1
|
Bouchard H. Reference dosimetry of modulated and dynamic photon beams. Phys Med Biol 2021; 65:24TR05. [PMID: 33438582 DOI: 10.1088/1361-6560/abc3fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the late 1980s, a new technique was proposed that would revolutionize radiotherapy. Now referred to as intensity-modulated radiotherapy, it is at the core of state-of-the-art photon beam delivery techniques, such as helical tomotherapy and volumetric modulated arc therapy. Despite over two decades of clinical application, there are still no established guidelines on the calibration of dynamic modulated photon beams. In 2008, the IAEA-AAPM work group on nonstandard photon beam dosimetry published a formalism to support the development of a new generation of protocols applicable to nonstandard beam reference dosimetry (Alfonso et al 2008 Med. Phys. 35 5179-86). The recent IAEA Code of Practice TRS-483 was published as a result of this initiative and addresses exclusively small static beams. But the plan-class specific reference calibration route proposed by Alfonso et al (2008 Med. Phys. 35 5179-86) is a change of paradigm that is yet to be implemented in radiotherapy clinics. The main goals of this paper are to provide a literature review on the dosimetry of nonstandard photon beams, including dynamic deliveries, and to discuss anticipated benefits and challenges in a future implementation of the IAEA-AAPM formalism on dynamic photon beams.
Collapse
Affiliation(s)
- Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada. Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec H2X 0A9, Canada. Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montréal, Québec H2X 3E4, Canada
| |
Collapse
|
2
|
Park K, Bak J, Park S, Choi W, Park SW. Determination of small-field correction factors for cylindrical ionization chambers using a semiempirical method. Phys Med Biol 2016; 61:1293-308. [PMID: 26796623 DOI: 10.1088/0031-9155/61/3/1293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields.We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method.The determined correction factors () were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1 × 1 cm2, was calculated to be for a PTW 31010 chamber and for a PTW 31016 chamber. On the other hand, the values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well.We devised a method for determining from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.
Collapse
|
3
|
Ishihara Y, Sawada A, Nakamura M, Miyabe Y, Tanabe H, Kaneko S, Takayama K, Mizowaki T, Kokubo M, Hiraoka M. Development of a dose verification system for Vero4DRT using Monte Carlo method. J Appl Clin Med Phys 2014; 15:4961. [PMID: 25493521 PMCID: PMC5711115 DOI: 10.1120/jacmp.v15i6.4961] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/08/2014] [Accepted: 07/01/2014] [Indexed: 11/23/2022] Open
Abstract
Vero4DRT is an innovative image-guided radiotherapy system employing a C-band X-ray head with gimbal mechanics. The purposes of this study were to propose specific MC models of the linac head and multileaf collimator (MLC) for the Vero4DRT and to verify their accuracy. For a 6 MV photon beam delivered by the Vero4DRT, a simulation code was implemented using EGSnrc. The linac head model and the MLC model were simulated based on its specification. Next, the percent depth dose (PDD) and beam profiles at depths of 15, 100, and 200 mm were simulated under source-to-surface distance of 900 and 1000 mm. Field size was set to 150 × 150 mm2 at a depth of 100 mm. Each of the simulated dosimetric metrics was then compared with the corresponding measurements by a 0.125 cc ionization chamber. After that, intra- and interleaf leakage, tongue-and-groove, and rounded-leaf profiles were simulated for the static MLC model. Meanwhile, film measurements were performed using EDR2 films under similar conditions to simulation. The measurement for the rounded-leaf profile was performed using the water phantom and the ionization chamber. The leaf physical density and abutting leaf gap were adjusted to obtain good agreement between the simulated intra- and interleaf leakage profiles and measurements. For the MLC model in step-and-shoot cases, a pyramid and a prostate IMRT field were simulated, while film measurements were performed using EDR2. For the linac head, exclusive of MLC, the difference in PDD was < 1.0% after the buildup region. The simulated beam profiles agreed to within 1.3% at each depth. The MLC model has been shown to reproduce dose measurements within 2.5% for static tests. The MLC is made of tungsten alloy with a purity of 95%. The leaf gap of 0.015 cm and the MLC physical density of 18.0 g/ cm3, which provided the best agreement between the simulated and measured leaf leakage, were assigned to our MC model. As a result, the simulated step-and-shoot IMRT dose distributions agreed with the film measurements to within 3.3%, with exception of the penumbra region. We have developed specific MC models of the linac head and the MLC in the Vero4DRT system. The results have demonstrated that our MC models have high accuracy.
