1
|
Singh PK, Patni HK, Roy R, Akar DK, Sawant PD. 131I dose coefficients for a reference population using age-specific models. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2023; 43:041508. [PMID: 37857280 DOI: 10.1088/1361-6498/ad04ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Age-specific dose coefficients are required to assess internal exposure to the general public. This study utilizes reference age-specific biokinetic models of iodine to estimate the total number of nuclear disintegrations ã(rS,τ) occurring in source regions (rS) during the commitment time (τ). Age-specific S values are estimated for 35 target regions due to131I present in 22rSusing data from 10 paediatric reference computational phantoms (representing five ages for both sexes) published recently by the International Commission of Radiation Protection (ICRP). Monte Carlo transport simulations are performed in FLUKA code. The estimated ã(rS,τ) and S values are then used to compute the committed tissue equivalent dose HT(τ) for 27 radiosensitive tissues and dose coefficients e(τ) for all five ages due to inhalation and ingestion of131I. The derived ã(rS,τ) values in the thyroid source are observed to increase with age due to the increased retention of iodine in the thyroid. S values are found to decrease with age, mainly due to an increase in target masses. Generally, HT(τ) values are observed to decrease with age, indicating the predominant behaviour of S values over ã(rS,τ). On average, ingestion dose coefficients are 63% higher than for inhalation in all ages. The maximum contribution to dose coefficients is from the thyroid, accounting for 96% in the case of newborns and 98%-99% for all other ages. Furthermore, the estimated e(τ) values for the reference population are observed to be lower than previously published reference values from the ICRP. The estimated S, HT(τ) and e(τ) values can be used to improve estimations of internal doses to organs/whole body for members of the public in cases of131I exposure. The estimated dose coefficients can also be interpolated for other ages to accurately evaluate the doses received by the general public during131I therapy or during a radiological emergency.
Collapse
Affiliation(s)
- Pradeep Kumar Singh
- Internal Dosimetry Section, Radiation Safety Systems Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hemant Kumar Patni
- Internal Dosimetry Section, Radiation Safety Systems Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rahul Roy
- Internal Dosimetry Section, Radiation Safety Systems Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Deepak Kumar Akar
- Internal Dosimetry Section, Radiation Safety Systems Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Pramilla D Sawant
- Internal Dosimetry Section, Radiation Safety Systems Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
2
|
Coleman D, Griffin KT, Dewji SA. Stylized versus voxel phantoms: quantification of internal organ chord length distances. Phys Med Biol 2023; 68. [PMID: 36780697 DOI: 10.1088/1361-6560/acbbb6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
Dosimetric calculations, whether for radiation protection or nuclear medicine applications, are greatly influenced by the use of computational models of humans, called anthropomorphic phantoms. As anatomical models of phantoms have evolved and expanded, thus has the need for quantifying differences among each of these representations that yield variations in organ dose coefficients, whether from external radiation sources or internal emitters. This work represents an extension of previous efforts to quantify the differences in organ positioning within the body between a stylized and voxel phantom series. Where prior work focused on the organ depth distribution vis-à-vis the surface of the phantom models, the work described here quantifies the intra-organ and inter-organ distributions through calculation of the mean chord lengths. The revised Oak Ridge National Laboratory stylized phantom series and the University of Florida/National Cancer Institute voxel phantom series including a newborn, 1-, 5-, 10- and 15 year old, and adult phantoms were compared. Organ distances in the stylized phantoms were computed using a ray-tracing technique available through Monte Carlo radiation transport simulations in MCNP6. Organ distances in the voxel phantom were found using phantom matrix manipulation. Quantification of differences in organ chord lengths between the phantom series displayed that the organs of the stylized phantom series are typically situated farther away from one another than within the voxel phantom series. The impact of this work was to characterize the intra-organ and inter-organ distributions to explain the variations in updated internal dose coefficient quantities (i.e. specific absorbed fractions) while providing relevant data defining the spatial and volumetric organ distributions in the phantoms for use in subsequent internal dosimetric computations, with prospective relevance to patient-specific individualized dosimetry, as well as informing machine learning definition of organs using these reference models.
