1
|
Efendi MA, Funsian A, Chittrakarn T, Bhongsuwan T. Monte Carlo simulation using PRIMO code as a tool for checking the credibility of commissioning and quality assurance of 6 MV TrueBeam STx varian LINAC. Rep Pract Oncol Radiother 2020; 25:125-132. [PMID: 31920464 DOI: 10.1016/j.rpor.2019.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 10/03/2019] [Accepted: 12/18/2019] [Indexed: 11/26/2022] Open
Abstract
Aim To validate and implement Monte Carlo simulation using PRIMO code as a tool for checking the credibility of measurements in LINAC initial commissioning and routine Quality Assurance (QA). Relative and absolute doses of 6 MV photon beam from TrueBeam STx Varian Linear Accelerator (LINAC) were simulated and validated with experimental measurement, Analytical Anisotropic Algorithm (AAA) calculation, and golden beam. Methods and Materials Varian phase-space files were imported to the PRIMO code and four blocks of jaws were simulated to determine the field size of the photon beam. Water phantom was modeled in the PRIMO code with water equivalent density. Golden beam data, experimental measurement, and AAA calculation results were imported to PRIMO code for gamma comparison. Results PRIMO simulations of Percentage Depth Dose (PDD) and in-plane beam profiles had good agreement with experimental measurements, AAA calculations and golden beam. However, PRIMO simulations of cross-plane beam profiles have a better agreement with AAA calculation and golden beam than the experimental measurement. Furthermore, PRIMO simulations of absolute dose agreed well with experimental results with ±0.8% uncertainty. Conclusion The PRIMO code has good accuracy and is appropriate for use as a tool to check the credibility of beam scanning and output measurement in initial commissioning and routine QA.
Collapse
Affiliation(s)
- M Arif Efendi
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hatyai, Thailand
| | - Amporn Funsian
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hatyai, Thailand
| | - Thawat Chittrakarn
- Department of Physics, Faculty of Science, Prince of Songkla University, Hatyai, Thailand
| | - Tripob Bhongsuwan
- Department of Physics, Faculty of Science, Prince of Songkla University, Hatyai, Thailand
| |
Collapse
|
2
|
Elazhar H, Deschler T, Létang JM, Nourreddine A, Arbor N. Neutron track length estimator for GATE Monte Carlo dose calculation in radiotherapy. Phys Med Biol 2018; 63:125018. [PMID: 29790859 DOI: 10.1088/1361-6560/aac768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The out-of-field dose in radiation therapy is a growing concern in regards to the late side-effects and secondary cancer induction. In high-energy x-ray therapy, the secondary neutrons generated through photonuclear reactions in the accelerator are part of this secondary dose. The neutron dose is currently not estimated by the treatment planning system while it appears to be preponderant for distances greater than 50 cm from the isocenter. Monte Carlo simulation has become the gold standard for accurately calculating the neutron dose under specific treatment conditions but the method is also known for having a slow statistical convergence, which makes it difficult to be used on a clinical basis. The neutron track length estimator, a neutron variance reduction technique inspired by the track length estimator method has thus been developped for the first time in the Monte Carlo code GATE to allow a fast computation of the neutron dose in radiotherapy. The details of its implementation, as well as the comparison of its performances against the analog MC method, are presented here. A gain of time from 15 to 400 can be obtained by our method, with a mean difference in the dose calculation of about 1% in comparison with the analog MC method.
Collapse
Affiliation(s)
- H Elazhar
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | | | | | | | | |
Collapse
|
3
|
Baldacci F, Mittone A, Bravin A, Coan P, Delaire F, Ferrero C, Gasilov S, Létang J, Sarrut D, Smekens F, Freud N. A track length estimator method for dose calculations in low-energy X-ray irradiations: implementation, properties and performance. Z Med Phys 2015; 25:36-47. [DOI: 10.1016/j.zemedi.2014.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 03/17/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
|
4
|
Rodriguez M, Sempau J, Brualla L. PRIMO: a graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol 2013; 189:881-6. [PMID: 24005581 DOI: 10.1007/s00066-013-0415-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/19/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND The accurate Monte Carlo simulation of a linac requires a detailed description of its geometry and the application of elaborate variance-reduction techniques for radiation transport. Both tasks entail a substantial coding effort and demand advanced knowledge of the intricacies of the Monte Carlo system being used. METHODS PRIMO, a new Monte Carlo system that allows the effortless simulation of most Varian and Elekta linacs, including their multileaf collimators and electron applicators, is introduced. PRIMO combines (1) accurate physics from the PENELOPE code, (2) dedicated variance-reduction techniques that significantly reduce the computation time, and (3) a user-friendly graphical interface with tools for the analysis of the generated data. PRIMO can tally dose distributions in phantoms and computerized tomographies, handle phase-space files in IAEA format, and import structures (planning target volumes, organs at risk) in the DICOM RT-STRUCT standard. RESULTS A prostate treatment, conformed with a high definition Millenium multileaf collimator (MLC 120HD) from a Varian Clinac 2100 C/D, is presented as an example. The computation of the dose distribution in 1.86×3.00×1.86 mm3 voxels with an average 2% standard statistical uncertainty, performed on an eight-core Intel Xeon at 2.67 GHz, took 1.8 h-excluding the patient-independent part of the linac, which required 3.8 h but it is simulated only once. CONCLUSION PRIMO is a self-contained user-friendly system that facilitates the Monte Carlo simulation of dose distributions produced by most currently available linacs. This opens the door for routine use of Monte Carlo in clinical research and quality assurance purposes. It is free software that can be downloaded from http://www.primoproject.net.
