1
|
Ito T, Monzen H, Kubo K, Kosaka H, Yanagi Y, Sakai Y, Inada M, Doi H, Nishimura Y. Dose difference between anisotropic analytical algorithm (AAA) and Acuros XB (AXB) caused by target's air content for volumetric modulated arc therapy of head and neck cancer. Rep Pract Oncol Radiother 2023; 28:399-406. [PMID: 37795404 PMCID: PMC10547402 DOI: 10.5603/rpor.a2023.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/23/2022] [Indexed: 10/06/2023] Open
Abstract
Background We clarified the dose difference between the anisotropic analytical algorithm (AAA) and Acuros XB (AXB) with increasing target's air content using a virtual phantom and clinical cases. Materials and methods Whole neck volumetric modulated arc therapy (VMAT) plan was transferred into a virtual phantom with a cylindrical air structure at the center. The diameter of the air structure was changed from 0 to 6 cm, and the target's air content defined as the air/planning target volume (PTV) in percent (air/PTV) was varied. VMAT plans were recalculated by AAA and AXB with the same monitor unit (MU) and multi-leaf collimator (MLC) motions. The dose at each air/PTV (5%-30%) was compared between each algorithm with D98%, D95%, D50% and D2% for the PTV. In addition, MUs were also compared with the same MLC motions between the D95% prescription with AAA (AAA_D95%), AXB_D95%, and the prescription to 100% minus air/PTV (AXB_D100%-air/PTV) in clinical cases of head and neck (HNC). Results When air/PTV increased (5-30%), the dose differences between AAA and AXB for D98%, D95%, D50% and D2% were 3.08-15.72%, 2.35-13.92%, 0.63-4.59%, and 0.14-6.44%, respectively. At clinical cases with air/PTV of 5.61% and 28.19%, compared to AAA_D95%, the MUs differences were, respectively, 2.03% and 6.74% for AXB_D95% and 1.80% and 0.50% for AXB_D100%-air/PTV. Conclusion The dose difference between AAA and AXB increased as the target's air content increased, and AXB_D95% resulted in a dose escalation over AAA_D95% when the target's air content was ≥ 5%. The D100%-air/PTV of PTV using AXB was comparable to the D95% of PTV using AAA.
Collapse
Affiliation(s)
- Takaaki Ito
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
- Department of Radiological Technology, Kobe City Nishi-Kobe Medical Center, Kobe, Hyogo, Japan
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
| | - Kazuki Kubo
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
| | - Hiroyuki Kosaka
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
| | - Yuya Yanagi
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
| | - Yusuke Sakai
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
| | - Masahiro Inada
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Hiroshi Doi
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| |
Collapse
|
2
|
Shende R, Dhoble SJ, Gupta G. Dosimetric Evaluation of Radiation Treatment Planning for Simultaneous Integrated Boost Technique Using Monte Carlo Simulation. J Med Phys 2023; 48:298-306. [PMID: 37969148 PMCID: PMC10642595 DOI: 10.4103/jmp.jmp_4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 11/17/2023] Open
Abstract
Monte Carlo (MC) techniques have been recognized as the gold standard for the simulation of radiation transport in radiotherapy. The aim of the study is to perform dosimetric evaluation of Simultaneous Integrated Boost (SIB) radiation treatment planning using MC simulation approach. The geometrical source modeling and simulation of 6 MV Flattening Filter Free (FFF)beam from TrueBeam linear accelerator have been carried out to simulate Volumetric Modulated Arc Therapy (VMAT) plans using MC simulation software PRIMO. All the SIB plans have been generated using VMAT techniques for patients with locally advanced postoperative head-and-neck squamous cell carcinoma in Eclipse Treatment Planning System (TPS) retrospectively. TPS plans have been compared against their respective MC-simulated plans in PRIMO. The quality assessments of plans have been performed using several dose volume parameters, plan quality indices, and methods of gamma analysis. Dmean, D50%, and D2% received by planning target volume (PTV), PTV60, and PTV52 have been found significantly lower in TPS-generated plans compared to MC-simulated plans. D100%, D98%, and D95% received by PTV60 exhibit good agreement. However, PTV52 shows a significant deviation between TPS and MC plans. The mean organ-at-risk doses have been found significantly lower in TPS plans compared to MC plans. TPS and MC plans have been found in close agreement within gamma acceptance criteria of 3% Dose Difference (DD) and 3 mm Distance to Agreement (DTA). Dose distributions computed using MC simulation techniques are reliable, accurate, and consistent with analytical anisotropic algorithm. Plan quality indices have been found slightly compromised in MC-simulated plans compared with TPS-generated plans appeared to be a true representation of real dose distribution obtained from MC simulation technique. Validation using MC simulation approach provides an independent secondary check for ensuring accuracy of TPS-generated plan.
