1
|
Sánchez‐Artuñedo D, Pié‐Padró S, Hermida‐López M, Duch‐Guillén MA, Beltran‐Vilagrasa M. Validation of an in vivo transit dosimetry algorithm using Monte Carlo simulations and ionization chamber measurements. J Appl Clin Med Phys 2024; 25:e14187. [PMID: 37890864 PMCID: PMC10860462 DOI: 10.1002/acm2.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE Transit dosimetry is a safety tool based on the transit images acquired during treatment. Forward-projection transit dosimetry software, as PerFRACTION, compares the transit images acquired with an expected image calculated from the DICOM plan, the CT, and the structure set. This work aims to validate PerFRACTION expected transit dose using PRIMO Monte Carlo simulations and ionization chamber measurements, and propose a methodology based on MPPG5a report. METHODS The validation process was divided into three groups of tests according to MPPG5a: basic dose validation, IMRT dose validation, and heterogeneity correction validation. For the basic dose validation, the fields used were the nine fields needed to calibrate PerFRACTION and three jaws-defined. For the IMRT dose validation, seven sweeping gaps fields, the MLC transmission and 29 IMRT fields from 10 breast treatment plans were measured. For the heterogeneity validation, the transit dose of these fields was studied using three phantoms: 10 , 30 , and a 3 cm cork slab placed between 10 cm of solid water. The PerFRACTION expected doses were compared with PRIMO Monte Carlo simulation results and ionization chamber measurements. RESULTS Using the 10 cm solid water phantom, for the basic validation fields, the root mean square (RMS) of the difference between PerFRACTION and PRIMO simulations was 0.6%. In the IMRT fields, the RMS of the difference was 1.2%. When comparing respect ionization chamber measurements, the RMS of the difference was 1.0% both for the basic and the IMRT validation. The average passing rate with a γ(2%/2 mm, TH = 20%) criterion between PRIMO dose distribution and PerFRACTION expected dose was 96.0% ± 5.8%. CONCLUSION We validated PerFRACTION calculated transit dose with PRIMO Monte Carlo and ionization chamber measurements adapting the methodology of the MMPG5a report. The methodology presented can be applied to validate other forward-projection transit dosimetry software.
Collapse
Affiliation(s)
- David Sánchez‐Artuñedo
- Servei de Física i Protecció RadiològicaHospital Universitari Vall d'HebronBarcelonaSpain
| | - Savannah Pié‐Padró
- Servei de Física i Protecció RadiològicaHospital Universitari Vall d'HebronBarcelonaSpain
| | | | | | | |
Collapse
|
2
|
Barragán‐Montero AM, Van Ooteghem G, Dumont D, Rivas ST, Sterpin E, Geets X. Dosimetrically triggered adaptive radiotherapy for head and neck cancer: Considerations for the implementation of clinical protocols. J Appl Clin Med Phys 2023; 24:e14095. [PMID: 37448193 PMCID: PMC10647964 DOI: 10.1002/acm2.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
PURPOSE Defining dosimetric rules to automatically detect patients requiring adaptive radiotherapy (ART) is not straightforward, and most centres perform ad-hoc ART with no specific protocol. This study aims to propose and analyse different steps to design a protocol for dosimetrically triggered ART of head and neck (H&N) cancer. As a proof-of-concept, the designed protocol was applied to patients treated in TomoTherapy units, using their available software for daily MVCT image and dose accumulation. METHODS An initial protocol was designed by a multidisciplinary team, with a set of flagging criteria based only on dose-volume metrics, including two action levels: (1) surveillance (orange flag), and (2) immediate verification (red flag). This protocol was adapted to the clinical needs following an iterative process. First, the protocol was applied to 38 H&N patients with daily imaging. Automatic software generated the daily contours, recomputed the daily dose and flagged the dosimetric differences with respect to the planning dose. Second, these results were compared, by a sensitivity/specificity test, to the answers of a physician. Third, the physician, supported by the multidisciplinary team, performed a self-analysis of the provided answers and translated them into mathematical rules in order to upgrade the protocol. The upgraded protocol was applied to different definitions of the target volume (i.e. deformed CTV + 0, 2 and 4 mm), in order to quantify how the number of flags decreases when reducing the CTV-to-PTV margin. RESULTS The sensitivity of the initial protocol was very low, specifically for the orange flags. The best values were 0.84 for red and 0.15 for orange flags. After the review and upgrade process, the sensitivity of the upgraded protocol increased to 0.96 for red and 0.84 for orange flags. The number of patients flagged per week with the final (upgraded) protocol decreased in median by 26% and 18% for red and orange flags, respectively, when reducing the CTV-to-PTV margin from 4 to 2 mm. This resulted in only one patient flagged at the last fraction for both red and orange flags. CONCLUSION Our results demonstrate the value of iterative protocol design with retrospective data, and shows the feasibility of automatically-triggered ART using simple dosimetric rules to mimic the physician's decisions. Using a proper target volume definition is important and influences the flagging rate, particularly when decreasing the CTV-to-PTV margin.
Collapse
Affiliation(s)
| | - Geneviève Van Ooteghem
- UCLouvainCenter of Molecular ImagingRadiotherapy and Oncology (MIRO)BrusselsBelgium
- Department of Radiation OncologyCliniques universitaires Saint‐LucBrusselsBelgium
| | - Damien Dumont
- UCLouvainCenter of Molecular ImagingRadiotherapy and Oncology (MIRO)BrusselsBelgium
- Department of Radiation OncologyCliniques universitaires Saint‐LucBrusselsBelgium
| | - Sara Teruel Rivas
- UCLouvainCenter of Molecular ImagingRadiotherapy and Oncology (MIRO)BrusselsBelgium
| | - Edmond Sterpin
- UCLouvainCenter of Molecular ImagingRadiotherapy and Oncology (MIRO)BrusselsBelgium
- Department of OncologyLaboratory of Experimental RadiotherapyKU LeuvenLeuvenBelgium
| | - Xavier Geets
- UCLouvainCenter of Molecular ImagingRadiotherapy and Oncology (MIRO)BrusselsBelgium
- Department of Radiation OncologyCliniques universitaires Saint‐LucBrusselsBelgium
| |
Collapse
|
3
|
Pham D, Simiele E, Breitkreutz D, Capaldi D, Han B, Surucu M, Oderinde S, Vitzthum L, Gensheimer M, Bagshaw H, Chin A, Xing L, Chang DT, Kovalchuk N. IMRT and SBRT Treatment Planning Study for the First Clinical Biology-Guided Radiotherapy System. Technol Cancer Res Treat 2022; 21:15330338221100231. [PMID: 35579876 PMCID: PMC9118457 DOI: 10.1177/15330338221100231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose: The first clinical biology-guided radiation therapy (BgRT) system-RefleXionTM X1-was installed and commissioned for clinical use at our institution. This study aimed at evaluating the treatment plan quality and delivery efficiency for IMRT/SBRT cases without PET guidance. Methods: A total of 42 patient plans across 6 cancer sites (conventionally fractionated lung, head, and neck, anus, prostate, brain, and lung SBRT) planned with the EclipseTM treatment planning system (TPS) and treated with either a TrueBeam® or Trilogy® were selected for this retrospective study. For each Eclipse VMAT plan, 2 corresponding plans were generated on the X1 TPS with 10 mm jaws (X1-10mm) and 20 mm jaws (X1-20mm) using our institutional planning constraints. All clinically relevant metrics in this study, including PTV D95%, PTV D2%, Conformity Index (CI), R50, organs-at-risk (OAR) constraints, and beam-on time were analyzed and compared between 126 VMAT and RefleXion plans using paired t-tests. Results: All but 3 planning metrics were either equivalent or superior for the X1-10mm plans as compared to the Eclipse VMAT plans across all planning sites investigated. The Eclipse VMAT and X1-10mm plans generally achieved superior plan quality and sharper dose fall-off superior/inferior to targets as compared to the X1-20mm plans, however, the X1-20mm plans were still considered acceptable for treatment. On average, the required beam-on time increased by a factor of 1.6 across all sites for X1-10mm compared to X1-20mm plans. Conclusions: Clinically acceptable IMRT/SBRT treatment plans were generated with the X1 TPS for both the 10 mm and 20 mm jaw settings.
