ratios are 0.7% at maximum.
Collapse
Affiliation(s)
- Kilian‐Simon Baumann
- Department of Radiotherapy and RadiooncologyUniversity Medical Center Giessen‐MarburgMarburgGermany
- Institute of Medical Physics and Radiation ProtectionUniversity of Applied SciencesGiessenGermany
| | - Felix Horst
- Institute of Medical Physics and Radiation ProtectionUniversity of Applied SciencesGiessenGermany
- GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
| | - Klemens Zink
- Department of Radiotherapy and RadiooncologyUniversity Medical Center Giessen‐MarburgMarburgGermany
- Institute of Medical Physics and Radiation ProtectionUniversity of Applied SciencesGiessenGermany
- Frankfurt Institute for Advanced Studies (FIAS)FrankfurtGermany
| | - Carles Gomà
- Department of Oncology, Laboratory of Experimental RadiotherapyKU LeuvenLeuvenBelgium
| |
Collapse
|
23
|
Hartmann GH, Zink K. A Monte Carlo study on the PTW 60019 microDiamond detector. Med Phys 2019; 46:5159-5172. [DOI: 10.1002/mp.13721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection (IMPS) University of Applied Sciences Giessen 35390Giessen Germany
- Department for Radiotherapy and Radiooncology University Medical Center Giessen‐Marburg 35043Marburg Germany
- Frankfurt Institute for Advanced Studies (FIAS), Goethe‐University 60438Frankfurt Germany
| |
Collapse
|
24
|
Gomà C, Sterpin E. Monte Carlo calculation of beam quality correction factors in proton beams using PENH. ACTA ACUST UNITED AC 2019; 64:185009. [DOI: 10.1088/1361-6560/ab3b94] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Hartmann GH, Andreo P. Fluence calculation methods in Monte Carlo dosimetry simulations. Z Med Phys 2019; 29:239-248. [DOI: 10.1016/j.zemedi.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/04/2018] [Accepted: 08/26/2018] [Indexed: 11/25/2022]
|
26
|
Pimpinella M, Silvi L, Pinto M. Calculation of kQ factors for Farmer-type ionization chambers following the recent recommendations on new key dosimetry data. Phys Med 2019; 57:221-230. [DOI: 10.1016/j.ejmp.2018.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022] Open
|
27
|
Lourenço A, Bouchard H, Galer S, Royle G, Palmans H. The influence of nuclear interactions on ionization chamber perturbation factors in proton beams: FLUKA simulations supported by a Fano test. Med Phys 2018; 46:885-891. [DOI: 10.1002/mp.13281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/16/2018] [Accepted: 10/21/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ana Lourenço
- Medical Radiation Science National Physical Laboratory Teddington TW11 0LW UK
- Department of Medical Physics and Biomedical Engineering University College London London WC1E 6BT UK
| | - Hugo Bouchard
- Département de Physique Université de Montréal, Québec 2900 Boulevard Edouard‐Montpetit Montréal QC H3T 1J4 Canada
| | - Sebastian Galer
- Medical Radiation Science National Physical Laboratory Teddington TW11 0LW UK
| | - Gary Royle
- Department of Medical Physics and Biomedical Engineering University College London London WC1E 6BT UK
| | - Hugo Palmans
- Medical Radiation Science National Physical Laboratory Teddington TW11 0LW UK
- Medical Physics Group EBG MedAustron GmbH A‐2700 Wiener Neustadt Austria
| |
Collapse
|
28
|
Andreo P, Benmakhlouf H. Comment on ‘Origins of the changing detector response in small megavoltage photon radiation fields’. Phys Med Biol 2018; 63:198001. [DOI: 10.1088/1361-6560/aae0e3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Czarnecki D, Poppe B, Zink K. Impact of new ICRU Report 90 recommendations on calculated correction factors for reference dosimetry. Phys Med Biol 2018; 63:155015. [PMID: 29974869 DOI: 10.1088/1361-6560/aad148] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In 2016 the ICRU published a new report dealing with key data for ionizing radiation dosimetry (ICRU Report 90). New recommendations have been made for the mean excitation energies I for air, graphite and liquid water as well as for the graphite density to use when evaluating the density effect. In addition, the ICRU Report 90 discusses renormalized photoelectric cross sections, but refuses to give a recommendation on the use of renormalization factors. However, the Consultative Committee for Ionizing Radiation recommends to use renormalized photoeffect cross sections. Goal of the present work is to evaluate the impact of these new recommendations on clinical reference dosimetry for high energy photon and electron beams. The beam quality correction factor k Q was calculated by Monte Carlo simulations for compact and parallel plate ionization chambers. In case of photons seven phase space files from clinical accelerators and twelve spectra taken from literature from 4 MV to 24 MV and additionally a 60Co source were applied. As electron source thirteen electron spectra available in literature were used in the range of 4 MeV-21 MeV. The new ICRU recommendations have a small impact on Monte Carlo calculated k Q values for the chosen ionization chambers in the range of 0.1%-0.35% only-the difference increases for higher photon energies. The impact of the ICRU Report 90 recommendations on Monte Carlo calculated stopping power ratios s w,a , perturbation factors p and beam quality correction factors k Q was investigated and confirmed a decrese of s w,a by a fraction of a percent for photon and electron beams. This study indicates that the impact of the new ICRU recommendation is within 0.35%. The determined deviations should be taken into account, when widely published Monte Carlo calculated values are examined.