Collapse
Affiliation(s)
- Ravindra Shende
- Department of Radiation Oncology, Balco Medical Centre, Raipur, Chhattisgarh, India
- Department of Physics, RTM Nagpur University, Nagpur, Maharashtra, India
| | - S. J. Dhoble
- Department of Physics, RTM Nagpur University, Nagpur, Maharashtra, India
| | - Gourav Gupta
- Department of Radiation Oncology, Balco Medical Centre, Raipur, Chhattisgarh, India
| |
Collapse
|
3
|
Yao W, Farr JB. Technical note: Extraction of proton pencil beam energy spectrum from measured integral depth dose in a cyclotron proton beam system. Med Phys 2021; 48:7504-7511. [PMID: 34609749 DOI: 10.1002/mp.15261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Proton pencil beam energy spectrum is an essential parameter for calculations of dose and linear energy transfer. We extract the energy spectrum from measured integral depth dose (IDD). METHODS A measured IDD (measIDD) in water is decomposed into many IDDs of mono-energetic pencil beams (monoIDDs) in water. A simultaneous iterative technique is used to do the decomposition that extracts the energy spectrum of protons from the measIDD. The monoIDDs are generated by our analytic random walk model-based proton dose calculation algorithm. The linear independence of the monoIDDs is considered and high spatial resolution monoIDDs are used to improve their linear independence. To validate the extraction, first we use synthesized IDDs (synIDD) with Gaussian energy spectrum and compare the extracted energy spectrum with the Gaussian; second, for the energy spectrum extracted from measIDDs, the accuracy of the extraction is validated by comparing the calculated IDD from the energy spectrum with the measIDD. The measIDDs are derived from commissioning of a cyclotron proton pencil beam system with a Bragg peak ionization chamber. The nominal energy of the pencil beams is from 70 to 245 MeV. The monoIDDs are generated for energies from 0.05 to 275 MeV in steps of 0.05 MeV with a spatial resolution of 1 mm. RESULTS The difference of the extracted and original Gaussian energy spectrum peaked at 75 and 80 MeV was <1%. As the energy decreased, the difference increased but was reduced by using 0.1-mm monoIDDs. The difference was not sensitive to the energy interval of monoIDDs when the interval increased from 0.05 to 1 MeV. For the energy spectrum extraction from measIDDs, there was a main peak near the nominal energy but the spectrum was not in Gaussian distribution. In three example cases (70, 160, and 245 MeV), the relative differences of the measIDDs and calculated IDDs were within 3.4%, 2.9%, and 4.7% of the Bragg peak value, respectively. Fitting the spectrum by Gaussian distribution, we had σ = 0.87, 1.51, and 0.86 MeV, respectively, for these three examples, and the relative differences of the resultant calculated IDDs from the measIDDs were within 4.7%, 7.4%, and 4.5%, respectively. CONCLUSIONS Our algorithm accurately extracted the energy spectrum from the synIDDs and measIDDs. High-resolution monoIDDs are necessary to extract low-energy spectrum. Energy spectrum extraction from measIDD reveals important information for beam modeling.
