1
|
Rezzoug M, Zerfaoui M, Oulhouq Y, Rrhioua A. Using PRIMO to determine the initial beam parameters of Elekta Synergy linac for electron beam energies of 6, 9, 12, and 15 MeV. Rep Pract Oncol Radiother 2023; 28:592-600. [PMID: 38179294 PMCID: PMC10764041 DOI: 10.5603/rpor.96865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/28/2023] [Indexed: 01/06/2024] Open
Abstract
Background The purpose of this research was to establish the primary electron beam characteristics for an Elekta Synergy linear accelerator. In this task, we take advantage of the PRIMO Monte Carlo software, where the model developed contains the majority of the component materials of the Linac. Materials and methods For all energies, the Elekta Linac electron mode and 14 × 14 cm2 applicator were chosen. To obtain percentage depth dose (PDD) curves, a homogeneous water phantom was voxelized in a 1 × 1 × 0.1 cm3 grid along the central axis. At the reference depth, the dose profile was recorded in 0.1 × 1 × 1 cm3 voxels. Iterative changes were made to the initial beams mean energy and full width at half maximum (FWHM) of energy in order to keep the conformity of the simulated and measured dose curves within. To confirm simulation results, the Gamma analysis was performed with acceptance criteria of 2 mm - 2%. From the validated calculation, the parameters of the PDD and profile curve (R100, R50, Rp, and field size) were collected. Results Initial mean energies of 7.3, 9.85, 12.9, and 15.7 MeV were obtained for nominal energies of 6, 9, 12, and 15, respectively. The PRIMO Monte Carlo model for Elekta Synergy was precisely validated. Conclusions PRIMO is an easy-to-use software program that can calculate dose distribution in water phantoms.
Collapse
Affiliation(s)
- Mohammed Rezzoug
- LPMR, Mohammed First University, Faculty of Science, Oujda-Angad, Morocco
| | - Mustapha Zerfaoui
- LPMR, Mohammed First University, Faculty of Science, Oujda-Angad, Morocco
| | - Yassine Oulhouq
- LPMR, Mohammed First University, Faculty of Science, Oujda-Angad, Morocco
| | - Abdeslem Rrhioua
- LPMR, Mohammed First University, Faculty of Science, Oujda-Angad, Morocco
| |
Collapse
|
2
|
Li R, Tseng W, Wu Q. Validation of the dosimetry of total skin irradiation techniques by Monte Carlo simulation. J Appl Clin Med Phys 2020; 21:107-119. [PMID: 32559022 PMCID: PMC7484841 DOI: 10.1002/acm2.12921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/12/2020] [Accepted: 04/29/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose To validate the dose measurements for two total skin irradiation techniques with Monte Carlo simulation, providing more information on dose distributions, and guidance on further technique optimization. Methods Two total skin irradiation techniques (stand‐up and lay‐down) with different setup were simulated and validated. The Monte Carlo simulation was primarily performed within the EGSnrc environment. Parameters of jaws, MLCs, and a customized copper (Cu) filter were first tuned to match the profiles and output measured at source‐to‐skin distance (SSD) of 100 cm where the secondary source is defined. The secondary source was rotated to simulate gantry rotation. VirtuaLinac, a cloud‐based Monte Carlo package, was used for Linac head simulation as a secondary validation. The following quantities were compared with measurements: for each field/direction at the treatment SSDs, the percent depth dose (PDD), the profiles at the depth of maximum, and the absolute dosimetric output; the composite dose distribution on cylindrical phantoms of 20 to 40 cm diameters. Results Cu filter broadened the FWHM of the electron beam by 44% and degraded the mean energy by 0.7 MeV. At SSD = 100 cm, MC calculated PDDs agreed with measured data within 2%/2 mm (except for the surface voxel) and lateral profiles agreed within 3%. At the treatment SSD, profiles and output factors of individual field matched within 4%; dmax and R80 of the simulated PDDs also matched with measurement within 2 mm. When all fields were combined on the cylindrical phantom, the dmax shifted toward the surface. For lay‐down technique, the maximum x‐ray contamination at the central axis was (MC: 2.2; Measurement: 2.1)% and reduced to 0.2% at 40 cm off the central axis. Conclusions The Monte Carlo results in general agree well with the measurement, which provides support in our commissioning procedure, as well as the full three‐dimensional dose distribution of the patient phantom.