Collapse
Affiliation(s)
- Daniel Pham
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Eric Simiele
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Dylan Breitkreutz
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Dante Capaldi
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Bin Han
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | | | - Lucas Vitzthum
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Michael Gensheimer
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Hilary Bagshaw
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Alex Chin
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - DT Chang
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Natalyia Kovalchuk
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Chen M, Yang Z, Wardak Z, Stojadinovic S, Gu X, Lu W. Dose kernel decomposition for spot-based radiotherapy treatment planning. Med Phys 2021; 49:1196-1208. [PMID: 34932827 DOI: 10.1002/mp.15415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/06/2021] [Accepted: 12/05/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Pre-calculation of accurate dose deposition kernels for treatment planning of spot-based radiotherapies, such as Gamma Knife (GK) and Gamma Pod (GP), can be very time-consuming and may require large data storage with an enormous number of possible spots. We proposed a novel kernel decomposition (KD) model to address accurate and fast (real-time) dose calculation with reduced data storage requirements for spot-based treatment planning. The application of the KD model was demonstrated for clinical GK and GP radiotherapy platforms. METHODS The dose deposition kernel at each spot (shot position) is modeled as the product of a shift-invariant kernel based on a reference kernel and spatially variant scale factor. The reference kernel, one for each collimator, is defined at the center of the commissioning phantom for GK and at the center of the treatment target for GP and calculated using the Monte Carlo (MC) method. The spatially variant scale factor is defined as the ratio of the mean tissue maximum ratio (TMR) at the candidate shot position to that at the reference kernel position, and the mean TMR map is calculated within the entire volume through parallel beam ray tracing on the density image followed by averaging over all source directions. The proposed KD dose calculations were compared with the MC method and with the GK and GP treatment planning system (TPS) computations for various shot positions and collimator sizes utilizing a phantom and 14 and 12 clinical plans for GK and GP, respectively. RESULTS For the phantom study, the KD Gamma index (3%/1 mm) passing rates were greater than 99% (median 100%) relative to the MC doses, except for the shots close to the boundary. The passing rates dropped below 90% for 8 mm (16 mm) shots positioned within ∼1 cm (∼2 cm) of the boundary. For the clinical GK plans, the KD Gamma passing rates were greater than 99% (median 100%) compared to the MC and greater than 92% (median 99%) compared to the TPS. For the clinical GP plans, the KD Gamma passing rates were greater than 95% (median 98%) compared to the MC and greater than 91% (median 97%) compared to the TPS. The scale factors were calculated in sub-seconds with GPU implementation and only need to be calculated once before treatment plan optimization. The calculation of the dose kernel was also within sub-seconds without requiring beam-by-beam calculation commonly done in the TPS. CONCLUSION The proposed model can provide an accurate dose and enables real-time dose and derivative calculations by kernel shifting and scaling without pre-calculating or requiring large data storage for GK and GP dose deposition kernels during treatment planning. This model could be useful for spot-based radiotherapy treatment planning by allowing an efficient global fine search for optimal spots.
Collapse
Affiliation(s)
- Mingli Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zi Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zabi Wardak
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Strahinja Stojadinovic
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xuejun Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Oderinde OM, Shirvani SM, Olcott PD, Kuduvalli G, Mazin S, Larkin D. The technical design and concept of a PET/CT linac for biology-guided radiotherapy. Clin Transl Radiat Oncol 2021; 29:106-112. [PMID: 34258399 PMCID: PMC8260396 DOI: 10.1016/j.ctro.2021.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022] Open
Abstract
This article summarizes the chief technology and concept of the world's first PET/CT Linac for BgRT. BgRT delivery uses annihilation photons emanating from the PET-avid tumor to guide the delivery of beamlets in real-time. BgRT treatment technique opens the avenue to debulking advanced and metastatic disease.
This is a summary of the design and concept of the RefleXion X1, a system for biology-guided radiotherapy (BgRT). This system is a multi-modal tomography (PET, fan-beam kVCT, and MVD) treatment machine that utilizes imaging and therapy planes for optimized beam delivery of IMRT, SBRT, SRS, and BgRT radiotherapy regimens. For BgRT delivery specifically, annihilation photons emanating outward from a PET-avid tumor are used to guide the delivery of beamlets of radiation to the tumor at sub-second latency. With the integration of PET detectors, rapid beam-station delivery, real-time tracking, and high-frequency multi-leaf collimation, the BgRT system has the potential to deliver a highly conformal treatment to malignant lesions while minimizing dose to surrounding healthy tissues. Furthermore, the potential use of a single radiotracer injection to guide radiotherapy to multiple targets opens avenues for debulking in advanced and metastatic disease states.
Collapse
|
6
|
Zhu J, Liu X, Chen L. A preliminary study of a photon dose calculation algorithm using a convolutional neural network. Phys Med Biol 2020; 65:20NT02. [PMID: 33063695 DOI: 10.1088/1361-6560/abb1d7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of dose calculation algorithm research is to improve the calculation accuracy while maximizing the calculation efficiency. In this study, the three-dimensional distribution of total energy release per unit mass (TERMA) and the electron density (ED) distribution are considered inputs in a method for calculating the three-dimensional dose distribution based on a convolutional neural network (CNN). Attempts are made to improve the efficiency of the collapsed cone convolution/superposition (CCCS) algorithm while providing an approach to improve the efficiency of other traditional dose calculation algorithms. Twelve sets of computed tomography (CT) images were employed for training. Data sets were generated by the CCCS algorithm with a random beam configuration. For each monoenergetic photon model, 7500 samples were generated for the training set, and 1500 samples were generated for the validation set. Training occurred for 0.5 MeV, 1 MeV, 2 MeV, 3 MeV, 4 MeV, 5 MeV, and 6 MeV monoenergetic photon models. To evaluate the usability under linac conditions, a comparison between CCCS and CNN-Dose was performed for the Mohan 6-MV spectrum for 12 additional new sets of CT images with different anatomies. A total of 1512 test samples were generated. For all anatomies, the mean value, 95% lower confidence limit (LCL) and 95% upper confidence limit (UCL) were 99.56%, 99.51% and 99.61%, respectively, at the 3%/2 mm criteria. The mean value, 95% LCL and 95% UCL were 98.57%, 98.46% and 98.67%, respectively, at the 2%/2 mm criteria. The results meet the relevant clinical requirements. In the proposed methods, the dose distribution of clinical energy can be obtained by TERMA, and the electronic density can be obtained with a CNN. This method can also be used for other traditional dose algorithms and displays potential in treatment planning, adaptive radiation therapy, and in vivo verification.
Collapse
Affiliation(s)
- Jinhan Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | | | | |
Collapse
|
7
|
Kry SF, Feygelman V, Balter P, Knöös T, Charlie Ma C, Snyder M, Tonner B, Vassiliev ON. AAPM Task Group 329: Reference dose specification for dose calculations: Dose‐to‐water or dose‐to‐muscle? Med Phys 2020; 47:e52-e64. [DOI: 10.1002/mp.13995] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/03/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | | | - Tommy Knöös
- Skåne University Hospital and Lund University Malmo Sweden
| | | | | | | | | |
Collapse
|
8
|
Graves SA, Flynn RT, Hyer DE. Dose point kernels for 2,174 radionuclides. Med Phys 2019; 46:5284-5293. [PMID: 31461537 DOI: 10.1002/mp.13789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Rapid adoption of targeted radionuclide therapy as an oncologic intervention has motivated the development of patient-specific voxel-wise approaches to radiation dosimetry. These approaches often rely on pretabulated dose point kernels for convolution-based calculations; however, these dose kernels are sparse in literature and often have suboptimal characteristics. The purpose of this work was to generate an extensive library of dose point kernels with sufficient size and resolution for general clinical application of voxel-wise dosimetry. METHODS Nuclear data were acquired for 2174 radionuclides from the National Nuclear Data Center (Brookhaven National Laboratory, accessed March 2018). Based on these data, isotropic point sources of radioactivity in water were simulated using Monte Carlo N-Particle transport v6.2 (MCNP6.2, Los Alamos National Laboratory). Simulations were separated by emission type for each radionuclide - photons (γ-rays, x rays), beta particles (positrons, electrons); and discrete electrons (conversion electrons, Auger electrons, Coster-Kronig electrons). Dose was tallied in concentric spherical shells about the point source using an energy deposition pulse-height tally (MCNP *F8 tally). Bins were spaced every 0.1 mm until a radius of 10 cm, and every 1 mm until a radius of 2 m. Positron emissions where treated as electrons for transport, with annihilation photons generated at the origin within the photon simulation. Alpha particle emissions were not simulated since their energy is deposited within ~0.2 mm of the source. Neutron and spallation effects were not considered. A subset of the resultant dose point kernels (11 C, 18 F, 32 P, 52g Mn, 64 Cu, 67 Ga, 89 Sr, 89 Zr, 90 Y, 99m Tc, 111 In, 117m Sn, 123 I, 124 I, 125 I, 131 I, 153 Sm, 177 Lu, 186 Re, 188 Re, 211 As, 212 Pb, 213 Bi, 223 Ra, and 225 Ac) were evaluated for accuracy based on conservation of energy, comparison to kernels in the literature, and statistical precision. RESULTS Among dose point kernels that were manually reviewed, good agreement with previously published dose point kernels was observed. Energy within the kernels was found to be conserved to within 1% of the value expected from nuclear data, suggesting that a radius of 2 m was sufficient to capture the almost all of the energy released during decay for all isotopes considered. Local dosimetric uncertainty, evaluated at the radius of 99% energy deposition, was found to be less than 9% for all radioisotopes evaluated. Rebinning data more coarsely by a factor of 10, similar to what would be done for a clinical dose calculation, results in all evaluated kernels having a relative error of less than 1.1% at R50% , 1.5% at R90% , and 2.7% at R99% (the radius corresponding to 50%, 90%, and 99% of total energy deposition, respectively). The kernels produced in this work have been made freely available (https://zenodo.org/record/2564036). CONCLUSIONS An extensive library of high-resolution radial dose kernels was generated and validated against published data. In addition to enabling patient-specific voxel-wise internal dosimetry by convolution superposition, the generated dose point kernels data may prove useful to the wider health physics community.