Collapse
Affiliation(s)
- M Rodriguez
- Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain,
| | | | | |
Collapse
|
5
|
Mittone A, Baldacci F, Bravin A, Brun E, Delaire F, Ferrero C, Gasilov S, Freud N, Létang JM, Sarrut D, Smekens F, Coan P. An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:785-92. [PMID: 23955043 DOI: 10.1107/s0909049513017184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/21/2013] [Indexed: 05/21/2023]
Abstract
Medical imaging and radiation therapy are widely used synchrotron-based techniques which have one thing in common: a significant dose delivery to typically biological samples. Among the ways to provide the experimenters with image guidance techniques indicating optimization strategies, Monte Carlo simulation has become the gold standard for accurately predicting radiation dose levels under specific irradiation conditions. A highly important hampering factor of this method is, however, its slow statistical convergence. A track length estimator (TLE) module has been coded and implemented for the first time in the open-source Monte Carlo code GATE/Geant4. Results obtained with the module and the procedures used to validate them are presented. A database of energy-absorption coefficients was also generated, which is used by the TLE calculations and is now also included in GATE/Geant4. The validation was carried out by comparing the TLE-simulated doses with experimental data in a synchrotron radiation computed tomography experiment. The TLE technique shows good agreement versus both experimental measurements and the results of a classical Monte Carlo simulation. Compared with the latter, it is possible to reach a pre-defined statistical uncertainty in about two to three orders of magnitude less time for complex geometries without loss of accuracy.
Collapse
Affiliation(s)
- Alberto Mittone
- Department of Physics, Ludwig Maximilians University, Am Coulombwall 1, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rodriguez M, Sempau J, Brualla L. A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Phys Med Biol 2012; 57:3013-24. [DOI: 10.1088/0031-9155/57/10/3013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Petoukhova AL, van Wingerden K, Wiggenraad RGJ, van de Vaart PJM, van Egmond J, Franken EM, van Santvoort JPC. Verification measurements and clinical evaluation of the iPlan RT Monte Carlo dose algorithm for 6 MV photon energy. Phys Med Biol 2010; 55:4601-14. [PMID: 20668337 DOI: 10.1088/0031-9155/55/16/s13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study presents data for verification of the iPlan RT Monte Carlo (MC) dose algorithm (BrainLAB, Feldkirchen, Germany). MC calculations were compared with pencil beam (PB) calculations and verification measurements in phantoms with lung-equivalent material, air cavities or bone-equivalent material to mimic head and neck and thorax and in an Alderson anthropomorphic phantom. Dosimetric accuracy of MC for the micro-multileaf collimator (MLC) simulation was tested in a homogeneous phantom. All measurements were performed using an ionization chamber and Kodak EDR2 films with Novalis 6 MV photon beams. Dose distributions measured with film and calculated with MC in the homogeneous phantom are in excellent agreement for oval, C and squiggle-shaped fields and for a clinical IMRT plan. For a field with completely closed MLC, MC is much closer to the experimental result than the PB calculations. For fields larger than the dimensions of the inhomogeneities the MC calculations show excellent agreement (within 3%/1 mm) with the experimental data. MC calculations in the anthropomorphic phantom show good agreement with measurements for conformal beam plans and reasonable agreement for dynamic conformal arc and IMRT plans. For 6 head and neck and 15 lung patients a comparison of the MC plan with the PB plan was performed. Our results demonstrate that MC is able to accurately predict the dose in the presence of inhomogeneities typical for head and neck and thorax regions with reasonable calculation times (5-20 min). Lateral electron transport was well reproduced in MC calculations. We are planning to implement MC calculations for head and neck and lung cancer patients.