Collapse
Affiliation(s)
- Yoshitomo Ishihara
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Benmakhlouf H, Sempau J, Andreo P. Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams: A PENELOPE Monte Carlo study. Med Phys 2014; 41:041711. [DOI: 10.1118/1.4868695] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
5
|
Abstract
We present a method for improving the delivery efficiency of VMAT by extending the recently published VMAT treatment planning algorithm vmerge to automatically generate optimal partial-arc plans. A high-quality initial plan is created by solving a convex multicriteria optimization problem using 180 equi-spaced beams. This initial plan is used to form a set of dose constraints, and a set of partial-arc plans is created by searching the space of all possible partial-arc plans that satisfy these constraints. For each partial-arc, an iterative fluence map merging and sequencing algorithm (vmerge) is used to improve the delivery efficiency. Merging continues as long as the dose quality is maintained above a user-defined threshold. The final plan is selected as the partial-arc with the lowest treatment time. The complete algorithm is called pmerge. Partial-arc plans are created using pmerge for a lung, liver and prostate case, with final treatment times of 127, 245 and 147 . Treatment times using full arcs with vmerge are 211, 357 and 178 s. The mean doses to the critical structures for the vmerge and pmerge plans are kept within 5% of those in the initial plan, and the target volume covered by the prescription isodose is maintained above 98% for the pmerge and vmerge plans. Additionally, we find that the angular distribution of fluence in the initial plans is predictive of the start and end angles of the optimal partial-arc. We conclude that VMAT delivery efficiency can be improved by employing partial-arcs without compromising dose quality, and that partial-arcs are most applicable to cases with non-centralized targets.
Collapse
Affiliation(s)
- Jeremiah Wala
- Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
6
|
Calvo OI, Gutiérrez AN, Stathakis S, Esquivel C, Papanikolaou N. On the quantification of the dosimetric accuracy of collapsed cone convolution superposition (CCCS) algorithm for small lung volumes using IMRT. J Appl Clin Med Phys 2012; 13:3751. [PMID: 22584174 PMCID: PMC5716560 DOI: 10.1120/jacmp.v13i3.3751] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 01/03/2012] [Indexed: 11/23/2022] Open
Abstract
Specialized techniques that make use of small field dosimetry are common practice in today's clinics. These new techniques represent a big challenge to the treatment planning systems due to the lack of lateral electronic equilibrium. Because of this, the necessity of planning systems to overcome such difficulties and provide an accurate representation of the true value is of significant importance. Pinnacle3 is one such planning system. During the IMRT optimization process, Pinnacle3 treatment planning system allows the user to specify a minimum segment size which results in multiple beams composed of several subsets of different widths. In this study, the accuracy of the engine dose calculation, collapsed cone convolution superposition algorithm (CCCS) used by Pinnacle3, was quantified by Monte Carlo simulations, ionization chamber, and Kodak extended dose range film (EDR2) measurements for 11 SBRT lung patients. Lesions were < 3.0 cm in maximal diameter and <27.0cm3 in volume. The Monte Carlo EGSnrc\BEAMnrc and EGS4\MCSIM were used in the comparison. The minimum segment size allowable during optimization had a direct impact on the number of monitor units calculated for each beam. Plans with the smallest minimum segment size (0.1 cm2 to 2.0 cm2) had the largest number of MUs. Although PTV coverage remained unaffected, the segment size did have an effect on the dose to the organs at risk. Pinnacle3-calculated PTV mean doses were in agreement with Monte Carlo-calculated mean doses to within 5.6% for all plans. On average, the mean dose difference between Monte Carlo and Pinnacle3 for all 88 plans was 1.38%. The largest discrepancy in maximum dose was 5.8%, and was noted for one of the plans using a minimum segment size of 1.0 cm2. For minimum dose to the PTV, a maximum discrepancy between Monte Carlo and Pinnacle3 was noted of 12.5% for a plan using a 6.0 cm2 minimum segment size. Agreement between point dose measurements and Pinnacle3-calculated doses were on average within 0.7% in both phantoms. The profiles show a good agreement between Pinnacle3, Monte Carlo, and EDR2 film. The gamma index and the isodose lines support the result.