Collapse
Affiliation(s)
- Weiguang Yao
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jonathan B Farr
- Department of Medical Physics, Applications, of Detectors and Accelerators to Medicine, Meyrin, Switzerland
| |
Collapse
|
4
|
Muñoz-Montplet C, Fuentes-Raspall R, Jurado-Bruggeman D, Agramunt-Chaler S, Onsès-Segarra A, Buxó M. Dosimetric Impact of Acuros XB Dose-to-Water and Dose-to-Medium Reporting Modes on Lung Stereotactic Body Radiation Therapy and Its Dependency on Structure Composition. Adv Radiat Oncol 2021; 6:100722. [PMID: 34258473 PMCID: PMC8256186 DOI: 10.1016/j.adro.2021.100722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 11/28/2022] Open
Abstract
Purpose Our purpose was to assess the dosimetric effect of switching from the analytical anisotropic algorithm (AAA) to Acuros XB (AXB), with dose-to-medium (Dm) and dose-to-water (Dw) reporting modes, in lung stereotactic body radiation therapy patients and determine whether planning-target-volume (PTV) dose prescriptions and organ-at-risk constraints should be modified under these circumstances. Methods and Materials We included 54 lung stereotactic body radiation therapy patients. We delineated the PTV, the ipsilateral lung, the contralateral lung, the heart, the spinal cord, the esophagus, the trachea, proximal bronchi, the ribs, and the great vessels. We performed dose calculations with AAA and AXB, then compared clinically relevant dose-volume parameters. Paired t tests were used to analyze differences of means. We propose a method, based on the composition of the involved structures, for predicting differences between AXB Dw and Dm calculations. Results The largest difference between the algorithms was 4%. Mean dose differences between AXB Dm and AXB Dw depended on the average composition of the volumes. Compared with AXB, AAA underestimated all PTV dose-volume parameters (-0.7 Gy to -0.1 Gy) except for gradient index, which was significantly higher (4%). It also underestimated V5 of the contralateral lung (-0.3%). Significant differences in near-maximum doses (D2) to the ribs were observed between AXB Dm and AAA (1.7%) and between AXB Dw and AAA (-1.6%). AAA-calculated D2 was slightly higher in the remaining organs at risk. Conclusions Differences between AXB and AAA are below the threshold of clinical detectability (5%) for most patients. For a small subgroup, the difference in maximum doses to the ribs between AXB Dw and AXB Dm may be clinically significant. The differences in dose volume parameters between AXB Dw and AXB Dm can be predicted with reference to structure composition.
Collapse
Affiliation(s)
- Carles Muñoz-Montplet
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Avda. França s/n, 17007 Girona, Spain.,Department of Medical Sciences, University of Girona, C/Emili Grahit 77, 17003 Girona, Spain
| | - Rafael Fuentes-Raspall
- Department of Medical Sciences, University of Girona, C/Emili Grahit 77, 17003 Girona, Spain.,Radiation Oncology Department, Institut Català d'Oncologia, Avda. França s/n, 17007 Girona, Spain
| | - Diego Jurado-Bruggeman
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Avda. França s/n, 17007 Girona, Spain
| | - Sebastià Agramunt-Chaler
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Avda. França s/n, 17007 Girona, Spain
| | - Albert Onsès-Segarra
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Avda. França s/n, 17007 Girona, Spain
| | - Maria Buxó
- Girona Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí i Julià, Edifici M2, 17190, Salt, Spain
| |
Collapse
|
5
|
Cheng ZJ, Bromley RM, Oborn B, Booth JT. Radiotherapy dose calculations in high-Z materials: comprehensive comparison between experiment, Monte Carlo, and conventional planning algorithms. Biomed Phys Eng Express 2021; 7. [PMID: 33836524 DOI: 10.1088/2057-1976/abf6ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/09/2021] [Indexed: 11/12/2022]
Abstract
Purpose. To compare the accuracies of the AAA and AcurosXB dose calculation algorithms and to predict the change in the down-stream and lateral dose deposition of high energy photons in the presence of material with densities higher that commonly found in the body.Method. Metal rods of titanium (d = 4.5 g cm-3), stainless steel (d = 8 g cm-3) and tungsten (d = 19.25 g cm-3) were positioned in a phantom. Film was position behind and laterally to the rods to measure the dose distribution for a 6 MV, 18 MV and 10 FFF photon beams. A DOSXYZnrc Monte Carlo simulation of the experimental setup was performed. The AAA and AcurosXB dose calculation algorithms were used to predict the dose distributions. The dose from film and DOSXYZnrc were compared with the dose predicted by AAA and AcurosXB.Results. AAA overestimated the dose behind the rods by 15%-25% and underestimated the dose laterally to the rods by 5%-15% depending on the range of materials and energies investigated. AcurosXB overestimated the dose behind the rods by 1%-18% and underestimated the dose laterally to the rods by up to 5% depending on the range of material and energies investigated.Conclusion. AAA cannot deliver clinically acceptable dose calculation results at a distance less than 10 mm from metals, for a single field treatment. Acuros XB is able to handle metals of low atomic numbers (Z ≤ 26), but not tungsten (Z = 74). This can be due to the restriction of the CT-density table in EclipseTMTPS, which has an upper HU limit of 10501.