Collapse
Affiliation(s)
- Stephen A Graves
- Department of Radiology, University of Iowa, 3883 JPP, 200 Hawkins Dr., Iowa City, IA, 52242-1077, USA
| | - Ryan T Flynn
- Department of Radiation Oncology, University of Iowa, LL-W PFP, 200 Hawkins Dr., Iowa City, IA, 52242-1089, USA
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, LL-W PFP, 200 Hawkins Dr., Iowa City, IA, 52242-1089, USA
| |
Collapse
|
9
|
Neph R, Ouyang C, Neylon J, Yang Y, Sheng K. Parallel beamlet dose calculation via beamlet contexts in a distributed multi-GPU framework. Med Phys 2019; 46:3719-3733. [PMID: 31183871 DOI: 10.1002/mp.13651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Dose calculation is one of the most computationally intensive, yet essential tasks in the treatment planning process. With the recent interest in automatic beam orientation and arc trajectory optimization techniques, there is a great need for more efficient model-based dose calculation algorithms that can accommodate hundreds to thousands of beam candidates at once. Foundational work has shown the translation of dose calculation algorithms to graphical processing units (GPUs), lending to remarkable gains in processing efficiency. But these methods provide parallelization of dose for only a single beamlet, serializing the calculation of multiple beamlets and under-utilizing the potential of modern GPUs. In this paper, the authors propose a framework enabling parallel computation of many beamlet doses using a novel beamlet context transformation and further embed this approach in a scalable network of multi-GPU computational nodes. METHODS The proposed context-based transformation separates beamlet-local density and TERMA into distinct beamlet contexts that independently provide sufficient data for beamlet dose calculation. Beamlet contexts are arranged in a composite context array with dosimetric isolation, and the context array is subjected to a GPU collapsed-cone convolution superposition procedure, producing the set of beamlet-specific dose distributions in a single pass. Dose from each context is converted to a sparse representation for efficient storage and retrieval during treatment plan optimization. The context radius is a new parameter permitting flexibility between the speed and fidelity of the dose calculation process. A distributed manager-worker architecture is constructed around the context-based GPU dose calculation approach supporting an arbitrary number of worker nodes and resident GPUs. Phantom experiments were executed to verify the accuracy of the context-based approach compared to Monte Carlo and a reference CPU-CCCS implementation for single beamlets and broad beams composed by addition of beamlets. Dose for representative 4π beam sets was calculated in lung and prostate cases to compare its efficiency with that of an existing beamlet-sequential GPU-CCCS implementation. Code profiling was also performed to evaluate the scalability of the framework across many networked GPUs. RESULTS The dosimetric accuracy of the context-based method displays <1.35% and 2.35% average error from the existing serialized CPU-CCCS algorithm and Monte Carlo simulation for beamlet-specific PDDs in water and slab phantoms, respectively. The context-based method demonstrates substantial speedup of up to two orders of magnitude over the beamlet-sequential GPU-CCCS method in the tested configurations. The context-based framework demonstrates near linear scaling in the number of distributed compute nodes and GPUs employed, indicating that it is flexible enough to meet the performance requirements of most users by simply increasing the hardware utilization. CONCLUSIONS The context-based approach demonstrates a new expectation of performance for beamlet-based dose calculation methods. This approach has been successful in accelerating the dose calculation process for very large-scale treatment planning problems - such as automatic 4π IMRT beam orientation and VMAT arc trajectory selection, with hundreds of thousands of beamlets - in clinically feasible timeframes. The flexibility of this framework makes it as a strong candidate for use in a variety of other very large-scale treatment planning tasks and clinical workflows.
Collapse
Affiliation(s)
- Ryan Neph
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California, 90095, USA
| | - Cheng Ouyang
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California, 90095, USA
| | - John Neylon
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California, 90095, USA
| | - Youming Yang
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California, 90095, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California, 90095, USA
| |
Collapse
|
10
|
Dosimetric comparison of simultaneous integrated boost versus concomitant electron boost in radiotherapy treatment of breast cancer. JOURNAL OF RADIOTHERAPY IN PRACTICE 2017. [DOI: 10.1017/s1460396917000127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackgroundThe aim of this study was to compare the dosimetric parameters and effects of simultaneous integrated boost (SIB) and traditional sequential electron boost, after helical tomotherapy, because of the lack of studies in this field in the current literature.MethodsComputed tomographic data of 14 patients who received SIB in 2012–2015 were collected from Hong Kong Sanatorium & Hospital. New tomotherapy with SIB plans and tomotherapy with sequential boost plans were generated for each patient, and results were compared.ResultsConformation number, mean dose, dose received by 95% volume (both sides), ipsilateral lung volume receiving 20 Gy (V20) and skin dose (right side) were found to be significantly better for SIB (p<0·05), however coverage index and gross target volume dose showed no significant difference, and heart dose was significantly higher for SIB on the right side.ConclusionTomotherapy with SIB may be able to offer less organ at risk dose (except for the heart), while maintaining the ability to deliver adequate dose coverage.
Collapse
|
11
|
Ahmed S, Hunt D, Kapatoes J, Hayward R, Zhang G, Moros EG, Feygelman V. Validation of a GPU-Based 3D dose calculator for modulated beams. J Appl Clin Med Phys 2017; 18:73-82. [PMID: 28371377 PMCID: PMC5689856 DOI: 10.1002/acm2.12074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/25/2017] [Accepted: 02/09/2017] [Indexed: 11/07/2022] Open
Abstract
A superposition/convolution GPU-accelerated dose computation algorithm (the Calculator) has been recently incorporated into commercial software. The algorithm requires validation prior to clinical use. Three photon energies were examined: conventional 6 MV and 15 MV, and 10 MV flattening filter free (10 MVFFF). For a set of IMRT and VMAT plans based on four of the five AAPM Practice Guideline 5a downloadable datasets, ion chamber (IC) measurements were performed on the water-equivalent phantoms. The average difference between the Calculator and IC was -0.3 ± 0.8% (1SD). The same plans were projected on a phantom containing a biplanar diode array. We used the forthcoming criteria for routine gamma analysis, 3% dose-error (global (G) normalization, 2 mm distance to agreement, and 10% low dose cutoff). The γ (3%G/2 mm) average passing rate was 98.9 ± 2.1%. Measurement-guided three-dimensional dose reconstruction on the patient CT dataset (excluding the Lung) resulted in a similar average agreement rate with the Calculator: 98.2 ± 2.0%. The mean γ (3%G/2 mm) passing rate comparing the Calculator to the TPS (again excluding the Lung) was 99.0 ± 1.0%. Because of the significant inhomogeneity, the Lung case was investigated separately. The calculator has an alternate heterogeneity correction mode that can change the results in the thorax for higher-energy beams (15 MV). As this correction is nonphysical and was optimized for simple slab geometries, its application leads to mixed results when compared to the TPS and independent Monte Carlo calculations, depending on the CT dataset and the plan. The Calculator vs. TPS 15 MV Guideline 5a IMRT and VMAT plans demonstrate 96.3% and 93.4% γ (3%G/2 mm) passing rates respectively. For the lower energies, which should be predominantly used in the thoracic region, the passing rates for the same plans and criteria range from 98.6 to 100%. Overall, the Calculator accuracy is sufficient for the intended use.
Collapse
Affiliation(s)
- Saeed Ahmed
- Departement of Physics, University of South Florida, Tampa, FL, USA.,Departement of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Dylan Hunt
- Departement of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | - Geoffrey Zhang
- Departement of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eduardo G Moros
- Departement of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Vladimir Feygelman
- Departement of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
12
|
Rojas-Villabona A, Kitchen N, Paddick I. Investigation of dosimetric differences between the TMR 10 and convolution algorithm for Gamma Knife stereotactic radiosurgery. J Appl Clin Med Phys 2016; 17:217-229. [PMID: 27929495 PMCID: PMC5690517 DOI: 10.1120/jacmp.v17i6.6347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/13/2016] [Accepted: 07/04/2016] [Indexed: 11/27/2022] Open
Abstract
Since its inception, doses applied using Gamma Knife Radiosurgery (GKR) have been calculated using a simple TMR algorithm, which assumes the patient's head is of even density, the same as water. This results in a significant approximation of the dose delivered by the Gamma Knife. We investigated how GKR dose calculations varied when using a new convolution algorithm clinically available for GKR planning that takes into account density variations in the head compared with the established calculation algorithm. Fifty‐five patients undergoing GKR and harboring 85 lesions were voluntarily and prospectively enrolled into the study. Their clinical treatment plans were created and delivered using TMR 10, but were then recalculated using the density correction algorithm. Dosimetric differences between the planning algorithms were noted. Beam on time (BOT), which is directly proportional to dose, was the main value investigated. Changes of mean and maximum dose to organs at risk (OAR) were also assessed. Phantom studies were performed to investigate the effect of frame and pin materials on dose calculation using the convolution algorithm. Convolution yielded a mean increase in BOT of 7.4% (3.6%–11.6%). However, approximately 1.5% of this amount was due to the head contour being derived from the CT scans, as opposed to measurements using the Skull Scaling Instrument with TMR. Dose to the cochlea calculated with the convolution algorithm was approximately 7% lower than with the TMR 10 algorithm. No significant difference in relative dose distribution was noted and CT artifact typically caused by the stereotactic frame, glue embolization material or different fixation pin materials did not systematically affect convolution isodoses. Nonetheless, substantial error was introduced to the convolution calculation in one target located exactly in the area of major CT artifact caused by a fixation pin. Inhomogeneity correction using the convolution algorithm results in a considerable, but consistent, dose shift compared to the TMR 10 algorithm traditionally used for GKR. A reduction of the prescription dose may be necessary to obtain the same clinical effect with the convolution algorithm. Head shape definition using CT outlining can reduce treatment uncertainty from head shape approximations. PACS number(s): 87.53.‐j; 87.55.D; 87.55.kd
Collapse
Affiliation(s)
- Alvaro Rojas-Villabona
- National Hospital for Neurology and Neurosurgery; National Hospital for Neurology and Neurosurgery.