Collapse
Affiliation(s)
- A L Petoukhova
- Radiotherapy Centre West, PO Box 432, NL-2501 CK, The Hague, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
8
|
Yoriyaz H, Moralles M, de Tarso Dalledone Siqueira P, da Costa Guimarães C, Belonsi Cintra F, dos Santos A. Physical models, cross sections, and numerical approximations used inMCNPandGEANT4Monte Carlo codes for photon and electron absorbed fraction calculation. Med Phys 2009; 36:5198-213. [DOI: 10.1118/1.3242304] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Smekens F, Freud N, Létang JM, Adam JF, Ferrero C, Elleaume H, Bravin A, Estève F, Babot D. Simulation of dose deposition in stereotactic synchrotron radiation therapy: a fast approach combining Monte Carlo and deterministic algorithms. Phys Med Biol 2009; 54:4671-85. [DOI: 10.1088/0031-9155/54/15/003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, Kawrakow I, Keall PJ, Liu H, Ma CMC, Rogers DWO, Seuntjens J, Sheikh-Bagheri D, Siebers JV. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 2007; 34:4818-53. [PMID: 18196810 DOI: 10.1118/1.2795842] [Citation(s) in RCA: 438] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
11
|
|
12
|
Lindsay PE, El Naqa I, Hope AJ, Vicic M, Cui J, Bradley JD, Deasy JO. Retrospective monte carlo dose calculations with limited beam weight information. Med Phys 2007; 34:334-46. [PMID: 17278519 DOI: 10.1118/1.2400826] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
An important unresolved issue in outcomes analysis for lung complications is the effect of poor or completely lacking heterogeneity corrections in previously archived treatment plans. To estimate this effect, we developed a novel method based on Monte Carlo (MC) dose calculations which can be applied retrospectively to RTOG/AAPM-style archived treatment plans (ATP). We applied this method to 218 archived nonsmall cell lung cancer lung treatment plans that were originally calculated either without heterogeneity corrections or with primitive corrections. To retrospectively specify beam weights and wedges, beams were broken into Monte Carlo-generated beamlets, simulated using the VMC++ code, and mathematical optimization was used to match the archived water-based dose distributions. The derived beam weights (and any wedge effects) were then applied to Monte Carlo beamlets regenerated based on the patient computed tomography densities. Validation of the process was performed against five comparable lung treatment plans generated using a commercial convolution/superposition implementation. For the application here (normal lung, esophagus, and planning target volume dose distributions), the agreement was very good. Resulting MC and convolution/superposition values were similar when dose distributions without heterogeneity corrections or dose distributions with corrections were compared. When applied to the archived plans (218), the average absolute percent difference between water-based MC and water-based ATPs, for doses above 2.5% of the maximum dose was 1.8+/-0.6%. The average absolute percent difference between heterogeneity-corrected MC and water-based ATPs increased to 3.1+/-0.9%. The average absolute percent difference between the MC heterogeneity-corrected and the ATP heterogeneity-corrected dose distributions was 3.8+/-1.6% (available in 132/218 archives). The entire dose-volume-histograms for lung, tumor, and esophagus from the different calculation methods, as well as specific dose metrics, were compared. The average difference in maximum lung dose between water-based ATPs and heterogeneity-corrected MC dose distributions was -1.0+/-2.1 Gy. Potential errors in relying on primitive heterogeneity corrections are most evident from a comparison of maximum lung doses, for which the average MC heterogeneity-corrected values were 5.3+/-2.8 Gy less than the ATP heterogeneity-corrected values. We have demonstrated that recalculation of archived dose distributions, without explicit information about beam weights or wedges, is feasible using beamlet-based optimization methods. The method provides heterogeneity-corrected dose data consistent with convolution-superposition calculations and is one feasible approach for improving dosimetric data for outcomes analyses.
Collapse
Affiliation(s)
- Patricia E Lindsay
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Burn KW, Daffara C, Gualdrini G, Pierantoni M, Ferrari P. Treating voxel geometries in radiation protection dosimetry with a patched version of the Monte Carlo codes MCNP and MCNPX. RADIATION PROTECTION DOSIMETRY 2007; 123:345-53. [PMID: 17038404 DOI: 10.1093/rpd/ncl150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.
Collapse
Affiliation(s)
- K W Burn
- ENEA-Italian National Agency for Energy, New Technologies and the Environment, FIS-NUC, V.M.M. Sole 4, 40129 Bologna, Italy
| | | | | | | | | |
Collapse
|
14
|
Freud N, Létang JM, Mary C, Boudou C, Ferrero C, Elleaume H, Bravin A, Estève F, Babot D. Fast dose calculation for stereotactic synchrotron radiotherapy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2007; 2007:3914-3917. [PMID: 18002855 DOI: 10.1109/iembs.2007.4353189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A hybrid approach is proposed to compute the dose deposited in cancerous and healthy tissues during stereotactic synchrotron radiotherapy treatment. In this approach the computation is divided into two parts: (1) the primary dose is calculated using a deterministic algorithm based on ray casting; (2) the secondary dose (due to scattering and fluorescence) is computed using a hybrid algorithm combining Monte Carlo and a deterministic method. The results obtained for test cases are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The proposed simulation scheme makes it possible to simulate dose maps with a single personal computer, with computation time and statistical fluctuations substantially reduced in comparison with conventional Monte Carlo simulations.
Collapse
Affiliation(s)
- Nicolas Freud
- CNDRI, INSA-Lyon, 20 av Albert Einstein, Villeurbanne Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
For over 50 years, electron beams have been an important modality for providing an accurate dose of radiation to superficial cancers and disease and for limiting the dose to underlying normal tissues and structures. This review looks at many of the important contributions of physics and dosimetry to the development and utilization of electron beam therapy, including electron treatment machines, dose specification and calibration, dose measurement, electron transport calculations, treatment and treatment-planning tools, and clinical utilization, including special procedures. Also, future changes in the practice of electron therapy resulting from challenges to its utilization and from potential future technology are discussed.
Collapse
Affiliation(s)
- Kenneth R Hogstrom
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA.
| | | |
Collapse
|