Collapse
Affiliation(s)
- Damian Czarnecki
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany. University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | | | | |
Collapse
|
30
|
Abstract
BACKGROUND The use of the Monte Carlo (MC) method in radiotherapy dosimetry has increased almost exponentially in the last decades. Its widespread use in the field has converted this computer simulation technique in a common tool for reference and treatment planning dosimetry calculations. METHODS This work reviews the different MC calculations made on dosimetric quantities, like stopping-power ratios and perturbation correction factors required for reference ionization chamber dosimetry, as well as the fully realistic MC simulations currently available on clinical accelerators, detectors and patient treatment planning. CONCLUSIONS Issues are raised that include the necessity for consistency in the data throughout the entire dosimetry chain in reference dosimetry, and how Bragg-Gray theory breaks down for small photon fields. Both aspects are less critical for MC treatment planning applications, but there are important constraints like tissue characterization and its patient-to-patient variability, which together with the conversion between dose-to-water and dose-to-tissue, are analysed in detail. Although these constraints are common to all methods and algorithms used in different types of treatment planning systems, they make uncertainties involved in MC treatment planning to still remain "uncertain".
Collapse
Affiliation(s)
- Pedro Andreo
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, and Department of Oncology-Pathology, Karolinska Institutet, Stockholm, SE-171 76, Sweden.
| |
Collapse
|
31
|
Wulff J, Baumann KS, Verbeek N, Bäumer C, Timmermann B, Zink K. TOPAS/Geant4 configuration for ionization chamber calculations in proton beams. ACTA ACUST UNITED AC 2018; 63:115013. [DOI: 10.1088/1361-6560/aac30e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Measurement of relative depth-dose distribution in radiochromic film dosimeters irradiated with 43–70 keV electron beam for industrial application. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Andreo P. The physics of small megavoltage photon beam dosimetry. Radiother Oncol 2018; 126:205-213. [DOI: 10.1016/j.radonc.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
34
|
Muir BR, McEwen MR. Technical Note: On the use of cylindrical ionization chambers for electron beam reference dosimetry. Med Phys 2017; 44:6641-6646. [PMID: 28913919 DOI: 10.1002/mp.12582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/26/2017] [Accepted: 08/31/2017] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate the use of cylindrical chambers for electron beam dosimetry independent of energy by studying the variability of relative ion chamber perturbation corrections, one of the main concerns for electron beam dosimetry with cylindrical chambers. METHODS Measurements are made with sets of cylindrical and plane-parallel reference-class chambers as a function of depth in water in 8 MeV and 18 MeV electron beams. The ratio of chamber readings for similar chambers is normalized in a high-energy electron beam and can be thought of as relative perturbation corrections. Data are plotted as a function of mean electron energy at depth for a range of depths close to the phantom surface to R80 , the depth at which the ionization falls to 80% of its maximum value. Additional, similar measurements are made in a Virtual Water® phantom with cylindrical chambers at the reference depth in a 4 MeV electron beam. RESULTS The variability of relative ion chamber perturbation corrections for nominally identical cylindrical Farmer-type chambers is found to be less than 0.4%, no worse than plane-parallel chambers with similar specifications. CONCLUSIONS This work discusses several issues related to the use of plane-parallel ion chambers and suggests that reference-class cylindrical chambers may be appropriate for reference dosimetry of all electron beams. This would simplify the reference dosimetry procedure and improve accuracy of beam calibration.