| | | | | |
Collapse
|
13
|
Clemente-Gutiérrez F, Pérez-Vara C, Clavo-Herranz MH, López-Carrizosa C, Pérez-Regadera J, Ibáñez-Villoslada C. Assessment of radiobiological metrics applied to patient-specific QA process of VMAT prostate treatments. J Appl Clin Med Phys 2016; 17:341-367. [PMID: 27074458 PMCID: PMC7711539 DOI: 10.1120/jacmp.v17i2.5783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 11/26/2015] [Accepted: 11/19/2015] [Indexed: 12/25/2022] Open
Abstract
VMAT is a powerful technique to deliver hypofractionated prostate treatments. The lack of correlations between usual 2D pretreatment QA results and the clinical impact of possible mistakes has allowed the development of 3D verification systems. Dose determination on patient anatomy has provided clinical predictive capability to patient-specific QA process. Dose-volume metrics, as evaluation criteria, should be replaced or complemented by radiobiological indices. These metrics can be incorporated into individualized QA extracting the information for response parameters (gEUD, TCP, NTCP) from DVHs. The aim of this study is to assess the role of two 3D verification systems dealing with radiobiological metrics applied to a prostate VMAT QA program. Radiobiological calculations were performed for AAPM TG-166 test cases. Maximum differences were 9.3% for gEUD, -1.3% for TCP, and 5.3% for NTCP calculations. Gamma tests and DVH-based comparisons were carried out for both systems in order to assess their performance in 3D dose determination for prostate treatments (high-, intermediate-, and low-risk, as well as prostate bed patients). Mean gamma passing rates for all structures were bet-ter than 92.0% and 99.1% for both 2%/2 mm and 3%/3 mm criteria. Maximum discrepancies were (2.4% ± 0.8%) and (6.2% ± 1.3%) for targets and normal tis-sues, respectively. Values for gEUD, TCP, and NTCP were extracted from TPS and compared to the results obtained with the two systems. Three models were used for TCP calculations (Poisson, sigmoidal, and Niemierko) and two models for NTCP determinations (LKB and Niemierko). The maximum mean difference for gEUD calculations was (4.7% ± 1.3%); for TCP, the maximum discrepancy was (-2.4% ± 1.1%); and NTCP comparisons led to a maximum deviation of (1.5% ± 0.5%). The potential usefulness of biological metrics in patient-specific QA has been explored. Both systems have been successfully assessed as potential tools for evaluating the clinical outcome of a radiotherapy treatment in the scope of pretreatment QA.
Collapse
|
14
|
Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy. Radiat Oncol 2016; 11:29. [PMID: 26919837 PMCID: PMC4769549 DOI: 10.1186/s13014-016-0607-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 02/18/2016] [Indexed: 11/20/2022] Open
Abstract
Background Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). Methods The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Results Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV coverage and the sparing of the lung and heart. However, the CK may be used to reduce high doses received by the NTBTV more efficiently. Conclusions Robotic stereotactic radiotherapy may be used for APBI to more efficiently spare the NTBTV and improve cosmetic results of APBI.
Collapse
|
15
|
Xu AY, Bhatnagar J, Bednarz G, Niranjan A, Kondziolka D, Flickinger J, Lunsford LD, Huq MS. Gamma Knife radiosurgery with CT image-based dose calculation. J Appl Clin Med Phys 2015; 16:119–129. [PMID: 26699563 PMCID: PMC5691031 DOI: 10.1120/jacmp.v16i6.5530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 07/04/2015] [Accepted: 07/02/2015] [Indexed: 11/23/2022] Open
Abstract
The Leksell GammaPlan software version 10 introduces a CT image-based segmentation tool for automatic skull definition and a convolution dose calculation algorithm for tissue inhomogeneity correction. The purpose of this work was to evaluate the impact of these new approaches on routine clinical Gamma Knife treatment planning. Sixty-five patients who underwent CT image-guided Gamma Knife radiosurgeries at the University of Pittsburgh Medical Center in recent years were retrospectively investigated. The diagnoses for these cases include trigeminal neuralgia, meningioma, acoustic neuroma, AVM, glioma, and benign and metastatic brain tumors. Dose calculations were performed for each patient with the same dose prescriptions and the same shot arrangements using three different approaches: 1) TMR 10 dose calculation with imaging skull definition; 2) convolution dose calculation with imaging skull definition; 3) TMR 10 dose calculation with conventional measurement-based skull definition. For each treatment matrix, the total treatment time, the target coverage index, the selectivity index, the gradient index, and a set of dose statistics parameters were compared between the three calculations. The dose statistics parameters investigated include the prescription isodose volume, the 12 Gy isodose volume, the minimum, maximum and mean doses on the treatment targets, and the critical structures under consideration. The difference between the convolution and the TMR 10 dose calculations for the 104 treatment matrices were found to vary with the patient anatomy, location of the treatment shots, and the tissue inhomogeneities around the treatment target. An average difference of 8.4% was observed for the total treatment times between the convolution and the TMR algorithms. The maximum differences in the treatment times, the prescription isodose volumes, the 12 Gy isodose volumes, the target coverage indices, the selectivity indices, and the gradient indices from the convolution and the TMR 10 calculations are 14.9%, 16.4%, 11.1%, 16.8, 6.9%, and 11.4%, respectively. The maximum differences in the minimum and the mean target doses between the two calculation algorithms are 8.1% and 4.2% of the corresponding prescription doses. The maximum differences in the maximum and the mean doses for the critical structures between the two calculation algorithms are 1.3 Gy and 0.7 Gy. The results from the two skull definition methods with the TMR 10 algorithm agree either within ± 2.5% or 0.3 Gy for the dose values, except for a 4.9% difference in the treatment times for a lower cerebellar lesion. The imaging skull definition method does not affect Gamma Knife dose calculation considerably when compared to the conventional measurement-based skull definition method, except in some extreme cases. Large differences were observed between the TMR 10 and the convolution calculation method for the same dose prescription and the same shot arrangements, indicating that the implementation of the convolution algorithm in routine clinical use might be desirable for optimal dose calculation results.
Collapse
|
16
|
Sanchez-Garcia M, Gardin I, Lebtahi R, Dieudonné A. Implementation and validation of collapsed cone superposition for radiopharmaceutical dosimetry of photon emitters. Phys Med Biol 2015; 60:7861-76. [PMID: 26406778 DOI: 10.1088/0031-9155/60/20/7861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and (18)F, (99m)Tc, (131)I and (177)Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the (99m)Tc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity.
Collapse
Affiliation(s)
- Manuel Sanchez-Garcia
- APHP-Service de médecine nucléaire, Hôpital Beaujon, F-92110 Clichy, France. INSERM U1149, Clichy, France
| | | | | | | |
Collapse
|
17
|
Neylon J, Sheng K, Yu V, Chen Q, Low DA, Kupelian P, Santhanam A. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures. Med Phys 2015; 41:101711. [PMID: 25281950 DOI: 10.1118/1.4895822] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Real-time adaptive planning and treatment has been infeasible due in part to its high computational complexity. There have been many recent efforts to utilize graphics processing units (GPUs) to accelerate the computational performance and dose accuracy in radiation therapy. Data structure and memory access patterns are the key GPU factors that determine the computational performance and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize computational and memory access efficiency and throughput on the GPU. METHODS The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets computed from the CT anatomy into a nonvoxel-based framework. In a process that takes only a few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through precalculated CT volumes to realign the coordinate system along the convolution direction, as defined by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to radial sampling and parallel ray-spacing parameters making the algorithm independent of the original CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off in computational performance and dose accuracy for different coordinate system configurations. In order to find the best balance between the computed speedup and the accuracy, the authors employed an exhaustive parameter search on all sampling parameters that defined the coordinate system configuration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm dose difference and distance-to-agreement criteria, respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. RESULTS The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. CONCLUSIONS The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems.
Collapse
Affiliation(s)
- J Neylon
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095
| | - K Sheng
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095
| | - V Yu
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095
| | - Q Chen
- Department of Radiation Oncology, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, California 22908
| | - D A Low
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095
| | - P Kupelian
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095
| | - A Santhanam
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095
| |
Collapse
|
18
|
Zhu J, Chen L, Chen A, Luo G, Deng X, Liu X. Fast 3D dosimetric verifications based on an electronic portal imaging device using a GPU calculation engine. Radiat Oncol 2015; 10:85. [PMID: 25885567 PMCID: PMC4399436 DOI: 10.1186/s13014-015-0387-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/20/2015] [Indexed: 11/22/2022] Open
Abstract
Purpose To use a graphic processing unit (GPU) calculation engine to implement a fast 3D pre-treatment dosimetric verification procedure based on an electronic portal imaging device (EPID). Methods The GPU algorithm includes the deconvolution and convolution method for the fluence-map calculations, the collapsed-cone convolution/superposition (CCCS) algorithm for the 3D dose calculations and the 3D gamma evaluation calculations. The results of the GPU-based CCCS algorithm were compared to those of Monte Carlo simulations. The planned and EPID-based reconstructed dose distributions in overridden-to-water phantoms and the original patients were compared for 6 MV and 10 MV photon beams in intensity-modulated radiation therapy (IMRT) treatment plans based on dose differences and gamma analysis. Results The total single-field dose computation time was less than 8 s, and the gamma evaluation for a 0.1-cm grid resolution was completed in approximately 1 s. The results of the GPU-based CCCS algorithm exhibited good agreement with those of the Monte Carlo simulations. The gamma analysis indicated good agreement between the planned and reconstructed dose distributions for the treatment plans. For the target volume, the differences in the mean dose were less than 1.8%, and the differences in the maximum dose were less than 2.5%. For the critical organs, minor differences were observed between the reconstructed and planned doses. Conclusions The GPU calculation engine was used to boost the speed of 3D dose and gamma evaluation calculations, thus offering the possibility of true real-time 3D dosimetric verification.