Collapse
Affiliation(s)
- D Coleman
- University of Wisconsin-Madison, Department of Medical Physics 1111 Highland Ave Rm 1005, Madison, WI 53705-2275, United States of America
| | - K T Griffin
- National Cancer Institute, Radiation Epidemiology Branch, 9609 Medical Center Drive MSC 9776, Bethesda, MD 20892-2590, United States of America.,Georgia Institute of Technology, Nuclear and Radiological Engineering and Medical Physics Programs, 770 State Street, Atlanta, GA 30332-0405, United States of America
| | - S A Dewji
- Georgia Institute of Technology, Nuclear and Radiological Engineering and Medical Physics Programs, 770 State Street, Atlanta, GA 30332-0405, United States of America
| |
Collapse
|
3
|
Abuqbeitah M, Sağer S, Demir M, Yeyin N, Akovalı B, Sönmezoğlu K. The impact of different computational assumptions in
131
I dosimetry for hyperthyroidism therapy. Med Phys 2020; 47:5810-5816. [DOI: 10.1002/mp.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mohammad Abuqbeitah
- Nuclear Medicine Department Istanbul University‐CerrahpasaCerrahpasa Medical School Istanbul Fatih0090 Turkey
| | - Sait Sağer
- Nuclear Medicine Department Istanbul University‐CerrahpasaCerrahpasa Medical School Istanbul Fatih0090 Turkey
| | - Mustafa Demir
- Nuclear Medicine Department Istanbul University‐CerrahpasaCerrahpasa Medical School Istanbul Fatih0090 Turkey
| | - Nami Yeyin
- Nuclear Medicine Department Istanbul University‐CerrahpasaCerrahpasa Medical School Istanbul Fatih0090 Turkey
| | - Burak Akovalı
- Nuclear Medicine Department Istanbul University‐CerrahpasaCerrahpasa Medical School Istanbul Fatih0090 Turkey
| | - Kerim Sönmezoğlu
- Nuclear Medicine Department Istanbul University‐CerrahpasaCerrahpasa Medical School Istanbul Fatih0090 Turkey
| |
Collapse
|
4
|
Dedulle A, Fitousi N, Zhang G, Jacobs J, Bosmans H. Two-step validation of a Monte Carlo dosimetry framework for general radiology. Phys Med 2018; 53:72-79. [PMID: 30241757 DOI: 10.1016/j.ejmp.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022] Open
Abstract
The Monte Carlo technique is considered gold standard when it comes to patient-specific dosimetry. Any newly developed Monte Carlo simulation framework, however, has to be carefully calibrated and validated prior to its use. For many researchers this is a tedious work. We propose a two-step validation procedure for our newly built Monte Carlo framework and provide all input data to make it feasible for future related application by the wider community. The validation was at first performed by benchmarking against simulation data available in literature. The American Association of Physicists in Medicine (AAPM) report of task group 195 (case 2) was considered most appropriate for our application. Secondly, the framework was calibrated and validated against experimental measurements for trunk X-ray imaging protocols using a water phantom. The dose results obtained from all simulations and measurements were compared. Our Monte Carlo framework proved to agree with literature data, by showing a maximal difference below 4% to the AAPM report. The mean difference with the water phantom measurements was around 7%. The statistical uncertainty for clinical applications of the dosimetry model is expected to be within 10%. This makes it reliable for clinical dose calculations in general radiology. Input data and the described procedure allow for the validation of other Monte Carlo frameworks.
Collapse
Affiliation(s)
- An Dedulle
- Qaelum NV, Gaston Geenslaan 9, 3001 Leuven, Belgium; University of Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, 3000 Leuven, Belgium.
| | - Niki Fitousi
- Qaelum NV, Gaston Geenslaan 9, 3001 Leuven, Belgium.
| | - Guozhi Zhang
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Jurgen Jacobs
- Qaelum NV, Gaston Geenslaan 9, 3001 Leuven, Belgium.
| | - Hilde Bosmans
- University of Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, 3000 Leuven, Belgium; Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Papadimitroulas P, Erwin WD, Iliadou V, Kostou T, Loudos G, Kagadis GC. A personalized, Monte Carlo-based method for internal dosimetric evaluation of radiopharmaceuticals in children. Med Phys 2018; 45:3939-3949. [PMID: 29920693 DOI: 10.1002/mp.13055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Herein, we introduce a methodology for estimating the absorbed dose in organs at risk that is based on specified clinically derived radiopharmaceutical biodistributions and personalized anatomical characteristics. METHODS To evaluate the proposed methodology, we used realistic Monte Carlo (MC) simulations and computational pediatric models to calculate a parameter called in this work the "specific absorbed dose rate" (SADR). The SADR is a unique quantitative metric in that it is specific to a particular organ. It is defined as the absorbed dose rate in an organ when the biodistribution of radioactivity over the whole body is considered. Initially, we applied a validation procedure that calculated specific absorbed fractions (SAFs) from mono-energetic photon sources in the range of 10 keV-2 MeV and compared them with previously published data. We calculated the SADRs for five different radiopharmaceuticals (99m Tc-MDP, 123 I-mIBG, 131 I-MIBG, 131 I-NaI, and 153 Sm-EDTMP) based on their biodistributions at four or five different times; the biodistributions were derived from the clinical scintigraphic data of pediatric patients. We used six models representing male and female patients aged 5, 8, and 14 yr to investigate the absorbed dose variability due to anatomical variations. The GATE Monte Carlo toolkit was used to calculate absorbed doses per organ. Finally, we compared the SADR methodology to that of OLINDA/EXM 1.1 using rescaled masses according to the studied models. Four target organs were considered for calculating the absorbed doses. RESULTS The ratios of SAFs calculated with GATE simulations to those based on previously published data were between 0.9 and 2.2 when the liver was used as a source organ. Subsequently, we used GATE to calculate a dataset of SADRs for the six pediatric models. The SADRs for pediatric models whose total body weights ranged from 20 to 40 kg varied up to approximately 90%, whereas those for models of similar body masses varied less than 15%. Finally, we found absorbed dose discrepancies of approximately 10-150% between the SADR methodology and OLINDA for two different radiopharmaceuticals. Absorbed doses from SADRs and from individualized S-values in the same pediatric model differed approximately 1-50%. CONCLUSIONS Because pediatric radiopharmaceutical dosimetric estimates demonstrate large variation due to the patient's anatomical characteristics, personalized data should be considered. Using our SADR method in a larger population of phantoms and for a variety of radiopharmaceuticals could enhance the personalization of dosimetry in pediatric nuclear medicine. The proposed methodology provides the advantage of creating time-dependent organ dose rate curves.