Collapse
Affiliation(s)
- Oscar I Calvo
- Department of Radiation Oncology, School of Medicine, Cancer Therapy & Research Center, The University of Texas Health Science Center San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
7
|
Fix MK, Volken W, Frei D, Frauchiger D, Born EJ, Manser P. Monte Carlo implementation, validation, and characterization of a 120 leaf MLC. Med Phys 2011; 38:5311-20. [PMID: 21992349 DOI: 10.1118/1.3626485] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Recently, the new high definition multileaf collimator (HD120 MLC) was commercialized by Varian Medical Systems providing high resolution in the center section of the treatment field. The aim of this work is to investigate the characteristics of the HD120 MLC using Monte Carlo (MC) methods. METHODS Based on the information of the manufacturer, the HD120 MLC was implemented into the already existing Swiss MC Plan (SMCP). The implementation has been configured by adjusting the physical density and the air gap between adjacent leaves in order to match transmission profile measurements for 6 and 15 MV beams of a Novalis TX. These measurements have been performed in water using gafchromic films and an ionization chamber at an SSD of 95 cm and a depth of 5 cm. The implementation was validated by comparing diamond measured and calculated penumbra values (80%-20%) for different field sizes and water depths. Additionally, measured and calculated dose distributions for a head and neck IMRT case using the DELTA(4) phantom have been compared. The validated HD120 MLC implementation has been used for its physical characterization. For this purpose, phase space (PS) files have been generated below the fully closed multileaf collimator (MLC) of a 40 × 22 cm(2) field size for 6 and 15 MV. The PS files have been analyzed in terms of energy spectra, mean energy, fluence, and energy fluence in the direction perpendicular to the MLC leaves and have been compared with the corresponding data using the well established Varian 80 leaf (MLC80) and Millennium M120 (M120 MLC) MLCs. Additionally, the impact of the tongue and groove design of the MLCs on dose has been characterized. RESULTS Calculated transmission values for the HD120 MLC are 1.25% and 1.34% in the central part of the field for the 6 and 15 MV beam, respectively. The corresponding ionization chamber measurements result in a transmission of 1.20% and 1.35%. Good agreement has been found for the comparison between transmission profiles resulting from MC simulations and film measurements. The simulated and measured values for the penumbra agreed within <0.5 mm for all field sizes, depths, and beam energies, and a good agreement has been found between the measured and the calculated dose distributions for the IMRT case. The total energy spectra are almost identical for the three MLCs. However, the mean energy, fluence and energy fluence are significantly different. Due to the different leaf widths of the MLCs, the shape of these distributions is different, each representing its leave structure. Due to the increase in width from the inner to the outer HD120 MLC leaves, the fluence and energy fluence clearly decrease below the outer leaves. The MLC80 and the M120 MLC resulted in an increase of the fluence and energy fluence compared with those resulted for the HD120 MLC. The dose reduction can exceed 20% compared with the dose of the open field due to the tongue and groove design of the HD120 MLC. CONCLUSIONS The HD120 MLC has been successfully implemented into the SMCP. Comparisons between MC calculations and measurements show very good agreement. The SMCP is now able to calculate accurate dose distributions for treatment plans using the HD120 MLC.