Collapse
Affiliation(s)
- Ruiqi Li
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Wenchih Tseng
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Qiuwen Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
Use of electronic portal imaging devices for electron treatment verification. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 39:199-209. [PMID: 26581763 DOI: 10.1007/s13246-015-0401-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/04/2015] [Indexed: 11/27/2022]
Abstract
This study aims to help broaden the use of electronic portal imaging devices (EPIDs) for pre-treatment patient positioning verification, from photon-beam radiotherapy to photon- and electron-beam radiotherapy, by proposing and testing a method for acquiring clinically-useful EPID images of patient anatomy using electron beams, with a view to enabling and encouraging further research in this area. EPID images used in this study were acquired using all available beams from a linac configured to deliver electron beams with nominal energies of 6, 9, 12, 16 and 20 MeV, as well as photon beams with nominal energies of 6 and 10 MV. A widely-available heterogeneous, approximately-humanoid, thorax phantom was used, to provide an indication of the contrast and noise produced when imaging different types of tissue with comparatively realistic thicknesses. The acquired images were automatically calibrated, corrected for the effects of variations in the sensitivity of individual photodiodes, using a flood field image. For electron beam imaging, flood field EPID calibration images were acquired with and without the placement of blocks of water-equivalent plastic (with thicknesses approximately equal to the practical range of electrons in the plastic) placed upstream of the EPID, to filter out the primary electron beam, leaving only the bremsstrahlung photon signal. While the electron beam images acquired using a standard (unfiltered) flood field calibration were observed to be noisy and difficult to interpret, the electron beam images acquired using the filtered flood field calibration showed tissues and bony anatomy with levels of contrast and noise that were similar to the contrast and noise levels seen in the clinically acceptable photon beam EPID images. The best electron beam imaging results (highest contrast, signal-to-noise and contrast-to-noise ratios) were achieved when the images were acquired using the higher energy electron beams (16 and 20 MeV) when the EPID was calibrated using an intermediate (12 MeV) electron beam energy. These results demonstrate the feasibility of acquiring clinically-useful EPID images of patient anatomy using electron beams and suggest important avenues for future investigation, thus enabling and encouraging further research in this area. There is manifest potential for the EPID imaging method proposed in this work to lead to the clinical use of electron beam imaging for geometric verification of electron treatments in the future.
Collapse
|
4
|
Rodrigues A, Sawkey D, Yin FF, Wu Q. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs. Med Phys 2015; 42:2389-403. [DOI: 10.1118/1.4916896] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
Herranz E, Herraiz JL, Ibáñez P, Pérez-Liva M, Puebla R, Cal-González J, Guerra P, Rodríguez R, Illana C, Udías JM. Phase space determination from measured dose data for intraoperative electron radiation therapy. Phys Med Biol 2015; 60:375-401. [PMID: 25503853 DOI: 10.1088/0031-9155/60/1/375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A procedure to characterize beams of a medical linear accelerator for their use in Monte Carlo (MC) dose calculations for intraoperative electron radiation therapy (IOERT) is presented. The procedure relies on dose measurements in homogeneous media as input, avoiding the need for detailed simulations of the accelerator head. An iterative algorithm (EM-ML) has been employed to extract the relevant details of the phase space (PHSP) of the particles coming from the accelerator, such as energy spectra, spatial distribution and angle of emission of particles. The algorithm can use pre-computed dose volumes in water and/or air, so that the machine-specific tuning with actual data can be performed in a few minutes. To test the procedure, MC simulations of a linear accelerator with typical IOERT applicators and energies, have been performed and taken as reference. A solution PHSP derived from the dose produced by the simulated accelerator has been compared to the reference PHSP. Further, dose delivered by the simulated accelerator for setups not included in the fit of the PHSP were compared to the ones derived from the solution PHSP. The results show that it is possible to derive from dose measurements PHSP accurate for IOERT MC dose estimations.