Collapse
Affiliation(s)
| | - William D Erwin
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vasiliki Iliadou
- Department of Medical Physics, School of Medicine, University of Patras, Rion, GR-26504, Greece
| | - Theodora Kostou
- R&D Department, BET Solutions, 116 Alexandras Ave., Athens, GR-11472, Greece
- Department of Medical Physics, School of Medicine, University of Patras, Rion, GR-26504, Greece
| | - George Loudos
- Department of Biomedical Engineering, University of West Attica, 28 Ag. Spyridonos Street, Egaleo, GR-12210, Greece
| | - George C Kagadis
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Medical Physics, School of Medicine, University of Patras, Rion, GR-26504, Greece
| |
Collapse
|
6
|
Zankl M, Becker J, Lee C, Bolch WE, Yeom YS, Kim CH. Computational phantoms, ICRP/ICRU, and further developments. Ann ICRP 2018; 47:35-44. [PMID: 29652167 DOI: 10.1177/0146645318756229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phantoms simulating the human body play a central role in radiation dosimetry. The first computational body phantoms were based upon mathematical expressions describing idealised body organs. With the advent of more powerful computers in the 1980s, voxel phantoms have been developed. Being based on three-dimensional images of individuals, they offer a more realistic anatomy. Hence, the International Commission on Radiological Protection (ICRP) decided to construct voxel phantoms representative of the adult Reference Male and Reference Female for the update of organ dose coefficients. Further work on phantom development has focused on phantoms that combine the realism of patient-based voxel phantoms with the flexibility of mathematical phantoms, so-called 'boundary representation' (BREP) phantoms. This phantom type has been chosen for the ICRP family of paediatric reference phantoms. Due to the limited voxel resolution of the adult reference computational phantoms, smaller tissues, such as the lens of the eye, skin, and micron-thick target tissues in the respiratory and alimentary tract regions, could not be segmented properly. In this context, ICRP Committee 2 initiated a research project with the goal of producing replicas of the ICRP Publication 110 phantoms in polygon mesh format, including all source and target regions, even those with micron resolution. BREP phantoms of the fetus and the pregnant female at various stages of gestation complete the phantoms available for radiation protection computations.
Collapse
Affiliation(s)
- M Zankl
- a Department of Radiation Sciences, Institute of Radiation Protection, Helmholtz Zentrum München - German Research Centre for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - J Becker
- a Department of Radiation Sciences, Institute of Radiation Protection, Helmholtz Zentrum München - German Research Centre for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - C Lee
- b National Institutes of Health, USA
| | | | | | | |
Collapse
|
7
|
Rafat Motavalli L, Hoseinian Azghadi E, Miri Hakimabad H, Akhlaghi P. Pulmonary embolism in pregnant patients: Assessing organ dose to pregnant phantom and its fetus during lung imaging. Med Phys 2017; 44:6038-6046. [PMID: 28869670 DOI: 10.1002/mp.12558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/24/2017] [Accepted: 08/25/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The purpose of this study was to provide updated radiation dose from diagnostic exams performed for pregnant patients suspected of pulmonary embolism (PE) using the recently developed BREP phantoms of pregnant woman and the fetus. Also to challenge the validity of current recommendations suggest that ventilation/perfusion (V/Q) single photon emission computed tomography (SPECT) vs. computed tomography pulmonary angiography (CTPA) should be considered for diagnosis of PE in radiosensitive groups such as pregnant women. METHODS The Monte Carlo calculations involving detailed geometrical simulation of pregnant women and the fetus were performed. RESULTS The results showed that when radiation dose to the fetus is of concern, CTPA is more appropriate at early stages causes 50%-97% lower fetal doses for the first two trimesters of pregnancy. While for gestational periods more than 6 months, V/Q SPECT leads to a 15% lower fetal dose and thus, is less hazardous. The fetal dose from CTPA increases with gestational age, while that from V/Q SPECT decreases. Furthermore, the maximum amount of fetal dose is received by fetal skeleton (i.e., on average about 1.8 and 3.9 times larger dose from SPECT and CT, respectively). CONCLUSIONS V/Q SPECT should not always be preferred for pregnant patients suspected of PE. This finding is in contrast with the guidance to choose the preferred modality based on the maternal effective dose. The reason of this issue was discussed in this paper based on chord length distributions (CLDs). The importance of considering fetal organs separately in MC calculations was also highlighted.