Collapse
Affiliation(s)
- Zhangkai J Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,School of Physics, University of Sydney, Sydney NSW, Australia
| | - Regina M Bromley
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Australia
| | - Brad Oborn
- Illawarra Cancer Care Centre, Wollongong Hospital, Australia.,Centre for Medical Radiation Physics (CMRP), University of Wollongong, Australia
| | - Jeremy T Booth
- School of Physics, University of Sydney, Sydney NSW, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, Australia
| |
Collapse
|
6
|
Fogliata A, Esposito E, Paganini L, Reggiori G, Tomatis S, Scorsetti M, Cozzi L. The impact of scanning data measurements on the Acuros dose calculation algorithm configuration. Radiat Oncol 2020; 15:169. [PMID: 32650815 PMCID: PMC7350585 DOI: 10.1186/s13014-020-01610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022] Open
Abstract
Background Many dose calculation algorithms for radiotherapy planning need to be configured for each clinical beam using pre-defined measurements. An optimization process adjusts the physical parameters able to estimate the energy released in the medium in any geometrical condition. This work investigates the impact of measured input data quality on the configuration of the type “c” Acuros-XB dose calculation algorithm in the Eclipse (Varian Medical Systems) treatment planning system. Methods Different datasets were acquired with the BeamScan water phantom (PTW) to configure 6 MV beams, for both flattened (6X) and flattening filter free mode (6FFF) for a Varian TrueBeam: (i) a correct dataset measured using a Semiflex-3D ion chamber, (ii) a set in missing lateral scatter conditions (MLS), (iii) a set with incorrect effective point of measurement (EPoM), (iv) sets acquired with PinPoint-3D chamber, DiodeP, microDiamond detectors. The Acuros-XB dose calculation algorithm (version 15.6) was configured using the reference dataset, the sets measured with the different detectors, with intentional errors, and using the representative beam data (RBD) made available by the vendor. The physical parameters obtained from each optimization process (spectrum, mean radial energy, electron contamination), were analyzed and compared. Calculated data were finally compared against the input and reference measurements. Results Concerning the physical parameters, the configurations presenting the largest differences were the MLS conditions (mean radial energy) and the incorrect EPoM (electron contamination). The calculation doses relative to the input data present low accuracy, with mean differences > 2% in some conditions. The PinPoint-3D ion chamber presented lower accuracy for the 6FFF beam. Regarding the RBD, calculations compared well with the input data used for the configuration, but not with the reference data. Conclusion The MLS conditions and the incorrect setting of the EPoM lead to erroneous configurations and should be avoided. The choice of an appropriate detector is important. Whenever the representative beam data is used, a careful check under more clinical geometrical conditions is advised.
Collapse
Affiliation(s)
- A Fogliata
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy.
| | - E Esposito
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy
| | - L Paganini
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy
| | - G Reggiori
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy
| | - S Tomatis
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy
| | - M Scorsetti
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan-Pieve Emanuele, Italy
| | - L Cozzi
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan-Pieve Emanuele, Italy
| |
Collapse
|
7
|
Liu R, Zhao T, Zhao X, Reynoso FJ. Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double‐strand breaks with mixed‐physics Monte Carlo simulation. Med Phys 2019; 46:5314-5325. [DOI: 10.1002/mp.13813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 01/25/2023] Open
Affiliation(s)
- Ruirui Liu
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110USA
| | - Tianyu Zhao
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110USA
| | - Xiandong Zhao
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110USA
| | - Francisco J. Reynoso
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110USA
| |
Collapse
|
8
|
Hernandez V, Vera-Sánchez JA, Vieillevigne L, Khamphan C, Saez J. A new method for modelling the tongue-and-groove in treatment planning systems. Phys Med Biol 2018; 63:245005. [PMID: 30523940 DOI: 10.1088/1361-6560/aaf098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Commercial TPSs typically model the tongue-and-groove (TG) by extending the projections of the leaf sides by a certain constant width. However, this model may produce discrepancies of as much as 7%-10% in the calculated average doses, especially for the High Definition multi-leaf collimator (MLC) (Hernandez et al 2017 Phys. Med. Biol. 62 6688-707). The purpose of the present study is to introduce and validate a new method for modelling the TG that uses a non constant TG width. We provide the theoretical background and a detailed methodology to determine the optimal shape of this TG width from measurements and we fit an empirical function to the TG width that depended on two parameters [Formula: see text] and [Formula: see text]. Parameter [Formula: see text] represents the TG width and [Formula: see text] introduces a curvature correction in the width near the leaf tip end. The new TG model was implemented in MATLAB and when the curvature correction was zero ([Formula: see text]) it caused the same discrepancies as the constant width model used by the Eclipse TPS. On the other hand, when the experimentally determined [Formula: see text] was used the new model's calculations were in close agreement with measurements, with all differences in average doses [Formula: see text]1%. Additionally, film dosimetry was used to successfully validate the potential of the new TG model to recreate the fine spatial details associated to TG effects. We also showed that the parameters [Formula: see text], [Formula: see text] depend solely on the MLC design by evaluating three different linear accelerators for each MLC model considered, namely Varian's High Definition and Millennium120 MLCs. In conclusion, a new method was presented that greatly improves the TG modelling. The present method can be easily implemented in commercial TPSs and has the potential to further increase their accuracy, especially for MLCs with rounded leaf ends.