Collapse
Affiliation(s)
- Bryan R Muir
- Measurement Science and Standards, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| | - Malcolm R McEwen
- Measurement Science and Standards, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
35
|
Sorriaux J, Testa M, Paganetti H, Bertrand D, Lee JA, Palmans H, Vynckier S, Sterpin E. Consistency in quality correction factors for ionization chamber dosimetry in scanned proton beam therapy. Med Phys 2017; 44:4919-4927. [DOI: 10.1002/mp.12434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jefferson Sorriaux
- Center of Molecular Imaging, Radiotherapy and Oncology; Institut de Recherche Expérimentale et Clinique; Université catholique de Louvain; Avenue Hippocrate 54 1200 Brussels Belgium
- ICTEAM Institute; Université catholique de Louvain; Chemin du Cyclotron 6 1348 Louvain-la-Neuve Belgium
| | - Mauro Testa
- Department of Radiation Convergence Engineering; Yonsei University; Wonju 220-710 Korea
| | - Harald Paganetti
- Department of Radiation Oncology; Massachusetts General Hospital; Harvard Medical School; Boston MA 02114 USA
| | - Damien Bertrand
- Ion Beam Applications S.A; Chemin du Cyclotron 3 1348 Louvain-la-Neuve Belgium
| | - John Aldo Lee
- Center of Molecular Imaging, Radiotherapy and Oncology; Institut de Recherche Expérimentale et Clinique; Université catholique de Louvain; Avenue Hippocrate 54 1200 Brussels Belgium
- ICTEAM Institute; Université catholique de Louvain; Chemin du Cyclotron 6 1348 Louvain-la-Neuve Belgium
| | - Hugo Palmans
- Medical Physics Department; EBG MedAustron GmbH; Wiener Neustadt A-2700 Austria
- Acoustics and Ionising Radiation Division; National Physical Laboratory; Teddington TW11 OLW UK
| | - Stefaan Vynckier
- Département de Radiothérapie; Cliniques Universitaires Saint-Luc; Avenue Hippocrate 54 1200 Brussels Belgium
| | - Edmond Sterpin
- Center of Molecular Imaging, Radiotherapy and Oncology; Institut de Recherche Expérimentale et Clinique; Université catholique de Louvain; Avenue Hippocrate 54 1200 Brussels Belgium
- Department of Oncology; Laboratory of Experimental Radiotherapy; Katholieke Universiteit Leuven; O&N Herestraat 49 - box 818 3000 Leuven Belgium
| |
Collapse
|
36
|
Computation of the electron beam qualitykQ,Q0factors for the NE2571, NE2571A and NE2581A thimble ionization chambers using PENELOPE. Phys Med 2017; 38:76-80. [DOI: 10.1016/j.ejmp.2017.05.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 11/24/2022] Open
|
37
|
Wang Y, Mazur TR, Green O, Hu Y, Li H, Rodriguez V, Wooten HO, Yang D, Zhao T, Mutic S, Li HH. A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model. Med Phys 2017; 43:4040. [PMID: 27370123 DOI: 10.1118/1.4953198] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on penelope and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. METHODS penelope was first translated from fortran to c++ and the result was confirmed to produce equivalent results to the original code. The c++ code was then adapted to cuda in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gpenelope highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gpenelope as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gpenelope. Ultimately, gpenelope was applied toward independent validation of patient doses calculated by MRIdian's kmc. RESULTS An acceleration factor of 152 was achieved in comparison to the original single-thread fortran implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gpenelope with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). CONCLUSIONS A Monte Carlo simulation platform was developed based on a GPU- accelerated version of penelope. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems.
Collapse
Affiliation(s)
- Yuhe Wang
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110
| | - Thomas R Mazur
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110
| | - Olga Green
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110
| | - Yanle Hu
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110
| | - Hua Li
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110
| | - Vivian Rodriguez
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110
| | - H Omar Wooten
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110
| | - Deshan Yang
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110
| | - Sasa Mutic
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110
| | - H Harold Li
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110
| |
Collapse
|
38
|
Scalchi P, Ciccotelli A, Felici G, Petrucci A, Massafra R, Piazzi V, D'Avenia P, Cavagnetto F, Cattani F, Romagnoli R, Soriani A. Use of parallel-plate ionization chambers in reference dosimetry of NOVAC and LIAC®mobile electron linear accelerators for intraoperative radiotherapy: a multi-center survey. Med Phys 2017; 44:321-332. [DOI: 10.1002/mp.12020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 11/06/2016] [Accepted: 11/11/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Paolo Scalchi
- Department of Medical Physics; Azienda U.L.S.S. 8; Vicenza 36100 Italy
| | | | | | - Assunta Petrucci
- Department of Medical Physics; S. Filippo Neri Hospital; Rome 00135 Italy
| | - Raffaella Massafra
- Department of Medical Physics; I.R.C.C.S. Institute of Oncology Giovanni Paolo II; Bari 70124 Italy
| | - Valeria Piazzi
- Department of Radiotherapy; Multimedica Hospital; Castellanza 21053 Italy
| | - Paola D'Avenia
- Department of Medical Physics; ASUR MARCHE AV3; Macerata 62100 Italy
| | | | - Federica Cattani