Collapse
Affiliation(s)
- Michael K Fix
- Division of Medical Radiation Physics, Inselspital and University of Bern, CH-3010 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
8
|
González W, Lallena AM, Alfonso R. Monte Carlo simulation of the dynamic micro-multileaf collimator of a LINAC Elekta Precise using PENELOPE. Phys Med Biol 2011; 56:3417-31. [DOI: 10.1088/0031-9155/56/11/015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Kairn T, Aland T, Franich RD, Johnston PN, Kakakhel MB, Kenny J, Knight RT, Langton CM, Schlect D, Taylor ML, Trapp JV. Adapting a generic BEAMnrc model of the BrainLAB m3 micro-multileaf collimator to simulate a local collimation device. Phys Med Biol 2010; 55:N451-63. [DOI: 10.1088/0031-9155/55/17/n01] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Kairn T, Kenny J, Crowe SB, Fielding AL, Franich RD, Johnston PN, Knight RT, Langton CM, Schlect D, Trapp JV. Technical Note: Modeling a complex micro-multileaf collimator using the standard BEAMnrc distribution. Med Phys 2010; 37:1761-7. [DOI: 10.1118/1.3355873] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Eaton D, Twyman N, Thomas S. Commissioning a Miniature Multileaf Collimator for Small Field Radiotherapy. Med Dosim 2010; 35:1-6. [DOI: 10.1016/j.meddos.2008.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 12/11/2008] [Accepted: 12/29/2008] [Indexed: 11/29/2022]
|
12
|
Hoffmann L. Implementation and experimental validation of the high dose rate stereotactic treatment mode at Varian accelerators. Acta Oncol 2009; 48:201-8. [PMID: 18759143 DOI: 10.1080/02841860802279733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Treating small tumours in the brain requires usage of small fields. However, it is a challenge for all treatment planning systems (TPS) to modulate small fields (< or = 3 x 3 cm(2)) for which lateral electronic equilibrium does not exits. MATERIAL AND METHODS Open field beam data was measured for the stereotactic mode at our Varian Trilogy accelerator and was implemented in the Eclipse TPS for both the Pencil Beam (PB) and the Anisotropic Analytical Algorithm (AAA).Additional output factors, profiles and percentage depth dose curves were measured in a water phantom for asymmetric fields and fields defined by the Varian 120 MLC and the BrainLAB m3 MLC. Dose distributions in transverse sections were measured with gafchromic films in a homogeneous phantom. These were compared to those calculated by the Eclipse TPS for 11 stereotactic treatment plans. The plans included non-coplanar, dynamic and arc fields. All comparisons for the film measurements in the phantom were made with a Gamma criterion of 2 mm in distance and 3% in dose. RESULTS The AAA and the PB algorithms broadened the penumbra of the profiles by approximately 1.5 mm and 2.0 mm, respectively. For static fields defined by the Varian 120 MLC, the measured field size was 1.0 mm broader than the calculated. The output factors were typically within 2% for field sizes > or = 2 x 2 cm(2). More than 95% of the points passed the Gamma criterion. Up to 50% of the points in the low dose regions failed the criterion, but overall the match was satisfactory. CONCLUSION The accuracy of calculations performed by the Eclipse TPS for the SRS mode was shown to be within a few percent for most clinical fields. AAA was found to be superior to the PB algorithm in modelling the dose in the penumbra region.