Collapse
Affiliation(s)
- Laleh Rafat Motavalli
- Physics Department, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Hashem Miri Hakimabad
- Physics Department, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parisa Akhlaghi
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Kry SF, Bednarz B, Howell RM, Dauer L, Followill D, Klein E, Paganetti H, Wang B, Wuu CS, George Xu X. AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy. Med Phys 2017; 44:e391-e429. [DOI: 10.1002/mp.12462] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Stephen F. Kry
- Department of Radiation Physics; MD Anderson Cancer Center; Houston TX 77054 USA
| | - Bryan Bednarz
- Department of Medical Physics; University of Wisconsin; Madison WI 53705 USA
| | - Rebecca M. Howell
- Department of Radiation Physics; MD Anderson Cancer Center; Houston TX 77054 USA
| | - Larry Dauer
- Departments of Medical Physics/Radiology; Memorial Sloan-Kettering Cancer Center; New York NY 10065 USA
| | - David Followill
- Department of Radiation Physics; MD Anderson Cancer Center; Houston TX 77054 USA
| | - Eric Klein
- Department of Radiation Oncology; Washington University; Saint Louis MO 63110 USA
| | - Harald Paganetti
- Department of Radiation Oncology; Massachusetts General Hospital and Harvard Medical School; Boston MA 02114 USA
| | - Brian Wang
- Department of Radiation Oncology; University of Louisville; Louisville KY 40202 USA
| | - Cheng-Shie Wuu
- Department of Radiation Oncology; Columbia University; New York NY 10032 USA
| | - X. George Xu
- Department of Mechanical, Aerospace, and Nuclear Engineering; Rensselaer Polytechnic Institute; Troy NY 12180 USA
| |
Collapse
|
9
|
Bellamy MB, Hiller MM, Dewji SA, Veinot KG, Leggett RW, Eckerman KF, Easterly CE, Hertel NE. COMPARISON OF MONOENERGETIC PHOTON ORGAN DOSE RATE COEFFICIENTS FOR STYLIZED AND VOXEL PHANTOMS SUBMERGED IN AIR. RADIATION PROTECTION DOSIMETRY 2016; 172:367-374. [PMID: 26838066 DOI: 10.1093/rpd/ncv548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photons in the range of 30 keV to 5 MeV. These calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.
Collapse
Affiliation(s)
- M B Bellamy
- Center for Radiation Protection Knowledge, Oak Ridge National Laboratory, P.O. Box 2008 MS 6335, Oak Ridge, TN 37831-6335, USA
| | - M M Hiller
- Center for Radiation Protection Knowledge, Oak Ridge National Laboratory, P.O. Box 2008 MS 6335, Oak Ridge, TN 37831-6335, USA
| | - S A Dewji
- Center for Radiation Protection Knowledge, Oak Ridge National Laboratory, P.O. Box 2008 MS 6335, Oak Ridge, TN 37831-6335, USA
| | - K G Veinot
- Easterly Scientific, 6412 Westminster Road, Knoxville, TN 37919, USA
| | - R W Leggett
- Center for Radiation Protection Knowledge, Oak Ridge National Laboratory, P.O. Box 2008 MS 6335, Oak Ridge, TN 37831-6335, USA
| | - K F Eckerman
- Easterly Scientific, 6412 Westminster Road, Knoxville, TN 37919, USA
| | - C E Easterly
- Easterly Scientific, 6412 Westminster Road, Knoxville, TN 37919, USA
| | - N E Hertel
- Center for Radiation Protection Knowledge, Oak Ridge National Laboratory, P.O. Box 2008 MS 6335, Oak Ridge, TN 37831-6335, USA
- Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745, USA
| |
Collapse
|
10
|
Xie T, Lee C, Bolch WE, Zaidi H. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models. Med Phys 2015; 42:2955-66. [PMID: 26127049 PMCID: PMC5148206 DOI: 10.1118/1.4921364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/24/2015] [Accepted: 05/08/2015] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. METHODS Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. RESULTS For most organs, (201)Tl produces the highest absorbed dose whereas (82)Rb and (15)O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of (82)Rb is 48% and 77% lower than that of (99m)Tc-tetrofosmin (rest), respectively. CONCLUSIONS (82)Rb results in lower effective dose in adults compared to (99m)Tc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice.