Collapse
Affiliation(s)
- E Herranz
- Grupo de Física Nuclear, Dpto. Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Madrid E-28040, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Herranz E, Herraiz JL, Ibáñez P, Pérez-Liva M, Puebla R, Cal-González J, Guerra P, Rodríguez R, Illana C, Udías JM. Phase space determination from measured dose data for intraoperative electron radiation therapy. Phys Med Biol 2014. [DOI: https://doi.org/10.1088/0031-9155/60/1/375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Schreiber EC, Sawkey DL, Faddegon BA. Sensitivity analysis of an asymmetric Monte Carlo beam model of a Siemens Primus accelerator. J Appl Clin Med Phys 2012; 13:3402. [PMID: 22402376 PMCID: PMC5716413 DOI: 10.1120/jacmp.v13i2.3402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/30/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022] Open
Abstract
The assumption of cylindrical symmetry in radiotherapy accelerator models can pose a challenge for precise Monte Carlo modeling. This assumption makes it difficult to account for measured asymmetries in clinical dose distributions. We have performed a sensitivity study examining the effect of varying symmetric and asymmetric beam and geometric parameters of a Monte Carlo model for a Siemens PRIMUS accelerator. The accelerator and dose output were simulated using modified versions of BEAMnrc and DOSXYZnrc that allow lateral offsets of accelerator components and lateral and angular offsets for the incident electron beam. Dose distributions were studied for 40×40cm2 fields. The resulting dose distributions were analyzed for changes in flatness, symmetry, and off‐axis ratio (OAR). The electron beam parameters having the greatest effect on the resulting dose distributions were found to be electron energy and angle of incidence, as high as 5% for a 0.25° deflection. Electron spot size and lateral offset of the electron beam were found to have a smaller impact. Variations in photon target thickness were found to have a small effect. Small lateral offsets of the flattening filter caused significant variation to the OAR. In general, the greatest sensitivity to accelerator parameters could be observed for higher energies and off‐axis ratios closer to the central axis. Lateral and angular offsets of beam and accelerator components have strong effects on dose distributions, and should be included in any high‐accuracy beam model. PACS numbers: 87.55.K‐, 87.55.Gh
Collapse
Affiliation(s)
- Eric C Schreiber
- Department of Radiation Oncology, NCCH Rm. CB364, Campus Box 7512, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA.
| | | | | |
Collapse
|
8
|
Lacroix F, Guillot M, McEwen M, Gingras L, Beaulieu L. Extraction of depth-dependent perturbation factors for silicon diodes using a plastic scintillation detector. Med Phys 2011; 38:5441-7. [DOI: 10.1118/1.3637496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Constantin M, Perl J, LoSasso T, Salop A, Whittum D, Narula A, Svatos M, Keall PJ. Modeling the TrueBeam linac using a CAD to Geant4 geometry implementation: Dose and IAEA-compliant phase space calculations. Med Phys 2011; 38:4018-24. [DOI: 10.1118/1.3598439] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
10
|
O'shea TP, Foley MJ, Faddegon BA. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation. Med Phys 2011; 38:3260-9. [DOI: 10.1118/1.3592640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Mihaljevic J, Soukup M, Dohm O, Alber M. Monte Carlo simulation of small electron fields collimated by the integrated photon MLC. Phys Med Biol 2011; 56:829-43. [DOI: 10.1088/0031-9155/56/3/018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
O'Shea TP, Sawkey DL, Foley MJ, Faddegon BA. Monte Carlo commissioning of clinical electron beams using large field measurements. Phys Med Biol 2010; 55:4083-105. [DOI: 10.1088/0031-9155/55/14/009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Sawkey D, Faddegon BA. Simulation of large x-ray fields using independently measured source and geometry details. Med Phys 2010; 36:5622-32. [PMID: 20095275 DOI: 10.1118/1.3259729] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Obtain an accurate simulation of the dose from the 6 and 18 MV x-ray beams from a Siemens Oncor linear accelerator by comparing simulation to measurement. Constrain the simulation by independently determining parameters of the treatment head and incident beam, in particular, the energy and spot size. METHODS Measurements were done with the treatment head in three different configurations: (1) The clinical configuration, (2) the flattening filter removed, and (3) the target and flattening filter removed. Parameters of the incident beam and treatment head were measured directly. Incident beam energy and spectral width were determined from the percent-depth ionization of the raw beam (as