Collapse
Affiliation(s)
- Victor Hernandez
- Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, 43204 Tarragona, Spain
| | | | | | | | | |
Collapse
|
9
|
Muñoz-Montplet C, Marruecos J, Buxó M, Jurado-Bruggeman D, Romera-Martínez I, Bueno M, Vilanova JC. Dosimetric impact of Acuros XB dose-to-water and dose-to-medium reporting modes on VMAT planning for head and neck cancer. Phys Med 2018; 55:107-115. [DOI: 10.1016/j.ejmp.2018.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 11/28/2022] Open
|
10
|
Ishizawa Y, Dobashi S, Kadoya N, Ito K, Chiba T, Takayama Y, Sato K, Takeda K. A photon source model based on particle transport in a parameterized accelerator structure for Monte Carlo dose calculations. Med Phys 2018; 45:2937-2946. [PMID: 29772081 DOI: 10.1002/mp.12976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 11/11/2022] Open
Abstract
PURPOSE An accurate source model of a medical linear accelerator is essential for Monte Carlo (MC) dose calculations. This study aims to propose an analytical photon source model based on particle transport in parameterized accelerator structures, focusing on a more realistic determination of linac photon spectra compared to existing approaches. METHODS We designed the primary and secondary photon sources based on the photons attenuated and scattered by a parameterized flattening filter. The primary photons were derived by attenuating bremsstrahlung photons based on the path length in the filter. Conversely, the secondary photons were derived from the decrement of the primary photons in the attenuation process. This design facilitates these sources to share the free parameters of the filter shape and be related to each other through the photon interaction in the filter. We introduced two other parameters of the primary photon source to describe the particle fluence in penumbral regions. All the parameters are optimized based on calculated dose curves in water using the pencil-beam-based algorithm. To verify the modeling accuracy, we compared the proposed model with the phase space data (PSD) of the Varian TrueBeam 6 and 15 MV accelerators in terms of the beam characteristics and the dose distributions. The EGS5 Monte Carlo code was used to calculate the dose distributions associated with the optimized model and reference PSD in a homogeneous water phantom and a heterogeneous lung phantom. We calculated the percentage of points passing 1D and 2D gamma analysis with 1%/1 mm criteria for the dose curves and lateral dose distributions, respectively. RESULTS The optimized model accurately reproduced the spectral curves of the reference PSD both on- and off-axis. The depth dose and lateral dose profiles of the optimized model also showed good agreement with those of the reference PSD. The passing rates of the 1D gamma analysis with 1%/1 mm criteria between the model and PSD were 100% for 4 × 4, 10 × 10, and 20 × 20 cm2 fields at multiple depths. For the 2D dose distributions calculated in the heterogeneous lung phantom, the 2D gamma pass rate was 100% for 6 and 15 MV beams. The model optimization time was less than 4 min. CONCLUSION The proposed source model optimization process accurately produces photon fluence spectra from a linac using valid physical properties, without detailed knowledge of the geometry of the linac head, and with minimal optimization time.