Collapse
Affiliation(s)
- Tianwu Xie
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211, Switzerland
| | - Choonsik Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852
| | - Wesley E Bolch
- Departments of Nuclear & Radiological and Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211, Switzerland; Geneva Neuroscience Center, Geneva University, Geneva CH-1205, Switzerland; and Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, Netherlands
| |
Collapse
|
11
|
Xie T, Bolch WE, Lee C, Zaidi H. Pediatric radiation dosimetry for positron-emitting radionuclides using anthropomorphic phantoms. Med Phys 2014; 40:102502. [PMID: 24089923 DOI: 10.1118/1.4819939] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Positron emission tomography (PET) plays an important role in the diagnosis, staging, treatment, and surveillance of clinically localized diseases. Combined PET/CT imaging exhibits significantly higher sensitivity, specificity, and accuracy than conventional imaging when it comes to detecting malignant tumors in children. However, the radiation dose from positron-emitting radionuclide to the pediatric population is a matter of concern since children are at a particularly high risk when exposed to ionizing radiation. METHODS The authors evaluate the absorbed fractions and specific absorbed fractions (SAFs) of monoenergy photons/electrons as well as S-values of 9 positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124) in 48 source regions for 10 anthropomorphic pediatric hybrid models, including the reference newborn, 1-, 5-, 10-, and 15-yr-old male and female models, using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code. RESULTS The self-absorbed SAFs and S-values for most organs were inversely related to the age and body weight, whereas the cross-dose terms presented less correlation with body weight. For most source/target organ pairs, Rb-82 and Y-86 produce the highest self-absorbed and cross-absorbed S-values, respectively, while Cu-64 produces the lowest S-values because of the low-energy and high-frequency of electron emissions. Most of the total self-absorbed S-values are contributed from nonpenetrating particles (electrons and positrons), which have a linear relationship with body weight. The dependence of self-absorbed S-values of the two annihilation photons varies to the reciprocal of 0.76 power of the mass, whereas the self-absorbed S-values of positrons vary according to the reciprocal mass. CONCLUSIONS The produced S-values for common positron-emitting radionuclides can be exploited for the assessment of radiation dose delivered to the pediatric population from various PET radiotracers used in clinical and research settings. The mass scaling method for positron-emitters can be used to derive patient-specific S-values from data of reference phantoms.
Collapse
Affiliation(s)
- Tianwu Xie
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
12
|
Petoussi-Henss N, Schlattl H, Zankl M, Endo A, Saito K. Organ doses from environmental exposures calculated using voxel phantoms of adults and children. Phys Med Biol 2012; 57:5679-713. [PMID: 22941937 DOI: 10.1088/0031-9155/57/18/5679] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper presents effective and organ dose conversion coefficients for members of the public due to environmental external exposures, calculated using the ICRP adult male and female reference computational phantoms as well as voxel phantoms of a baby, two children and four adult individual phantoms--one male and three female, one of them pregnant. Dose conversion coefficients are given for source geometries representing environmental radiation exposures, i.e. whole body irradiations from a volume source in air, representing a radioactive cloud, a plane source in the ground at a depth of 0.5 g cm⁻², representing ground contamination by radioactive fall-out, and uniformly distributed natural sources in the ground. The organ dose conversion coefficients were calculated employing the Monte Carlo code EGSnrc simulating the photon transport in the voxel phantoms, and are given as effective and equivalent doses normalized to air kerma free-in-air at height 1 m above the ground in Sv Gy(-1). The findings showed that, in general, the smaller the body mass of the phantom, the higher the dose. The difference in effective dose between an adult and an infant is 80-90% at 50 keV and less than 40% above 100 keV. Furthermore, dose equivalent rates for photon exposures of several radionuclides for the above environmental exposures were calculated with the most recent nuclear decay data. Data are shown for effective dose, thyroid, colon and red bone marrow. The results are expected to facilitate regulation of exposure to radiation, relating activities of radionuclides distributed in air and ground to dose of the public due to external radiation as well as the investigation of the radiological effects of major radiation accidents such as the recent one in Fukushima and the decision making of several committees.