Collapse
|
13
|
Caprile P, Hartmann GH. Development and validation of a beam model applicable to small fields. Phys Med Biol 2009; 54:3257-68. [DOI: 10.1088/0031-9155/54/10/020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Siochi RA. Leakage reduction for the Siemens Moduleaf. J Appl Clin Med Phys 2009; 10:139-149. [PMID: 19458591 PMCID: PMC5720452 DOI: 10.1120/jacmp.v10i2.2894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 11/25/2022] Open
Abstract
The ModuLeaf, an add‐on miniature multileaf collimator (MMLC) for the Siemens ONCOR linear accelerator, provides high resolution field shaping with a maximum interleaf leakage dose of 1.50% at 6 MV. However, beyond the maximum treatment field size, the distribution of leakage and scatter along the y‐axis is different from that of the x‐axis, with maximum leakage values of 1.53% and 0.39%, respectively. Such differences cannot be modeled in the Pinnacle treatment planning system. Also, within the 10 cm×12 cm treatment region, leakage from the crack between closed leaf ends was 3.76%. To resolve these issues, gaps in the ModuLeaf frame were filled with lead sheets, and the Siemens MLC was operated in MLC mode (rather than bank mode). As a result, a rectangle of 10.4 cm×11 cm was formed with the MLC leaves closed behind the Y jaws, whose opening was 10.4 cm. This significantly reduced the difference between the leakage patterns in the x and y directions, with maximum leakage doses of 0.43% outside the treatment region and 1.67% near the crack between abutting ModuLeaf leaves. The modification also reduced the mean square error between Pinnacle profiles and measured profiles in the tail region. PACS number: 87.56.jk
Collapse
Affiliation(s)
- R Alfredo Siochi
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, U.S.A
| |
Collapse
|
15
|
Crop F, Reynaert N, Pittomvils G, Paelinck L, De Wagter C, Vakaet L, Thierens H. The influence of small field sizes, penumbra, spot size and measurement depth on perturbation factors for microionization chambers. Phys Med Biol 2009; 54:2951-69. [DOI: 10.1088/0031-9155/54/9/024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Giantsoudi D, Stathakis S, Liu Y, Shi C, Papanikolaou N. Monte Carlo Modeling and Commissioning of a Dual-layer Micro Multileaf Collimator. Technol Cancer Res Treat 2009; 8:105-14. [PMID: 19334791 DOI: 10.1177/153303460900800203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to commission a first-of-its-kind dual-layer micro multileaf collimator (mMLC) system by using Monte Carlo dose calculations. The mMLC is attached on a Varian 600C linac. Having a lower and an upper layer of MLC leaves, this mMLC allows for field shaping in two orthogonal directions. The commissioning of the system was performed in two steps: without and with the mMLC attached on the linac. The treatment head without and with the mMLC was modeled in the BEAMnrc Monte Carlo (MC) code. The scoring planes for the phase space files were specified below the linac's secondary collimators (jaws) and above and below the mMLC. With the mMLC attached to the linac the field size was defined by the jaws as 10 x 10 cm(2), which is also the maximum possible field size that can be shaped by the mMLC. For the commissioning of the linac, several fields of various sizes were simulated and compared against ionization chamber measurements in a water phantom. Output factors for several field sizes, as well as percent depth dose curves and dose profiles for rectangular and irregular shape fields, were calculated and compared against measurements in water. Agreement between measured and calculated data was better than 1% and less than 1.0 mm in the penumbra region for open fields. With the mMLC attached, the agreement between measurements and MC calculations is within 1.0% or 1.0 mm in the penumbra region.