described previously), spot size was determined using a spot camera, and the densities of the flattening filters were determined by weighing them. Simulations were done with EGSnrc/BEAMnrc code. An asymmetric simulation was used, including offsets of the spot, primary collimator, and flattening filter from the collimator rotation axis. RESULTS Agreement between measurement and simulation was obtained to the least restrictive of 1% or 1 mm at 6 MV, both with and without the flattening filter in place, except for the buildup region. At 18 MV, the agreement was 1.5%/1.5 mm with the flattening filter in place and 1%/1 mm with it removed, except for in the buildup region. In the buildup region, the discrepancy was 2%/2 mm at 18 MV and 1.5%/1.5 mm at 6 MV with the flattening filter either removed or in place. The methodology for measuring the source and geometry parameters for the treatment head simulation is described. Except to determine the density of the flattening filter, no physical modification of the treatment head is necessary to obtain those parameters. In particular, the flattening filter does not need to be removed as was done in this work. CONCLUSIONS Good agreement between measured and simulated dose distributions was obtained, even in the buildup region. The simulation was tightly constrained by independent measurements of parameters of the incident beam and treatment head. The method of obtaining the input parameters is described, and can be carried out on a clinical linear accelerator.
Collapse
Affiliation(s)
- D Sawkey
- Radiation Oncology, University of California San Francisco, San Francisco, California 94143, USA.
| | | |
Collapse
|
14
|
Faddegon BA, Sawkey D, O'Shea T, McEwen M, Ross C. Treatment head disassembly to improve the accuracy of large electron field simulation. Med Phys 2010; 36:4577-91. [PMID: 19928089 DOI: 10.1118/1.3218764] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purposes of this study are to improve the accuracy of source and geometry parameters used in the simulation of large electron fields from a clinical linear accelerator and to evaluate improvement in the accuracy of the calculated dose distributions. METHODS The monitor chamber and scattering foils of a clinical machine not in clinical service were removed for direct measurement of component geometry. Dose distributions were measured at various stages of reassembly, reducing the number of geometry variables in the simulation. The measured spot position and beam angle were found to vary with the beam energy. A magnetic field from the bending magnet was found between the exit window and the secondary collimators of sufficient strength to deflect electrons 1 cm off the beam axis at 100 cm from the exit window. The exit window was 0.05 cm thicker than manufacturer's specification, with over half of the increased thickness due to water pressure in the channel used to cool the window. Dose distributions were calculated with Monte Carlo simulation of the treatment head and water phantom using EGSnrc, a code benchmarked at radiotherapy energies for electron scatter and bremsstrahlung production, both critical to the simulation. The secondary scattering foil and monitor chamber offset from the collimator rotation axis were allowed to vary with the beam energy in the simulation to accommodate the deflection of the beam by the magnetic field, which was not simulated. RESULTS The energy varied linearly with bending magnet current to within 1.4% from 6.7 to 19.6 MeV, the bending magnet beginning to saturate at the highest beam energy. The range in secondary foil offset used to account for the magnetic field was 0.09 cm crossplane and 0.15 cm inplane, the range in monitor chamber offset was 0.14 cm crossplane and 0.07 cm inplane. A 1.5%/0.09 cm match or better was obtained to measured depth dose curves. Profiles measured at the depth of maximum dose matched the simulated profiles to 2.6% or better at doses of 80% or more of the dose on the central axis. The profiles along the direction of MLC motion agreed to within 0.16 cm at the edge of the field. There remained a mismatch for the lower beam energies at the edge of the profile that ran parallel to the direction of jaw motion of up to 1.4 cm for the 6 MeV beam, attributed to the MLC support block at the periphery of the field left out of the simulation and to beam deflection by the magnetic field. The possibility of using these results to perform accurate simulation without disassembly is discussed. Phase-space files were made available for benchmarking beam models and other purposes. CONCLUSIONS The match to measured large field dose distributions from clinical electron beams with Monte Carlo simulation was improved with more accurate source details and geometry details closer to manufacturer's specification than previously achieved.