Collapse
Affiliation(s)
- Jinhan Zhu
- School of Physics and Engineering, Sun Yat-sen University, 510275, Guangzhou, China. .,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China.
| | - Lixin Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China.
| | - Along Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China.
| | - Guangwen Luo
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China.
| | - Xiaowu Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China.
| | - Xiaowei Liu
- School of Physics and Engineering, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
19
|
Clemente-Gutiérrez F, Pérez-Vara C. Dosimetric validation and clinical implementation of two 3D dose verification systems for quality assurance in volumetric-modulated arc therapy techniques. J Appl Clin Med Phys 2015; 16:5190. [PMID: 26103189 PMCID: PMC5690088 DOI: 10.1120/jacmp.v16i2.5190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/01/2014] [Accepted: 11/03/2014] [Indexed: 12/25/2022] Open
Abstract
A pretreatment quality assurance program for volumetric techniques should include redundant calculations and measurement-based verifications. The patient-specific quality assurance process must be based in clinically relevant metrics. The aim of this study was to show the commission, clinical implementation, and comparison of two systems that allow performing a 3D redundant dose calculation. In addition, one of them is capable of reconstructing the dose on patient anatomy from measurements taken with a 2D ion chamber array. Both systems were compared in terms of reference calibration data (absolute dose, output factors, percentage depth-dose curves, and profiles). Results were in good agreement for absolute dose values (discrepancies were below 0.5%) and output factors (mean differences were below 1%). Maximum mean discrepancies were located between 10 and 20 cm of depth for PDDs (-2.7%) and in the penumbra region for profiles (mean DTA of 1.5 mm). Validation of the systems was performed by comparing point-dose measurements with values obtained by the two systems for static, dynamic fields from AAPM TG-119 report, and 12 real VMAT plans for different anatomical sites (differences better than 1.2%). Comparisons between measurements taken with a 2D ion chamber array and results obtained by both systems for real VMAT plans were also performed (mean global gamma passing rates better than 87.0% and 97.9% for the 2%/2 mm and 3%/3 mm criteria). Clinical implementation of the systems was evaluated by comparing dose-volume parameters for all TG-119 tests and real VMAT plans with TPS values (mean differences were below 1%). In addition, comparisons between dose distributions calculated by TPS and those extracted by the two systems for real VMAT plans were also performed (mean global gamma passing rates better than 86.0% and 93.0% for the 2%/2 mm and 3%/ 3 mm criteria). The clinical use of both systems was successfully evaluated.
Collapse
|
20
|
Yuan J, Rong Y, Chen Q. A virtual source model for Monte Carlo simulation of helical tomotherapy. J Appl Clin Med Phys 2015; 16:4992. [PMID: 25679157 PMCID: PMC5689983 DOI: 10.1120/jacmp.v16i1.4992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/29/2014] [Accepted: 08/25/2014] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase‐space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS‐generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of <1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of <2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM‐based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose‐volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent with literature. The VSM‐based MC simulation approach can be feasibly built from the gold standard beam model of a tomotherapy unit. The accuracy of the VSM was validated against measurements in homogeneous media, as well as published full MC model in heterogeneous media. PACS numbers: 87.53.‐j, 87.55.K‐
Collapse
|
21
|
Sanchez-Garcia M, Gardin I, Lebtahi R, Dieudonné A. A new approach for dose calculation in targeted radionuclide therapy (TRT) based on collapsed cone superposition: validation with (90)Y. Phys Med Biol 2014; 59:4769-84. [PMID: 25097006 DOI: 10.1088/0031-9155/59/17/4769] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To speed-up the absorbed dose (AD) computation while accounting for tissue heterogeneities, a Collapsed Cone (CC) superposition algorithm was developed and validated for (90)Y. The superposition was implemented with an Energy Deposition Kernel scaled with the radiological distance, along with CC acceleration. The validation relative to Monte Carlo simulations was performed on 6 phantoms involving soft tissue, lung and bone, a radioembolisation treatment and a simulated bone metastasis treatment. As a figure of merit, the relative AD difference (ΔAD) in low gradient regions (LGR), distance to agreement (DTA) in high gradient regions and the γ(1%,1 mm) criterion were used for the phantoms. Mean organ doses and γ(3%,3 mm) were used for the patient data. For the semi-infinite sources, ΔAD in LGR was below 1%. DTA was below 0.6 mm. All profiles verified the γ(1%,1 mm) criterion. For both clinical cases, mean doses differed by less than 1% for the considered organs and all profiles verified the γ(3%,3 mm). The calculation time was below 4 min on a single processor for CC superposition and 40 h on a 40 nodes cluster for MCNP (10(8) histories). Our results show that the CC superposition is a very promising alternative to MC for (90)Y dosimetry, while significantly reducing computation time.
Collapse
Affiliation(s)
- Manuel Sanchez-Garcia
- APHP-Service de médecine nucléaire, Hôpital Beaujon, F-92110 Clichy, France. INSERM U1149, Clichy, France
| | | | | | | |
Collapse
|
22
|
Klüter S, Schubert K, Lissner S, Sterzing F, Oetzel D, Debus J, Schlegel W, Oelfke U, Nill S. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system. Med Phys 2014; 41:081709. [PMID: 25086519 DOI: 10.1118/1.4887779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. METHODS A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose-volume histograms were calculated for the patient plans. RESULTS Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of -0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local voxel-based deviation of -2.41% ± 0.75% for all voxels with dose values >20% were found for 11 modulated plans in the cheese phantom. Averaged over nine patient plans, the deviations amounted to -0.14% ± 1.97% (voxels >80%) and -0.95% ± 2.27% (>20%, local deviations). For a lung case, mean voxel-based deviations of more than 4% were found, while for all other patient plans, all mean voxel-based deviations were within ± 2.4%. CONCLUSIONS The presented method is suitable for independent dose calculation for helical tomotherapy within the known limitations of the pencil beam algorithm. It can serve as verification of the primary dose calculation and thereby reduce the need for time-consuming measurements. By using the patient anatomy and generating full 3D dose data, and combined with measurements of additional machine parameters, it can substantially contribute to overall patient safety.
Collapse
Affiliation(s)
- Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Kai Schubert
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Steffen Lissner
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Florian Sterzing
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Dieter Oetzel
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Wolfgang Schlegel
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Uwe Oelfke
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| | - Simeon Nill
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| |
Collapse
|
23
|
Nakazawa H, Komori M, Shibamoto Y, Tsugawa T, Mori Y, Kobayashi T. Dosimetric comparison of absolute and relative dose distributions between tissue maximum ratio and convolution algorithms for acoustic neurinoma plans in Gamma Knife radiosurgery. Acta Neurochir (Wien) 2014; 156:1483-9; discussion 1489. [PMID: 24890937 DOI: 10.1007/s00701-014-2143-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/21/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND The treatment planning for Gamma Knife (GK) stereotactic radiosurgery (SRS) that performs dose calculations based on tissue maximum ratio (TMR) algorithm has disadvantages in predicting dose in tissue heterogeneity. The latest version of the planning software is equipped with a convolution dose algorithm as an optional extra and the new algorithm is able to compensate for head inhomogeneity. However, the effect of this improved calculation method requires detailed validation in clinical cases. In this study, we compared absolute and relative dose distributions of treatment plans for acoustic neurinoma between TMR and the convolution calculation. METHODS Twenty-nine clinically used plans created by TMR algorithm were recalculated by convolution method. Differences between TMR and convolution were evaluated in terms of absolute dose (beam-on time), dosimetric parameters including target coverage, selectivity, conformity index, gradient index, radical homogeneity index and the dose-volume relationship. RESULTS The discrepancy in estimated absolute dose to the target ranged from 1 to 7 % between TMR and convolution. In addition, dosimetric parameters of the two methods achieved statistical significance. However, it was difficult to see the change of relative dose distribution by visual assessment on a monitor. CONCLUSIONS Convolution, heterogeneity correction calculation, and the algorithm are necessary to reduce the dosimetric uncertainty of each case in GK SRS.
Collapse
Affiliation(s)
- Hisato Nakazawa
- Department of Radiological Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daikominami, Higashiku, Nagoya, Aichi, 461-8673, Japan,
| | | | | | | | | | | |
Collapse
|
24
|
Avanzo M, Drigo A, Ren Kaiser S, Roggio A, Sartor G, Chiovati P, Franchin G, Mascarin M, Capra E. Dose to the skin in helical tomotherapy: Results of in vivo measurements with radiochromic films. Phys Med 2013; 29:304-11. [DOI: 10.1016/j.ejmp.2012.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 04/10/2012] [Accepted: 04/14/2012] [Indexed: 12/21/2022] Open
|
25
|
Chen M, Chao E, Lu W. Quantitative characterization of tomotherapy MVCT dosimetry. Med Dosim 2013; 38:280-6. [PMID: 23558147 DOI: 10.1016/j.meddos.2013.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 12/12/2012] [Accepted: 02/03/2013] [Indexed: 10/27/2022]
Abstract
Megavoltage computed tomography (MVCT) is used as image guidance for patient setup in almost every tomotherapy treatment. Frequent use of ionizing radiation for image guidance has raised concern of imaging dose. The purpose of this work is to quantify and characterize tomotherapy MVCT dosimetry. Our dose calculation was based on a commissioned dose engine, and the calculation result was compared with film measurement. We studied dose profiles, center dose, maximal dose, surface dose, and mean dose on homogeneous cylindrical water phantoms of various diameters for various scanning parameters, including 3 different jaw openings (of nominal value J4, J1, and J0.1) and couch speeds (fine, normal, and coarse). The comparison between calculation and film measurement showed good agreement. In particular, the thread pattern on the film of the helical delivery matched very well with calculation. For the J1 jaw and coarse imaging mode, the maximum difference between calculation and measurement was about 6% of the center dose. Calculation on various sizes of synthesized phantoms showed that the center dose decreases almost linearly as the phantom diameter increases, and that the fine mode (couch speed of 4mm/rotation) received twice the dose of the normal mode (couch speed of 8mm/rotation) and 3 times that of the coarse mode (couch speed of 12mm/rotation) as expected. The maximal dose ranged from 100% to ∼200% of the center dose, with increasing ratios for larger phantoms, smaller jaws, and faster couch speed. For all jaw settings and couch speeds, the mean dose and average surface dose vary from 95% to 125% of the center dose with increasing ratios for larger phantoms. We present a quantitative dosimetric characterization of the tomotherapy MVCT in terms of scanning parameters, phantom size, center dose, maximal dose, surface dose, and mean dose. The results can provide an overall picture of dose distribution and a reference data set that enables estimation of CT dose index for the tomotherapy MVCT.