- Department of Medical Physics; European Institute of Oncology; Milan 20141 Italy
| | | | - Antonella Soriani
- Laboratory of Medical Physics and Expert Systems; Regina Elena National Cancer Institute; Rome 00144 Italy
| |
Collapse
|
39
|
Gomà C, Andreo P, Sempau J. Monte Carlo calculation of beam quality correction factors in proton beams using detailed simulation of ionization chambers. Phys Med Biol 2016; 61:2389-406. [DOI: 10.1088/0031-9155/61/6/2389] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Reis C, Nicolucci P. Assessment of ionization chamber correction factors in photon beams using a time saving strategy with PENELOPE code. Phys Med 2016; 32:297-304. [DOI: 10.1016/j.ejmp.2016.01.482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 10/22/2022] Open
|
41
|
Erazo F, Lallena AM. Photon beam quality correction factors for the NE2571A and NE2581A thimble ionization chambers using PENELOPE. Phys Med 2016; 32:232-6. [DOI: 10.1016/j.ejmp.2015.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/03/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022] Open
|
42
|
Erazo F, Brualla L, Lallena AM. Electron beam qualitykQ,Q0factors for various ionization chambers: a Monte Carlo investigation with penelope. Phys Med Biol 2014; 59:6673-91. [DOI: 10.1088/0022-3727/59/21/6673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Muir BR, Rogers DWO. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types. Med Phys 2014; 41:111701. [DOI: 10.1118/1.4893915] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
44
|
Sterpin E, Sorriaux J, Souris K, Vynckier S, Bouchard H. A Fano cavity test for Monte Carlo proton transport algorithms. Med Phys 2013; 41:011706. [DOI: 10.1118/1.4835475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
45
|
Muir BR, Rogers DWO. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers. Med Phys 2013; 40:121722. [DOI: 10.1118/1.4829577] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
46
|
Sterpin E, Sorriaux J, Vynckier S. Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4. Med Phys 2013; 40:111705. [DOI: 10.1118/1.4823469] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
47
|
Andreo P, Wulff J, Burns DT, Palmans H. Consistency in reference radiotherapy dosimetry: resolution of an apparent conundrum when60Co is the reference quality for charged-particle and photon beams. Phys Med Biol 2013; 58:6593-621. [DOI: 10.1088/0031-9155/58/19/6593] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Chica U, Anguiano M, Lallena A. On the behavior of fc,Q factors with quality indexes for medium energy X-ray beams: A Monte Carlo study with penelope. Radiat Phys Chem Oxf Engl 1993 2013. [DOI: 10.1016/j.radphyschem.2013.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Koivunoro H, Siiskonen T, Kotiluoto P, Auterinen I, Hippelainen E, Savolainen S. Accuracy of the electron transport in mcnp5 and its suitability for ionization chamber response simulations: A comparison with the egsnrc and penelope codes. Med Phys 2013; 39:1335-44. [PMID: 22380366 DOI: 10.1118/1.3685446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In this work, accuracy of the mcnp5 code in the electron transport calculations and its suitability for ionization chamber (IC) response simulations in photon beams are studied in comparison to egsnrc and penelope codes. METHODS The electron transport is studied by comparing the depth dose distributions in a water phantom subdivided into thin layers using incident energies (0.05, 0.1, 1, and 10 MeV) for the broad parallel electron beams. The IC response simulations are studied in water phantom in three dosimetric gas materials (air, argon, and methane based tissue equivalent gas) for photon beams ((60)Co source, 6 MV linear medical accelerator, and mono-energetic 2 MeV photon source). Two optional electron transport models of mcnp5 are evaluated: the ITS-based electron energy indexing (mcnp5(ITS)) and the new detailed electron energy-loss straggling logic (mcnp5(new)). The electron substep length (ESTEP parameter) dependency in mcnp5 is investigated as well. RESULTS For the electron beam studies, large discrepancies (>3%) are observed between the MCNP5 dose distributions and the reference codes at 1 MeV and lower energies. The discrepancy is especially notable for 0.1 and 0.05 MeV electron beams. The boundary crossing artifacts, which are well known for the mcnp5(ITS), are observed for the mcnp5(new) only at 0.1 and 0.05 MeV beam energies. If the excessive boundary crossing is eliminated by using single scoring cells, the mcnp5(ITS) provides dose distributions that agree better with the reference codes than mcnp5(new). The mcnp5 dose estimates for the gas cavity agree within 1% with the reference codes, if the mcnp5(ITS) is applied or electron substep length is set adequately for the gas in the cavity using the mcnp5(new). The mcnp5(new) results are found highly dependent on the chosen electron substep length and might lead up to 15% underestimation of the absorbed dose. CONCLUSIONS Since the mcnp5 electron transport calculations are not accurate at all energies and in every medium by general clinical standards, caution is needed, if mcnp5 is used with the current electron transport models for dosimetric applications.
Collapse
|
50
|
Gomà C, Andreo P, Sempau J. Spencer–Attix water/medium stopping-power ratios for the dosimetry of proton pencil beams. Phys Med Biol 2013; 58:2509-22. [DOI: 10.1088/0031-9155/58/8/2509] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|