Collapse
Affiliation(s)
- Yoshiki Ishizawa
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Suguru Dobashi
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Noriyuki Kadoya
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kengo Ito
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takahito Chiba
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yoshiki Takayama
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kiyokazu Sato
- Radiation Technology, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Ken Takeda
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| |
Collapse
|
11
|
Bueno M, Duch M, Jurado-Bruggeman D, Agramunt-Chaler S, Muñoz-Montplet C. Experimental verification of Acuros XB in the presence of lung-equivalent heterogeneities. RADIAT MEAS 2017. [DOI: 10.1016/j.radmeas.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Yan C, Combine AG, Bednarz G, Lalonde RJ, Hu B, Dickens K, Wynn R, Pavord DC, Saiful Huq M. Clinical implementation and evaluation of the Acuros dose calculation algorithm. J Appl Clin Med Phys 2017; 18:195-209. [PMID: 28834214 PMCID: PMC5875823 DOI: 10.1002/acm2.12149] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/04/2017] [Accepted: 06/12/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The main aim of this study is to validate the Acuros XB dose calculation algorithm for a Varian Clinac iX linac in our clinics, and subsequently compare it with the wildely used AAA algorithm. METHODS AND MATERIALS The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were validated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Central axis and off-axis points with different depths were chosen for the comparison. In addition, the accuracy of Acuros was evaluated for wedge fields with wedge angles from 15 to 60°. Similarly, variable field sizes for an inhomogeneous phantom were chosen to validate the Acuros algorithm. In addition, doses calculated by Acuros and AAA at the center of lung equivalent tissue from three different VMAT plans were compared to the ion chamber measured doses in QUASAR phantom, and the calculated dose distributions by the two algorithms and their differences on patients were compared. Computation time on VMAT plans was also evaluated for Acuros and AAA. Differences between dose-to-water (calculated by AAA and Acuros XB) and dose-to-medium (calculated by Acuros XB) on patient plans were compared and evaluated. RESULTS For open 6 MV photon beams on the homogeneous water phantom, both Acuros XB and AAA calculations were within 1% of measurements. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. Testing on the inhomogeneous phantom demonstrated that AAA overestimated doses by up to 8.96% at a point close to lung/solid water interface, while Acuros XB reduced that to 1.64%. The test on QUASAR phantom showed that Acuros achieved better agreement in lung equivalent tissue while AAA underestimated dose for all VMAT plans by up to 2.7%. Acuros XB computation time was about three times faster than AAA for VMAT plans, and computation time for other plans will be discussed at the end. Maximum difference between dose calculated by AAA and dose-to-medium by Acuros XB (Acuros_Dm,m ) was 4.3% on patient plans at the isocenter, and maximum difference between D100 calculated by AAA and by Acuros_Dm,m was 11.3%. When calculating the maximum dose to spinal cord on patient plans, differences between dose calculated by AAA and Acuros_Dm,m were more than 3%. CONCLUSION Compared with AAA, Acuros XB improves accuracy in the presence of inhomogeneity, and also significantly reduces computation time for VMAT plans. Dose differences between AAA and Acuros_Dw,m were generally less than the dose differences between AAA and Acuros_Dm,m . Clinical practitioners should consider making Acuros XB available in clinics, however, further investigation and clarification is needed about which dose reporting mode (dose-to-water or dose-to-medium) should be used in clinics.
Collapse
Affiliation(s)
- Chenyu Yan
- Department of Radiation Oncology, UPMC Cancer Centers, Pittsburgh, PA, USA
| | - Anthony G Combine
- Department of Radiation Oncology, UPMC Cancer Centers, Pittsburgh, PA, USA
| | - Greg Bednarz
- Department of Radiation Oncology, UPMC Cancer Centers, Pittsburgh, PA, USA
| | - Ronald J Lalonde
- Department of Radiation Oncology, UPMC Cancer Centers, Pittsburgh, PA, USA
| | - Bin Hu
- Department of Radiation Oncology, UPMC Cancer Centers, Pittsburgh, PA, USA
| | - Kathy Dickens
- Department of Radiation Oncology, UPMC Cancer Centers, Pittsburgh, PA, USA
| | - Raymond Wynn
- Department of Radiation Oncology, Loyola University Health System, Stritch School of Medicine Loyola University, Chicago, IL, USA
| | | | - M Saiful Huq