Collapse
Affiliation(s)
- Mingli Chen
- 21st Century Oncology, Madison, WI 53719, USA.
| | | | | |
Collapse
|
26
|
Sterpin E, Verboomen C, Vynckier S. Impact of the number of discrete angles used during dose computation for TomoTherapy treatments. Med Phys 2012; 39:6947-56. [PMID: 23127088 DOI: 10.1118/1.4762684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To quantify systematically the effect on accuracy of discretizing gantry rotation during the dose calculation process of TomoTherapy treatments. METHODS Up to version 4.0.x included, TomoTherapy treatment planning system (TPS) approximates gantry rotation by computing dose from 51 discrete angles corresponding to the center of the projections used to control the binary multileaf collimator. Potential effects on dose computation accuracy for off-axis targets and low modulation factors have been shown previously for a few treatment configurations. In versions 4.1.x and later, TomoTherapy oversamples the projections to better account for gantry rotation, but only during full scatter optimization and final calculation (i.e., not during optimization in "beamlet" mode). The effect on accuracy of changing the number of angles was quantified with the following framework: (1) predict the impact of the discretization of gantry rotation for various modulation factors, target sizes, and off-axis positions using a simplified analytical algorithm; (2) perform regular quality assurance using measurements with EDR2 radiographic films; (3) isolating the effect of changing the number of discretized angles only (51, 153, and 459) using a previously validated Monte Carlo model (TomoPen). The diameters of the targets were 2, 3, and 5 cm; off-axis central positions of target volumes were 5, 10 and 15, and 17 cm (when accepted by the treatment unit); planned modulation factors were 1.3 and 2.0. RESULTS For extreme configurations (3 cm tumor, 1.3 modulation factor, 15 cm off-axis position), effects on dose distributions were significant with 89.3% and 95.4% of the points passing gamma tests with 2%∕2 mm and 3%∕3 mm criteria, respectively, for TPS software version 4.0.x (51 gantry angles). The passing rate was 100% for both gamma criteria for the 4.1.x version (153 gantry angles). Those differences could be attributed almost completely to gantry motion discretization using TomoPen. Using 51 gantry angles for dose computation, TomoPen reproduced within statistical uncertainties (<1% standard deviation) dose distributions computed with version 4.0.x. Using 153 and 459 gantry angles, TomoPen reproduced within statistical uncertainties measurements and dose distributions computed with version 4.1.x. CONCLUSIONS When low modulation factors and significant off-axis positions are used, accounting for gantry rotation during dose computation using at least 153 gantry angles is required to ensure optimal accuracy.
Collapse
Affiliation(s)
- E Sterpin
- Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
27
|
Chen Q, Lu W, Chen Y, Chen M, Henderson D, Sterpin E. Validation of GPU based TomoTherapy dose calculation engine. Med Phys 2012; 39:1877-86. [PMID: 22482609 DOI: 10.1118/1.3693057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. METHODS Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. RESULTS The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) < 1. The worst case observed in the phantom had 0.22% voxels violating the criterion. In patient cases, the worst percentage of voxels violating the criterion was 0.57%. For absolute point dose verification, all cases agreed with measurement to within ±3% with average error magnitude within 1%. All cases passed the acceptance criterion that more than 95% of the pixels have Γ(3%, 3 mm) < 1 in film measurement, and the average passing pixel percentage is 98.5%-99%. The GPU dose engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. CONCLUSIONS It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.
Collapse
Affiliation(s)
- Quan Chen
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Chen M, Chen Y, Chen Q, Lu W. Theoretical analysis of the thread effect in helical TomoTherapy. Med Phys 2012; 38:5945-60. [PMID: 22047359 DOI: 10.1118/1.3644842] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The longitudinal dose ripple on the off-axis caused by helical radiation delivery, such as the TomoTherapy system, has been observed, and its relation with respect to pitch has been studied with empirically found optimal pitches, 0.86∕n, by Kissick et al. [Med. Phys. 32, 1414-1423 (2005)]. This ripple artifact referred to as the thread effect is periodic in nature and is caused by various periodic factors. In this work, the factors that cause the thread effect were unveiled, including jaw profile divergence, the inverse square law, attenuation, and the cone effect, and their impact on the thread effect were studied. METHODS Mathematical formulation for individual and combined factors were set up. Based on theoretical analysis and simulations, optimal pitches that result in local minima of the ripple amplitude with respect to the jaw width and off-axis distance were identified and verified. The effectiveness of optimization in reducing the thread effect were also studied. RESULTS Analysis and simulation based on the square-shaped jaw profiles well characterize the thread effect. Simulations based on the real jaw profiles show reduced ripples and very good agreement of optimal pitches compared with those based on the square profiles. The optimal pitches were found to have little jaw width dependence, except for the real jaw profile of small width (1.05 cm). The optimal pitches for the real jaw profile of width 1.05 cm are unidentifiable except for the largest ones, due to the relative smoothness of the jaw profile. With optimized intensity modulation, the thread effect can be largely suppressed. For real jaw profiles, the optimal pitches with or without dose optimization do not change much. The numbers 0.86∕n found by Kissick et al. well approximate the optimal pitches for off-axis distance of 5 cm. However, optimal pitches are not universal for different off-axis distances: they decrease as the off-axis distance increases. CONCLUSIONS The thread effect can be well explained by the proposed model. Optimization can largely reduce the thread effect. However, an optimal pitch reduces the ripple much easier especially when optimization is limited by many constraints. The optimal pitches predicted by the proposed model could be used as a reference for pitch selection regardless the tumor is at large or small off-axis distance.
Collapse
|
29
|
Rong Y, Welsh JS. Dosimetric and clinical review of helical tomotherapy. Expert Rev Anticancer Ther 2011; 11:309-20. [PMID: 21342048 DOI: 10.1586/era.10.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As a modality for delivering rotational therapy, helical tomotherapy offers dosimetric advantages by combining a continuously rotating gantry with a binary multileaf collimator. Helical tomotherapy, embodied in the TomoTherapy(®) Hi-Art II(®) system, delivers intensity-modulated fan beams in a helical pattern using binary multileaf collimator leaves while the couch is translated through the gantry. Helical tomotherapy offers the possibility of treating a variety of cases--from simple to complex--with improved target conformality and sensitive structure sparing compared with 3D or conventional static field IMRT plans, thereby allowing biologically effective dose escalation. For precise irradiation and possible treatment adaptation, the fully integrated on-board image-guidance system provides online volumetric images of patient anatomy using 3.5-MV x-ray beams and the xenon computed tomography detector. Several review articles were published before the year 2007 but emphasized the technical aspects of helical tomotherapy. In this article, we review very recent papers and focus on the dosimetric and clinical aspects of helical tomotherapy.
Collapse
Affiliation(s)
- Yi Rong
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, USA.
| | | |
Collapse
|
30
|
Sterpin E, Chen Y, Chen Q, Lu W, Mackie TR, Vynckier S. Monte Carlo-based simulation of dynamic jaws tomotherapy. Med Phys 2011; 38:5230-8. [DOI: 10.1118/1.3626486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
31
|
Chen Q, Chen M, Lu W. Ultrafast convolution/superposition using tabulated and exponential kernels on GPU. Med Phys 2011; 38:1150-61. [PMID: 21520827 DOI: 10.1118/1.3551996] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Collapsed-cone convolution/superposition (CCCS) dose calculation is the workhorse for IMRT dose calculation. The authors present a novel algorithm for computing CCCS dose on the modern graphic processing unit (GPU). METHODS The GPU algorithm includes a novel TERMA calculation that has no write-conflicts and has linear computation complexity. The CCCS algorithm uses either tabulated or exponential cumulative-cumulative kernels (CCKs) as reported in literature. The authors have demonstrated that the use of exponential kernels can reduce the computation complexity by order of a dimension and achieve excellent accuracy. Special attentions are paid to the unique architecture of GPU, especially the memory accessing pattern, which increases performance by more than tenfold. RESULTS As a result, the tabulated kernel implementation in GPU is two to three times faster than other GPU implementations reported in literature. The implementation of CCCS showed significant speedup on GPU over single core CPU. On tabulated CCK, speedups as high as 70 are observed; on exponential CCK, speedups as high as 90 are observed. CONCLUSIONS Overall, the GPU algorithm using exponential CCK is 1000-3000 times faster over a highly optimized single-threaded CPU implementation using tabulated CCK, while the dose differences are within 0.5% and 0.5 mm. This ultrafast CCCS algorithm will allow many time-sensitive applications to use accurate dose calculation.