Collapse
Affiliation(s)
- Nina Petoussi-Henss
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Research Unit Medical Radiation Physics and Diagnostics, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
13
|
Zhang Y, Li X, Segars WP, Samei E. Organ doses, effective doses, and risk indices in adult CT: comparison of four types of reference phantoms across different examination protocols. Med Phys 2012; 39:3404-23. [PMID: 22755721 DOI: 10.1118/1.4718710] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Radiation exposure from computed tomography (CT) to the public has increased the concern among radiation protection professionals. Being able to accurately assess the radiation dose patients receive during CT procedures is a crucial step in the management of CT dose. Currently, various computational anthropomorphic phantoms are used to assess radiation dose by different research groups. It is desirable to better understand how the dose results are affected by different choices of phantoms. In this study, the authors assessed the uncertainties in CT dose and risk estimation associated with different types of computational phantoms for a selected group of representative CT protocols. METHODS Routinely used CT examinations were categorized into ten body and three neurological examination categories. Organ doses, effective doses, risk indices, and conversion coefficients to effective dose and risk index (k and q factors, respectively) were estimated for these examinations for a clinical CT system (LightSpeed VCT, GE Healthcare). Four methods were used, each employing a different type of reference phantoms. The first and second methods employed a Monte Carlo program previously developed and validated in our laboratory. In the first method, the reference male and female extended cardiac-torso (XCAT) phantoms were used, which were initially created from the Visible Human data and later adjusted to match organ masses defined in ICRP publication 89. In the second method, the reference male and female phantoms described in ICRP publication 110 were used, which were initially developed from tomographic data of two patients and later modified to match ICRP 89 organ masses. The third method employed a commercial dosimetry spreadsheet (ImPACT group, London, England) with its own hermaphrodite stylized phantom. In the fourth method, another widely used dosimetry spreadsheet (CT-Expo, Medizinische Hochschule, Hannover, Germany) was employed together with its associated male and female stylized phantoms. RESULTS For fully irradiated organs, average coefficients of variation (COV) ranged from 0.07 to 0.22 across the four male phantoms and from 0.06 to 0.18 across the four female phantoms; for partially irradiated organs, average COV ranged from 0.13 to 0.30 across the four male phantoms and from 0.15 to 0.30 across the four female phantoms. Doses to the testes, breasts, and esophagus showed large variations between phantoms. COV for gender-averaged effective dose and k factor ranged from 0.03 to 0.23 and from 0.06 to 0.30, respectively. COV for male risk index and q factor ranged from 0.06 to 0.30 and from 0.05 to 0.36, respectively; COV for female risk index and q factor ranged from 0.06 to 0.49 and from 0.07 to 0.54, respectively. CONCLUSIONS Despite closely matched organ mass, total body weight, and height, large differences in organ dose exist due to variation in organ location, spatial distribution, and dose approximation method. Dose differences for fully irradiated radiosensitive organs were much smaller than those for partially irradiated organs. Weighted dosimetry quantities including effective dose, male risk indices, k factors, and male q factors agreed well across phantoms. The female risk indices and q factors varied considerably across phantoms.
Collapse
Affiliation(s)
- Yakun Zhang
- Medical Physics Graduate Program, Duke University, Durham, NC 27705, USA
| | | | | | | |
Collapse
|
14
|
Petoussi-Henss N, Bolch WE, Eckerman KF, Endo A, Hertel N, Hunt J, Pelliccioni M, Schlattl H, Zankl M. ICRP Publication 116. Conversion coefficients for radiological protection quantities for external radiation exposures. Ann ICRP 2012; 40:1-257. [PMID: 22386603 DOI: 10.1016/j.icrp.2011.10.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Hyer DE, Hintenlang DE. Estimation of organ doses from kilovoltage cone-beam CT imaging used during radiotherapy patient position verification. Med Phys 2010; 37:4620-6. [PMID: 20964180 DOI: 10.1118/1.3476459] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this study was to develop a practical method for estimating organ doses from kilovoltage cone-beam CT (CBCT) that can be performed with readily available phantoms and dosimeters. The accuracy of organ dose estimates made using the ImPACT patient dose calculator was also evaluated. METHODS A 100 mm pencil chamber and standard CT dose index (CTDI) phantoms were used to measure the cone-beam dose index (CBDI). A weighted CBDI (CBDI(W)) was then calculated from these measurements to represent the average volumetric dose in the CTDI phantom. By comparing CBDI(W) to the previously published organ doses, organ dose conversion coefficients were developed. The measured CBDI values were also used as inputs for the ImPACT calculator to estimate organ doses. All CBDI dose measurements were performed on both the Elekta XVI and Varian OBI at three clinically relevant locations: Head, chest, and pelvis. RESULTS The head, chest, and pelvis protocols yielded CBDI(W) values of 0.98, 16.62, and 24.13 mGy for the XVI system and 5.17, 6.14, and 21.57 mGy for the OBI system, respectively. Organ doses estimated with the ImPACT CT dose calculator showed a large range of variation from the previously measured organ doses, demonstrating its limitations for use with CBCT. CONCLUSIONS The organ dose conversion coefficients developed in this work relate CBDI(W) values to organ doses previously measured using the same clinical protocols. Ultimately, these coefficients will allow for the quick estimation of organ doses from routine measurements performed using standard CTDI phantoms and pencil chambers.