Collapse
Affiliation(s)
- Bruce A Faddegon
- Department of Radiation Oncology, UC San Francisco Comprehensive Cancer Center, San Francisco, California 94143-1708, USA.
| | | | | | | | | |
Collapse
|
15
|
Monte Carlo simulations of electron beams collimated with a dual electron multileaf collimator: a feasibility study. Radiol Phys Technol 2009; 2:210-8. [DOI: 10.1007/s12194-009-0068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 06/16/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
|
16
|
Sawkey DL, Faddegon BA. Determination of electron energy, spectral width, and beam divergence at the exit window for clinical megavoltage x-ray beams. Med Phys 2009; 36:698-707. [PMID: 19378730 DOI: 10.1118/1.3070547] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Monte Carlo simulations of x-ray beams typically take parameters of the electron beam in the accelerating waveguide to be free parameters. In this paper, a methodology is proposed and implemented to determine the energy, spectral width, and beam divergence of the electron source. All treatment head components were removed from the beam path, leaving only the exit window. With the x-ray target and flattener out of the beam, uncertainties in physical characteristics and relative position of the target and flattening filter, and in spot size, did not contribute to uncertainty in the energy. Beam current was lowered to reduce recombination effects. The measured dose distributions were compared with Monte Carlo simulation of the electron beam through the treatment head to extract the electron source characteristics. For the nominal 6 and 18 MV x-ray beams, the energies were 6.51 +/- 0.15 and 13.9 +/- 0.2 MeV, respectively, with the uncertainties resulting from uncertainties in the detector position in the measurement and in the stopping power in the simulations. Gaussian spectral distributions were used, with full widths at half maximum ranging from 20 +/- 4% at 6 MV to 13 +/- 4% at 18 MV required to match the fall-off portion of the percent-depth ionization curve. Profiles at the depth of maximum dose from simulations that used the manufacturer-specified exit window geometry and no beam divergence were 2-3 cm narrower than measured profiles. Two simulation configurations yielding the measured profile width were the manufacturer-specified exit window thickness with electron source divergences of 3.3 degrees at 6 MV and 1.8 degrees at 18 MV and an exit window 40% thicker than the manufacturer's specification with no beam divergence. With the x-ray target in place (and no flattener), comparison of measured to simulated profiles sets upper limits on the electron source divergences of 0.2 degrees at 6 MV and 0.1 degrees at 18 MV. A method of determining source characteristics without mechanical modification of the treatment head, and therefore feasible in clinics, is presented. The energies and spectral widths determined using this method agree with those determined with only the exit window in the beam path.
Collapse
Affiliation(s)
- D L Sawkey
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, San Francisco, California 94143, USA.
| | | |
Collapse
|
17
|
Weinberg R, Antolak JA, Starkschall G, Kudchadker RJ, White RA, Hogstrom KR. Influence of source parameters on large-field electron beam profiles calculated using Monte Carlo methods. Phys Med Biol 2008; 54:105-16. [PMID: 19075360 DOI: 10.1088/0031-9155/54/1/007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this paper was to study the source model for a Monte Carlo simulation of electron beams from a medical linear accelerator. In a prior study, a non-divergent Gaussian source with a full-width at half-maximum (FWHM) of 0.15 cm was successful in predicting relative dose distributions for electron beams with applicators. However, for large fields with the applicator removed, discrepancies were found between measured and calculated profiles, particularly in the shoulder region. In this work, the source was changed to a divergent Gaussian spatial distribution and the FWHM parameter was varied to produce better agreement with measured data. The influence of the FWHM source parameter on profiles was observed at multiple locations in the simulation geometry including in-air fluence profiles at a 95 cm source-to-surface distance (SSD), percent depth dose profiles and off-axis profiles (OARs) in a water phantom for two SSDs, 80 and 100 cm. For a 6 MeV 40 x 40 cm(2) OAR profile, discrepancies in the shoulder region were reduced from 15% to 4% using a FWHM value of 0.45 cm. The optimal FWHM values for the other energies were 0.45 cm for 9 MeV, 0.22 for 12 MeV, 0.25 for 16 MeV and 0.2 cm for 20 MeV. Although this range of values was larger than measured focal spot sizes reported by other researchers, using the increased FWHM values improved the fit at most locations in the simulation geometry, giving confidence that the model could be used with a variety of SSDs and field sizes.