Collapse
Affiliation(s)
- Quan Chen
- TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717, USA
| | | | | |
Collapse
|
32
|
Cho W, Kielar KN, Mok E, Xing L, Park JH, Jung WG, Suh TS. Multisource modeling of flattening filter free (FFF) beam and the optimization of model parameters. Med Phys 2011; 38:1931-42. [PMID: 21626926 PMCID: PMC3188653 DOI: 10.1118/1.3560426] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/06/2011] [Accepted: 02/07/2011] [Indexed: 11/07/2022] Open
Abstract
PURPOSE With the introduction of flattening filter free (FFF) linear accelerators to radiation oncology, new analytical source models for a FFF beam applicable to current treatment planning systems is needed. In this work, a multisource model for the FFF beam and the optimization of involved model parameters were designed. METHODS The model is based on a previous three source model proposed by Yang et al. ["A three-source model for the calculation of head scatter factors," Med. Phys. 29, 2024-2033 (2002)]. An off axis ratio (OAR) of photon fluence was introduced to the primary source term to generate cone shaped profiles. The parameters of the source model were determined from measured head scatter factors using a line search optimization technique. The OAR of the photon fluence was determined from a measured dose profile of a 40 x 40 cm2 field size with the same optimization technique, but a new method to acquire gradient terms for OARs was developed to enhance the speed of the optimization process. The improved model was validated with measured dose profiles from 3 x 3 to 40 x 40 cm2 field sizes at 6 and 10 MV from a TrueBeam STx linear accelerator. Furthermore, planar dose distributions for clinically used radiation fields were also calculated and compared to measurements using a 2D array detector using the gamma index method. RESULTS All dose values for the calculated profiles agreed with the measured dose profiles within 0.5% at 6 and 10 MV beams, except for some low dose regions for larger field sizes. A slight overestimation was seen in the lower penumbra region near the field edge for the large field sizes by 1%-4%. The planar dose calculations showed comparable passing rates (> 98%) when the criterion of the gamma index method was selected to be 3%/3 mm. CONCLUSIONS The developed source model showed good agreements between measured and calculated dose distributions. The model is easily applicable to any other linear accelerator using FFF beams as the required data include only the measured PDD, dose profiles, and output factors for various field sizes, which are easily acquired during conventional beam commissioning process.
Collapse
Affiliation(s)
- Woong Cho
- Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Chen M, Lu W. Generalized equivalent field size for nonuniform fluence maps in IMRT dose calculation. Med Phys 2011; 38:449-54. [PMID: 21361213 DOI: 10.1118/1.3531564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The equivalent field size (EFS) method is widely used to estimate dose of nonstandard fields, such as elongated or arbitrary shaped fields, for both central axis and off axis points. However, its application is limited to fluence maps with uniform intensity. In this work, we propose a generalized EFS (GEFS) for nonuniform fluence maps and present a formula for GEFS-based dose calculation. METHODS A parallel-beam dose table (PDT) consisting of central axis dose of circular fields of various diameters at various depths is used to define scatter contributions, based on which we calculate GEFS of any given fluence map. Such obtained GEFS, together with the radiological depth and PDT, is used to determine the dose at the point of interest. We tested GEFS-based dose calculation on a water phantom for both uniform and nonuniform fluence maps and compared the results with those by the collapsed cone convolution/superposition (CCCS) method. RESULTS For all test cases, the gamma index is less than 1 based on the 3%/1 mm criteria for more than 96% of the calculated points. Larger discrepancies mainly occur along the field edges in the buildup region. CONCLUSIONS A generalized equivalent field size for nonuniform fluence maps was proposed and its application in calculating dose at any point was presented and verified through comparison with the CCCS method.
Collapse
Affiliation(s)
- Mingli Chen
- TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717, USA
| | | |
Collapse
|
34
|
Ardu V, Broggi S, Cattaneo GM, Mangili P, Calandrino R. Dosimetric accuracy of tomotherapy dose calculation in thorax lesions. Radiat Oncol 2011; 6:14. [PMID: 21306629 PMCID: PMC3045960 DOI: 10.1186/1748-717x-6-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/09/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To analyse limits and capabilities in dose calculation of collapsed-cone-convolution (CCC) algorithm implemented in helical tomotherapy (HT) treatment planning system for thorax lesions. METHODS The agreement between measured and calculated dose was verified both in homogeneous (Cheese Phantom) and in a custom-made inhomogeneous phantom. The inhomogeneous phantom was employed to mimic a patient's thorax region with lung density encountered in extreme cases and acrylic inserts of various dimensions and positions inside the lung cavity. For both phantoms, different lung treatment plans (single or multiple metastases and targets in the mediastinum) using HT technique were simulated and verified. Point and planar dose measurements, both with radiographic extended-dose-range (EDR2) and radiochromic external-beam-therapy (EBT2) films, were performed. Absolute point dose measurements, dose profile comparisons and quantitative analysis of gamma function distributions were analyzed. RESULTS An excellent agreement between measured and calculated dose distributions was found in homogeneous media, both for point and planar dose measurements. Absolute dose deviations <3% were found for all considered measurement points, both inside the PTV and in critical structures. Very good results were also found for planar dose distribution comparisons, where at least 96% of all points satisfied the gamma acceptance criteria (3%-3 mm), both for EDR2 and for EBT2 films. Acceptable results were also reported for the inhomogeneous phantom. Similar point dose deviations were found with slightly worse agreement for the planar dose distribution comparison: 96% of all points passed the gamma analysis test with acceptable levels of 4%-4 mm and 5%-4 mm, for EDR2 and EBT2 films respectively. Lower accuracy was observed in high dose/low density regions, where CCC seems to overestimate the measured dose around 4-5%. CONCLUSIONS Very acceptable accuracy was found for complex lung treatment plans calculated with CCC algorithm implemented in the tomotherapy TPS even in the heterogeneous phantom with very low lung-density.
Collapse
Affiliation(s)
- Veronica Ardu
- Medical Physics Department, IRCCS San Raffaele, Milano, Italy
| | | | | | | | | |
Collapse
|
35
|
|
36
|
|
37
|
|
38
|
Jacques R, Taylor R, Wong J, McNutt T. Towards real-time radiation therapy: GPU accelerated superposition/convolution. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2010; 98:285-292. [PMID: 19695731 DOI: 10.1016/j.cmpb.2009.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/16/2009] [Accepted: 07/02/2009] [Indexed: 05/28/2023]
Abstract
We demonstrate the use of highly parallel graphics processing units (GPUs) to accelerate the superposition/convolution (S/C) algorithm to interactive rates while reducing the number of approximations. S/C first transports the incident fluence to compute the total energy released per unit mass (TERMA) grid. Dose is then calculated by superimposing the dose deposition kernel at each point in the TERMA grid and summing the contributions to the surrounding voxels. The TERMA algorithm was enhanced with physically correct multi-spectral attenuation and a novel inverse formulation for increased performance, accuracy and simplicity. Dose deposition utilized a tilted poly-energetic inverse cumulative-cumulative kernel, with the novel option of using volumetric mip-maps to approximate solid angle ray casting. Exact radiological path ray casting decreased discretization errors. We achieved a speedup of 34x-98x over a highly optimized CPU implementation.
Collapse
Affiliation(s)
- Robert Jacques
- School of Medicine, Johns Hopkins University, Baltimore, MD 21231-2410, USA.
| | | | | | | |
Collapse
|
39
|
Monte Carlo-based analytical model for small and variable fields delivered by TomoTherapy. Radiother Oncol 2010; 94:229-34. [DOI: 10.1016/j.radonc.2009.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/15/2009] [Accepted: 12/20/2009] [Indexed: 11/19/2022]
|
40
|
Skin dose study of chest wall treatment with tomotherapy. Jpn J Radiol 2009; 27:355-62. [DOI: 10.1007/s11604-009-0357-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/30/2009] [Indexed: 11/26/2022]
|
41
|
Sterpin E, Salvat F, Olivera G, Vynckier S. Monte Carlo evaluation of the convolution/superposition algorithm of Hi-Art™ tomotherapy in heterogeneous phantoms and clinical cases. Med Phys 2009; 36:1566-75. [DOI: 10.1118/1.3112364] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
42
|
Chaudhari SR, Pechenaya OL, Goddu SM, Mutic S, Rangaraj D, Bradley JD, Low D. The validation of tomotherapy dose calculations in low-density lung media. Phys Med Biol 2009; 54:2315-22. [DOI: 10.1088/0031-9155/54/8/004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Zhao YL, Mackenzie M, Kirkby C, Fallone BG. Monte Carlo evaluation of a treatment planning system for helical tomotherapy in an anthropomorphic heterogeneous phantom and for clinical treatment plans. Med Phys 2008; 35:5366-74. [DOI: 10.1118/1.3002316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
44
|
Kissick MW, Flynn RT, Westerly DC, Hoban PW, Mo X, Soisson ET, McCall KC, Mackie TR, Jeraj R. On the impact of longitudinal breathing motion randomness for tomotherapy delivery. Phys Med Biol 2008; 53:4855-73. [PMID: 18711250 DOI: 10.1088/0031-9155/53/18/001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this study is to explain the unplanned longitudinal dose modulations that appear in helical tomotherapy (HT) dose distributions in the presence of irregular patient breathing. This explanation is developed by the use of longitudinal (1D) simulations of mock and surrogate data and tested with a fully 4D HT delivered plan. The 1D simulations use a typical mock breathing function which allows more flexibility to adjust various parameters. These simplified simulations are then made more realistic by using 100 surrogate waveforms all similarly scaled to produce longitudinal breathing displacements. The results include the observation that, with many waveforms used simultaneously, a voxel-by-voxel probability of a dose error from breathing is found to be proportional to the realistically random breathing amplitude relative to the beam width if the PTV is larger than the beam width and the breathing displacement amplitude. The 4D experimental test confirms that regular breathing will not result in these modulations because of the insensitivity to leaf motion for low-frequency dynamics such as breathing. These modulations mostly result from a varying average of the breathing displacements along the beam edge gradients. Regular breathing has no displacement variation over many breathing cycles. Some low-frequency interference is also possible in real situations. In the absence of more sophisticated motion management, methods that reduce the breathing amplitude or make the breathing very regular are indicated. However, for typical breathing patterns and magnitudes, motion management techniques may not be required with HT because typical breathing occurs mostly between fundamental HT treatment temporal and spatial scales. A movement beyond only discussing margins is encouraged for intensity modulated radiotherapy such that patient and machine motion interference will be minimized and beneficial averaging maximized. These results are found for homogeneous and longitudinal on-axis delivery for unplanned longitudinal dose modulations.