Collapse
Affiliation(s)
- Daniel E Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
16
|
Liu L, Zeng Z, Li J, Qiu R, Zhang B, Ma J, Li R, Li W, Bi L. Organ dose conversion coefficients on an ICRP-based Chinese adult male voxel model from idealized external photons exposures. Phys Med Biol 2009; 54:6645-73. [DOI: 10.1088/0031-9155/54/21/014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Kramer R, Khoury HJ, Vieira JW. CALDose_X—a software tool for the assessment of organ and tissue absorbed doses, effective dose and cancer risks in diagnostic radiology. Phys Med Biol 2008; 53:6437-59. [DOI: 10.1088/0031-9155/53/22/011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Lee C, Lodwick D, Hasenauer D, Williams JL, Lee C, Bolch WE. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models. Phys Med Biol 2007; 52:3309-33. [PMID: 17664546 DOI: 10.1088/0031-9155/52/12/001] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images-the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid phantom is performed in three steps: polygonization of the voxel phantom, organ modeling via NURBS surfaces and phantom voxelization. Two 3D graphic tools, 3D-DOCTOR and Rhinoceros, were utilized to polygonize the newborn voxel phantom and generate NURBS surfaces, while an in-house MATLAB code was used to voxelize the resulting NURBS model into a final computational phantom ready for use in Monte Carlo radiation transport calculations. A total of 126 anatomical organ and tissue models, including 38 skeletal sites and 31 cartilage sites, were described within the hybrid phantom using either NURBS or polygon surfaces. A male hybrid newborn phantom was constructed following the development of the female phantom through the replacement of female-specific organs with male-specific organs. The outer body contour and internal anatomy of the NURBS-based phantoms were adjusted to match anthropometric and reference newborn data reported by the International Commission on Radiological Protection in their Publication 89. The voxelization process was designed to accurately convert NURBS models to a voxel phantom with minimum volumetric change. A sensitivity study was additionally performed to better understand how the meshing tolerance and voxel resolution would affect volumetric changes between the hybrid-NURBS and hybrid-voxel phantoms. The male and female hybrid-NURBS phantoms were constructed in a manner so that all internal organs approached their ICRP reference masses to within 1%, with the exception of the skin (-6.5% relative error) and brain (-15.4% relative error). Both hybrid-voxel phantoms were constructed with an isotropic voxel resolution of 0.663 mm--equivalent to the ICRP 89 reference thickness of the newborn skin (dermis and epidermis). Hybrid-NURBS phantoms used to create their voxel counterpart retain the non-uniform scalability of stylized phantoms, while maintaining the anatomic realism of segmented voxel phantoms with respect to organ shape, depth and inter-organ positioning.
Collapse
Affiliation(s)
- Choonsik Lee
- Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
19
|
Schlattl H, Zankl M, Petoussi-Henss N. Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures. Phys Med Biol 2007; 52:2123-45. [PMID: 17404459 DOI: 10.1088/0031-9155/52/8/006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360 degrees rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%.
Collapse
Affiliation(s)
- H Schlattl
- GSF-National Research Center for Environment and Health, Institute of Radiation Protection, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | | | | |
Collapse
|
20
|
Siiskonen T, Tapiovaara M, Kosunen A, Lehtinen M, Vartiainen E. Monte Carlo simulations of occupational radiation doses in interventional radiology. Br J Radiol 2006; 80:460-8. [PMID: 17151067 DOI: 10.1259/bjr/26692771] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Occupational radiation doses in interventional radiology can potentially be high. Therefore, reliable methods to assess the effective dose are needed. In the present work, the relationship between the personal dose equivalent, H(p)(10), the reading of a personal dosimeter and the effective dose of the radiologist were studied using Monte Carlo simulations. In particular, the protection provided by a lead apron was investigated. Emphasis was placed on sensitivity of the results to changes in irradiation conditions. In our simulations a 0.35 mm thick lead apron and thyroid shield reduced the effective dose, on average, by a factor of 27 (the range of these data was 15-41). Without the thyroid shield the average reduction factor was 15 (range 6-22). The reduction sensitively depended on the projection and the X-ray tube voltage. The dosimeter reading, when the dosimeter was worn above the apron and a thyroid shield was used, overestimated the effective dose on average by a factor of 130 (range 44-258) when the dosimeter was located on the breast closest to the primary X-ray beam. Without the thyroid shield the average overestimation was 69 (range 32-127). If the dosimeter was worn under the apron its reading generally underestimated the effective dose (on average by 20% with the thyroid shield). Our study indicates that, even though large variations are present, the often used conversion coefficient from the dosimeter reading above the apron to the effective dose, around 1/30, generally overestimates the effective dose by a factor of two or more.