Collapse
Affiliation(s)
- Rebecca Weinberg
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Two Monte Carlo systems, EGSnrc and Geant4, the latter with two different 'physics lists,' were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results to measurement. Both codes were capable of accurately reproducing the measured dose distributions of the six electron beams available on the accelerator. Depth penetration matched the average measured with a diode and parallel-plate chamber to 0.04 cm or better. Calculated depth dose curves agreed to 2% with diode measurements in the build-up region, although for the lower beam energies there was a discrepancy of up to 5% in this region when calculated results are compared to parallel-plate measurements. Dose profiles at the depth of maximum dose matched to 2-3% in the central 25 cm of the field, corresponding to the field size of the largest applicator. A 4% match was obtained outside the central region. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. Simulations with the different codes and physics lists used different source energies, incident beam angles, thicknesses of the primary foils, and distance between the primary and secondary foil. The true source and geometry parameters were not known with sufficient accuracy to determine which parameter set, including the energy of the source, was closest to the truth. These results underscore the requirement for experimental benchmarks of depth penetration and electron scatter for beam energies and foils relevant to radiotherapy.
Collapse
Affiliation(s)
- Bruce A Faddegon
- University of California San Francisco Comprehensive Cancer Center, 1600 Divisadero Street, San Francisco, CA 94143-1708, USA.
| | | | | |
Collapse
|
19
|
Klein EE, Vicic M, Ma CM, Low DA, Drzymala RE. Validation of calculations for electrons modulated with conventional photon multileaf collimators. Phys Med Biol 2008; 53:1183-208. [PMID: 18296757 DOI: 10.1088/0031-9155/53/5/003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Treating shallow tumors with a homogeneous dose while simultaneously minimizing the dose to distal critical organs remains a challenge in radiotherapy. One promising approach is modulated electron radiotherapy (MERT). Due to the scattering properties of electron beams, the commercially provided secondary and tertiary photon collimation systems are not conducive for electron beam delivery when standard source-to-surface distances are used. Also, commercial treatment planning systems may not accurately model electron-beam dose distributions when collimated without the standard applicators. However, by using the photon multileaf collimators (MLCs) to create segments to modulate electron beams, the quality of superficial tumor dose distributions may improve substantially. The purpose of this study is to develop and evaluate calculations for the narrow segments needed to modulate megavoltage electron beams using photon beam multileaf collimators. Modulated electron radiotherapy (MERT) will be performed with a conventional linear accelerator equipped with a 120 leaf MLC for 6-20 MeV electron beam energies. To provide a sharp penumbra, segments were delivered with short SSDs (70-85 cm). Segment widths (SW) ranging from 1 to 10 cm were configured for delivery and planning, using BEAMnrc Monte Carlo (MC) code, and the DOSXYZnrc MC dose calculations. Calculations were performed with voxel size of 0.2 x 0.2 x 0.1 cm3. Dosimetry validation was performed using radiographic film and micro- or parallel-plate chambers. Calculated and measured data were compared using technical computing software. Beam sharpness (penumbra) degraded with decreasing incident beam energy and field size (FS), and increasing SSD. A 70 cm SSD was found to be optimal. The PDD decreased significantly with decreasing FS. The comparisons demonstrated excellent agreement for calculations and measurements within 3%, 1 mm. This study shows that accurate calculations for MERT as delivered with existing photon MLC are feasible and allows the opportunity to take advantage of the dynamic leaf motion capabilities and control systems, to provide conformal dose distributions.