Collapse
Affiliation(s)
- Michael W Kissick
- Department of Medical Physics, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hsiao Y, Stewart RD, Li XA. A Monte-Carlo derived dual-source model for helical tomotherapy treatment planning. Technol Cancer Res Treat 2008; 7:141-7. [PMID: 18345703 DOI: 10.1177/153303460800700207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Full Monte Carlo radiation transport simulations of accelerator heads are impractical for routine treatment planning because of the excessive computational burden and memory requirements. To improve the accuracy and efficiency of treatment plans for helical tomotherapy, we have developed a dual-source model to characterize the radiation emitted from the head of a commercial helical tomotherapy accelerator. Percentage depth dose (PDD) and beam profiles computed using the dual-source model with the EGS/BEAMnrc Monte Carlo package agree within 2% of measurements for a wide range of field sizes, which suggests that the proposed dual-source model provides an adequate representation of the tomotherapy head for dose calculations in routine treatment planning.
Collapse
Affiliation(s)
- Yayun Hsiao
- Department of Physics, Purdue University, West Lafayette, IN 47907-2036, USA
| | | | | |
Collapse
|
46
|
Comparing two strategies of dynamic intensity modulated radiation therapy (dIMRT) with 3-dimensional conformal radiation therapy (3DCRT) in the hypofractionated treatment of high-risk prostate cancer. Radiat Oncol 2008; 3:1. [PMID: 18179695 PMCID: PMC2249591 DOI: 10.1186/1748-717x-3-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 01/07/2008] [Indexed: 11/27/2022] Open
Abstract
Background To compare two strategies of dynamic intensity modulated radiation therapy (dIMRT) with 3-dimensional conformal radiation therapy (3DCRT) in the setting of hypofractionated high-risk prostate cancer treatment. Methods 3DCRT and dIMRT/Helical Tomotherapy(HT) planning with 10 CT datasets was undertaken to deliver 68 Gy in 25 fractions (prostate) and simultaneously delivering 45 Gy in 25 fractions (pelvic lymph node targets) in a single phase. The paradigms of pelvic vessel targeting (iliac vessels with margin are used to target pelvic nodes) and conformal normal tissue avoidance (treated soft tissues of the pelvis while limiting dose to identified pelvic critical structures) were assessed compared to 3DCRT controls. Both dIMRT/HT and 3DCRT solutions were compared to each other using repeated measures ANOVA and post-hoc paired t-tests. Results When compared to conformal pelvic vessel targeting, conformal normal tissue avoidance delivered more homogenous PTV delivery (2/2 t-test comparisons; p < 0.001), similar nodal coverage (8/8 t-test comparisons; p = ns), higher and more homogenous pelvic tissue dose (6/6 t-test comparisons; p < 0.03), at the cost of slightly higher critical structure dose (Ddose, 1–3 Gy over 5/10 dose points; p < 0.03). The dIMRT/HT approaches were superior to 3DCRT in sparing organs at risk (22/24 t-test comparisons; p < 0.05). Conclusion dIMRT/HT nodal and pelvic targeting is superior to 3DCRT in dose delivery and critical structure sparing in the setting of hypofractionation for high-risk prostate cancer. The pelvic targeting paradigm is a potential solution to deliver highly conformal pelvic radiation treatment in the setting of nodal location uncertainty in prostate cancer and other pelvic malignancies.
Collapse
|
47
|
Flynn RT, Kissick MW, Mehta MP, Olivera GH, Jeraj R, Mackie TR. The impact of linac output variations on dose distributions in helical tomotherapy. Phys Med Biol 2007; 53:417-30. [PMID: 18184996 DOI: 10.1088/0031-9155/53/2/009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It has been suggested for quality assurance purposes that linac output variations for helical tomotherapy (HT) be within +/-2% of the long-term average. Due to cancellation of systematic uncertainty and averaging of random uncertainty over multiple beam directions, relative uncertainties in the dose distribution can be significantly lower than those in linac output. The sensitivity of four HT cases with respect to linac output uncertainties was assessed by scaling both modeled and measured systematic and random linac output uncertainties until a dose uncertainty acceptance criterion failed. The dose uncertainty acceptance criterion required the delivered dose to have at least a 95% chance of being within 2% of the planned dose in all of the voxels in the treatment volume. For a random linac output uncertainty of 5% of the long-term mean, the maximum acceptable amplitude of the modeled, sinusoidal, systematic component of the linac output uncertainty for the four cases was 1.8%. Although the measured linac output variations represented values that were outside of the +/-2% tolerance, the acceptance criterion did not fail for any of the four cases until the measured linac output variations were scaled by a factor of almost three. Thus, the +/-2% tolerance in linac output variations for HT is a more conservative tolerance than necessary.
Collapse
Affiliation(s)
- R T Flynn
- Department of Medical Physics, University of Wisconsin, 1530 MSC, 1300 University Ave., Madison, WI 53703, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Kissick MW, Flynn RT, Westerly DC, Mackie TR, Hoban PW. On the making of sharp longitudinal dose profiles with helical tomotherapy. Phys Med Biol 2007; 52:6497-510. [PMID: 17951858 PMCID: PMC2220158 DOI: 10.1088/0031-9155/52/21/011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Since the beam width on the helical tomotherapy machine produced by TomoTherapy Inc., is typically a few centimeters in the longitudinal direction (into the bore), the optimizer must choose to have a relatively high intensity local to the inside edge of a tumor or planning treatment volume (PTV) when avoiding an immediately adjacent organ at risk (OAR), either superior or inferior. By using a standalone version of the TomoTherapy dose calculator, a realistic beam is applied to idealized deconvolution schemes including the MATLAB Optimizer Toolbox for a simple one-dimensional PTV with adjacent OARs. The results are compared to a clinical example on the TomoTherapy planning station. It is learned that a Gibbs phenomenon type of oscillation in the dose within the tumor under these special circumstances is not unique to TomoTherapy, but is related to the attempt to form a sharp dose gradient-sharper than the beam profile with typical optimization constraints set to achieve a uniform dose as close as possible to the prescription. The clinical implication is that the Gibbs-induced cold spots force the dose to increase in the PTV if a typical PTV dose-volume constraint is used. It is recommended that the dose prescription be smoothed prior to optimization or the dosimetric goals for an OAR adjacent to the PTV are such that a sharp dose falloff is not demanded, especially if the user reduces the requirements that such an OAR be of both high importance and immediately adjacent to the PTV edge.
Collapse
Affiliation(s)
- Michael W Kissick
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
49
|
Van Esch A, Clermont C, Devillers M, Iori M, Huyskens DP. On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom. Med Phys 2007; 34:3825-37. [PMID: 17985628 DOI: 10.1118/1.2777006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Ann Van Esch
- Clinique Ste Elisabeth, Place L. Godin 15, 5000 Namur, Belgium.
| | | | | | | | | |
Collapse
|
50
|
Guckenberger M, Wilbert J, Krieger T, Richter A, Baier K, Meyer J, Flentje M. Four-Dimensional Treatment Planning for Stereotactic Body Radiotherapy. Int J Radiat Oncol Biol Phys 2007; 69:276-85. [PMID: 17707282 DOI: 10.1016/j.ijrobp.2007.04.074] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/04/2007] [Accepted: 04/29/2007] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the influence of tumor motion on the calculation of four-dimensional (4D) dose distributions of the gross tumor volume (GTV) in pulmonary stereotactic body radiotherapy. METHODS AND MATERIALS For 7 patients with eight pulmonary tumors, a respiratory-correlated 4D-computed tomography study was acquired. The internal target volume was the sum of all tumor positions in the planning 4D-computed tomography study, and a 5-mm margin was used for generation of the planning target volume. Three-dimensional (3D) treatment plans were generated with a dose prescription of 3 x 12.5 Gy to the planning target volume enclosing the 65% and 80% isodose. After model-based nonrigid image registration, the 4D dose distributions were calculated. RESULTS No significant difference was found in the dose to the GTV with the tumor in the end-exhalation, end-inhalation, or mid-ventilation phase of the breathing cycle. The high-dose region was confined to the solid tumor, and lower doses were delivered to the surrounding pulmonary tissue of lower density. This nonstatic, variant dose distribution increased the 4D dose to the GTV by 6.2%, on average, compared with calculations using on a static dose distribution during the breathing cycle. The 4D accumulation resulted in a biologic effective dose (BED) of 143 +/- 8 Gy and 106 +/- 4 Gy to the GTV in the plan-65% and plan-80%, respectively. The dose to the ipsilateral lung was not different between the 3D and 4D dose calculations or between plan-65% and plan-80%. CONCLUSIONS In this study, the dose to the GTV was not decreased or blurred in the 4D plan compared with the 3D plan. The 3D doses to the GTV, internal target volume, and dose at the isocenter were good approximations of the 4D dose calculations. The 3D dose at the planning target volume margin underestimated the 4D dose significantly.
Collapse
Affiliation(s)
- Matthias Guckenberger
- Department of Radiation Oncology, Julius-Maximilians University, Wuerzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|