Collapse
Affiliation(s)
- T Siiskonen
- STUK-Radiation and Nuclear Safety Authority, PO Box 14, FIN-00881 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
21
|
Kramer R, Khoury HJ, Vieira JW, Kawrakow I. Skeletal dosimetry in the MAX06 and the FAX06 phantoms for external exposure to photons based on vertebral 3D-microCT images. Phys Med Biol 2006; 51:6265-89. [PMID: 17148818 DOI: 10.1088/0031-9155/51/24/001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
3D-microCT images of vertebral bodies from three different individuals have been segmented into trabecular bone, bone marrow and bone surface cells (BSC), and then introduced into the spongiosa voxels of the MAX06 and the FAX06 phantoms, in order to calculate the equivalent dose to the red bone marrow (RBM) and the BSC in the marrow cavities of trabecular bone with the EGSnrc Monte Carlo code from whole-body exposure to external photon radiation. The MAX06 and the FAX06 phantoms consist of about 150 million 1.2 mm cubic voxels each, a part of which are spongiosa voxels surrounded by cortical bone. In order to use the segmented 3D-microCT images for skeletal dosimetry, spongiosa voxels in the MAX06 and the FAX06 phantom were replaced at runtime by so-called micro matrices representing segmented trabecular bone, marrow and BSC in 17.65, 30 and 60 microm cubic voxels. The 3D-microCT image-based RBM and BSC equivalent doses for external exposure to photons presented here for the first time for complete human skeletons are in agreement with the results calculated with the three correction factor method and the fluence-to-dose response functions for the same phantoms taking into account the conceptual differences between the different methods. Additionally the microCT image-based results have been compared with corresponding data from earlier studies for other human phantoms.
Collapse
Affiliation(s)
- R Kramer
- Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire 1000, Cidade Universitária, CEP 50740-540, Recife, PE, Brazil.
| | | | | | | |
Collapse
|
22
|
Lee C, Lee C, Lee JK. On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry. Phys Med Biol 2006; 51:N393-402. [PMID: 17047258 DOI: 10.1088/0031-9155/51/21/n03] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP-Man, were obtained from literature sources. The absorbed doses for lungs, oesophagus, liver and kidneys that could be affected by arm structures in the lateral irradiation geometry were obtained for both classes of phantoms in lateral monoenergetic photon irradiation geometries. As expected, those organs in the ORNL phantoms received apparently higher absorbed doses than those in the voxel phantoms. The overestimation is mainly attributed to the relatively poor representation of the arm structure in the ORNL phantom in which the arm bones are embedded within the regions describing the phantom's torso. The results of this study suggest that the overestimation of organ doses, due to unrealistic arm representation, should be taken into account when stylized phantoms are employed for equivalent or effective dose estimates, especially in the case of an irradiation scenario with dominating lateral exposure. For such a reason, the stylized phantom arm structure definition should be revised in order to obtain more realistic evaluations.
Collapse
Affiliation(s)
- Choonsik Lee
- Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
23
|
Lee C, Lee C, Bolch WE. Age-dependent organ and effective dose coefficients for external photons: a comparison of stylized and voxel-based paediatric phantoms. Phys Med Biol 2006; 51:4663-88. [PMID: 16953049 DOI: 10.1088/0031-9155/51/18/014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This present study investigates the anatomical realism of conventional stylized models of children by comparing organ dose conversion coefficients for the ORNL paediatric phantom series with those determined in the UF (University of Florida) voxel paediatric phantoms. The latter includes whole-body models of a 9 month male, 4 year female, 8 year female, 11 year male and a 14 year male. Of these phantoms, the 1 year, 5 year and 10 year ORNL phantoms, and 9 month male, 4 year female and 11 year male UF voxel phantoms were selected for side-by-side comparisons under idealized external photon irradiation. Organ absorbed dose per unit air kerma (Gy/Gy) for various radiosensitive organs and tissues were calculated for monoenergetic photons over the energy range of 15 keV to 10 MeV and for six irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right lateral (RLAT), left lateral (LLAT), rotational (ROT) and isotropic (ISO). Differences in organ dose conversion coefficients for the gonads, bone marrow, colon, lung and stomach, to which prominent tissue weighting factors are assigned, were depicted and analysed. Two major causes of observed differences were suggested: differences in organ shape and position and the differences in tissue shielding by overlying tissue regions within the phantoms. Significant discrepancies caused by anatomical differences between the two types of phantoms are also reported for several organs, and in particular, the thyroid and urinary bladder. The results of this study suggest that the paediatric series of ORNL phantoms also have less realistic internal organ and body anatomy and that dose conversion coefficients from these stylized phantoms should be re-evaluated using paediatric voxel phantoms.
Collapse
Affiliation(s)
- Choonik Lee
- Department of Nuclear & Radiological Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|