Collapse
|
20
|
Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, Kawrakow I, Keall PJ, Liu H, Ma CMC, Rogers DWO, Seuntjens J, Sheikh-Bagheri D, Siebers JV. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 2007; 34:4818-53. [PMID: 18196810 DOI: 10.1118/1.2795842] [Citation(s) in RCA: 438] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
21
|
Faddegon BA, Villarreal-Barajas JE. Final Aperture Superposition Technique applied to fast calculation of electron output factors and depth dose curves. Med Phys 2005; 32:3286-94. [PMID: 16370417 DOI: 10.1118/1.2068947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Final Aperture Superposition Technique (FAST) is described and applied to accurate, near instantaneous calculation of the relative output factor (ROF) and central axis percentage depth dose curve (PDD) for clinical electron beams used in radiotherapy. FAST is based on precalculation of dose at select points for the two extreme situations of a fully open final aperture and a final aperture with no opening (fully shielded). This technique is different than conventional superposition of dose deposition kernels: The precalculated dose is differential in position of the electron or photon at the downstream surface of the insert. The calculation for a particular aperture (x-ray jaws or MLC, insert in electron applicator) is done with superposition of the precalculated dose data, using the open field data over the open part of the aperture and the fully shielded data over the remainder. The calculation takes explicit account of all interactions in the shielded region of the aperture except the collimator effect: Particles that pass from the open part into the shielded part, or visa versa. For the clinical demonstration, FAST was compared to full Monte Carlo simulation of 10 x 10, 2.5 x 2.5, and 2 x 8 cm2 inserts. Dose was calculated to 0.5% precision in 0.4 x 0.4 x 0.2 cm3 voxels, spaced at 0.2 cm depth intervals along the central axis, using detailed Monte Carlo simulation of the treatment head of a commercial linear accelerator for six different electron beams with energies of 6-21 MeV. Each simulation took several hours on a personal computer with a 1.7 Mhz processor. The calculation for the individual inserts, done with superposition, was completed in under a second on the same PC. Since simulations for the pre calculation are only performed once, higher precision and resolution can be obtained without increasing the calculation time for individual inserts. Fully shielded contributions were largest for small fields and high beam energy, at the surface, reaching a maximum of 5.6% at 21 MeV. Contributions from the collimator effect were largest for the large field size, high beam energy, and shallow depths, reaching a maximum of 4.7% at 21 MeV. Both shielding contributions and the collimator effect need to be taken into account to achieve an accuracy of 2%. FAST takes explicit account of the shielding contributions. With the collimator effect set to that of the largest field in the FAST calculation, the difference in dose on the central axis (product of ROF and PDD) between FAST and full simulation was generally under 2%. The maximum difference of 2.5% exceeded the statistical precision of the calculation by four standard deviations. This occurred at 18 MeV for the 2.5 x 2.5 cm2 field. The differences are due to the method used to account for the collimator effect.
Collapse
Affiliation(s)
- B A Faddegon
- Department of Radiation Oncology, UCSF, San Francisco, California 94143-1708, USA.
| | | |
Collapse
|
22
|
Schreiber EC, Faddegon BA. Sensitivity of large-field electron beams to variations in a Monte Carlo accelerator model. Phys Med Biol 2005; 50:769-78. [PMID: 15798253 DOI: 10.1088/0031-9155/50/5/003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Adjustments made to Monte Carlo models during the commissioning of the simulation should be physically realistic and correspond to actual machine characteristics. Large electron fields, with the jaws fully open and the applicator removed, are sensitive to important source and geometry parameters and may provide the most accurate beam models, including those collimated by an applicator. We report on the results of a comprehensive Monte Carlo sensitivity study documenting the response of these large fields to changes in the configuration of a Siemens Primus linear accelerator. The study was performed for 6, 9 12, 15, 18 and 21 MeV configurations, and included variations of thickness, position and lateral alignment of all treatment head components. Variations of electron beam characteristics were also included in the study. Results were classified by their impact on central-axis depth dose distributions, including the bremsstrahlung tail, and on beam profiles near D(max) and in the bremsstrahlung region. Low-energy results show an increased sensitivity to electron beam properties. High-energy bremsstrahlung profiles are shown to be useful in determining misalignments between the beam axis and mechanical isocentre. For all energies, the alignment of the secondary scattering foil and monitor chamber are shown to be critical for correctly modelling beam asymmetries. The results suggest a methodology for commissioning of electron beams using Monte Carlo treatment head simulation.
Collapse
Affiliation(s)
- E C Schreiber
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC 27599-7512, USA
| | | |
Collapse
|