Collapse
Affiliation(s)
- D Giantsoudi
- Cancer Therapy and Research Center at Univ of Texas Health Science Center, 7979 Wurzbach Rd., San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
17
|
Das IJ, Cheng CW, Watts RJ, Ahnesjö A, Gibbons J, Li XA, Lowenstein J, Mitra RK, Simon WE, Zhu TC. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys 2008; 35:4186-215. [PMID: 18841871 DOI: 10.1118/1.2969070] [Citation(s) in RCA: 302] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bush K, Popescu IA, Zavgorodni S. A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications. Phys Med Biol 2008; 53:N337-47. [PMID: 18711246 DOI: 10.1088/0031-9155/53/18/n01] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Crop F, Van Rompaye B, Paelinck L, Vakaet L, Thierens H, De Wagter C. On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction. Phys Med Biol 2008; 53:3971-84. [DOI: 10.1088/0031-9155/53/14/015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Liu Y, Shi C, Tynan P, Papanikolaou N. Dosimetric characteristics of dual-layer multileaf collimation for small-field and intensity-modulated radiation therapy applications. J Appl Clin Med Phys 2008; 9:15-29. [PMID: 18714277 PMCID: PMC5721708 DOI: 10.1120/jacmp.v9i2.2709] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 01/14/2008] [Accepted: 01/14/2008] [Indexed: 11/23/2022] Open
Abstract
The purpose of the present work was to measure the performance characteristics in the penumbra region and on the leaf‐end of an innovative dual‐layer micro multileaf collimator (DmMLC). The DmMLC consists of two orthogonal (upper and lower) layers of leaves; a standard MLC consists of one layer. The DmMLC provides unique performance characteristics in smoothing dose undulation, reducing leaf‐end transmission, and reducing MLC field dependence of the leaf stepping angle. Two standard MLCs (80‐leaf and 120‐leaf versions: Varian Medical Systems, Palo Alto, CA), a DmMLC (AccuKnife: Initia Medical Technology, Canton, MA), and a Cerrobend (Cerro Metal Products, Bellefonte, PA) block were used in performance studies involving a triangular field, a cross leaf‐end field, and a circular field. Measurements were made with 6‐MV X‐rays and extended dose range film at a depth of 5 cm in Solid Water (Gammex rmi, Middleton, WI) at a source–axis distance of 100 cm. The field penumbra width measured between the 20% and 80% isodose lines through the MLC‐80, MLC‐120, DmMLC, and Cerrobend block were 9.0, 5.0, 3.0, and 2.0 mm respectively. The dose undulation amplitude of the 50% isodose line was measured as 5.5, 2.0, and 0.5 mm for the MLC‐80, MLC‐120, and DmMLC respectively. The planar dose difference between the MLC‐80, MLC‐120, and DmMLC against Cerrobend block was measured as ranging at ±52.5%,±35.0%, and ±20.0% respectively. The leaf‐end transmission was measured at 22.4% in maximum and 15.4% in average when closing a single layer of the DmMLC, and at 2.4% in maximum and 2.1% in average when closing both layers. The MLC dependence of the leaf stepping angle with the DmMLC ranged from 45 degrees to 90 degrees. The standard MLC leaf stepping angle ranged from 0 degrees to 90 degrees. In conclusion, the dose undulation, leaf‐end transmission, and MLC field dependence of the leaf stepping angle with the DmMLC were remarkably reduced as compared with those of the standard MLCs. And as compared with Cerrobend block, the DmMLC provided very comparable performance in field‐edge smoothing and in the shaping of complex fields. PACS numbers: 87.56.Jk, 87.56.Nk, 87.56.Nj, 87.57.Nt
Collapse
Affiliation(s)
- Yaxi Liu
- Cancer Therapy and Research Center, Medical Physics Department, University of Texas Health Science Center, Radiation Oncology Department, San Antonio, Texas, U.S.A
| | - Chengyu Shi
- Cancer Therapy and Research Center, Medical Physics Department, University of Texas Health Science Center, Radiation Oncology Department, San Antonio, Texas, U.S.A
| | - Patricia Tynan
- Cancer Therapy and Research Center, Medical Physics Department, University of Texas Health Science Center, Radiation Oncology Department, San Antonio, Texas, U.S.A
| | - Niko Papanikolaou
- Cancer Therapy and Research Center, Medical Physics Department, University of Texas Health Science Center, Radiation Oncology Department, San Antonio, Texas, U.S.A
| |
Collapse
|
21
|
Das IJ, Ding GX, Ahnesjö A. Small fields: Nonequilibrium radiation dosimetry. Med Phys 2007; 35:206-15. [DOI: 10.1118/1.2815356] [Citation(s) in RCA: 484] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|