- Department of Radiation Oncology, UPMC Cancer Centers, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Faught AM, Davidson SE, Popple R, Kry SF, Etzel C, Ibbott GS, Followill DS. Development of a flattening filter free multiple source model for use as an independent, Monte Carlo, dose calculation, quality assurance tool for clinical trials. Med Phys 2017; 44:4952-4960. [PMID: 28657114 DOI: 10.1002/mp.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The Imaging and Radiation Oncology Core-Houston (IROC-H) Quality Assurance Center (formerly the Radiological Physics Center) has reported varying levels of compliance from their anthropomorphic phantom auditing program. IROC-H studies have suggested that one source of disagreement between institution submitted calculated doses and measurement is the accuracy of the institution's treatment planning system dose calculations and heterogeneity corrections used. In order to audit this step of the radiation therapy treatment process, an independent dose calculation tool is needed. METHODS Monte Carlo multiple source models for Varian flattening filter free (FFF) 6 MV and FFF 10 MV therapeutic x-ray beams were commissioned based on central axis depth dose data from a 10 × 10 cm2 field size and dose profiles for a 40 × 40 cm2 field size. The models were validated against open-field measurements in a water tank for field sizes ranging from 3 × 3 cm2 to 40 × 40 cm2 . The models were then benchmarked against IROC-H's anthropomorphic head and neck phantom and lung phantom measurements. RESULTS Validation results, assessed with a ±2%/2 mm gamma criterion, showed average agreement of 99.9% and 99.0% for central axis depth dose data for FFF 6 MV and FFF 10 MV models, respectively. Dose profile agreement using the same evaluation technique averaged 97.8% and 97.9% for the respective models. Phantom benchmarking comparisons were evaluated with a ±3%/2 mm gamma criterion, and agreement averaged 90.1% and 90.8% for the respective models. CONCLUSIONS Multiple source models for Varian FFF 6 MV and FFF 10 MV beams have been developed, validated, and benchmarked for inclusion in an independent dose calculation quality assurance tool for use in clinical trial audits.
Collapse
Affiliation(s)
- Austin M Faught
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Scott E Davidson
- Department of Radiation Oncology, The University of Texas Medical Branch of Galveston, Galveston, TX, 77555, USA
| | - Richard Popple
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Carol Etzel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Consortium of Rheumatology Researchers of North America (CORRONA), Inc., Southborough, MA, 01772, USA
| | - Geoffrey S Ibbott
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - David S Followill
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| |
Collapse
|
14
|
Swinnen ACC, Öllers MC, Roijen E, Nijsten SM, Verhaegen F. Influence of the jaw tracking technique on the dose calculation accuracy of small field VMAT plans. J Appl Clin Med Phys 2017; 18:186-195. [PMID: 28291941 PMCID: PMC5689875 DOI: 10.1002/acm2.12029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate experimentally the accuracy of the dose calculation algorithm AcurosXB in small field highly modulated Volumetric Modulated Arc Therapy (VMAT). METHOD The 1000SRS detector array inserted in the rotational Octavius 4D phantom (PTW) was used for 3D dose verification of VMAT treatments characterized by small to very small targets. Clinical treatment plans (n = 28) were recalculated on the phantom CT data set in the Eclipse TPS. All measurements were done on a Varian TrueBeamSTx, which can provide the jaw tracking technique (JTT). The effect of disabling the JTT, thereby fixing the jaws at static field size of 3 × 3 cm2 and applying the MLC to shape the smallest apertures, was investigated for static fields between 0.5 × 0.5-3 × 3 cm2 and for seven VMAT patients with small brain metastases. The dose calculation accuracy has been evaluated by comparing the measured and calculated dose outputs and dose distributions. The dosimetric agreement has been presented by a local gamma evaluation criterion of 2%/2 mm. RESULTS Regarding the clinical plans, the mean ± SD of the volumetric gamma evaluation scores considering the dose levels for evaluation of 10%, 50%, 80% and 95% are (96.0 ± 6.9)%, (95.2 ± 6.8)%, (86.7 ± 14.8)% and (56.3 ± 42.3)% respectively. For the smallest field VMAT treatments, discrepancies between calculated and measured doses up to 16% are obtained. The difference between the 1000SRS central chamber measurements compared to the calculated dose outputs for static fields 3 × 3, 2 × 2, 1 × 1 and 0.5 × 0.5 cm2 collimated with MLC whereby jaws are fixed at 3 × 3 cm2 and for static fields shaped with the collimator jaws only (MLC retracted), is on average respectively, 0.2%, 0.8%, 6.8%, 5.7% (6 MV) and 0.1%, 1.3%, 11.7%, 21.6% (10 MV). For the seven brain mets patients was found that the smaller the target volumes, the higher the improvement in agreement between measured and calculated doses after disabling the JTT. CONCLUSION Fixing the jaws at 3 × 3 cm2 and using the MLC with high positional accuracy to shape the smallest apertures in contrast to the JTT is currently found to be the most accurate treatment technique.
Collapse
Affiliation(s)
- Ans C C Swinnen
- Radiotherapy Department, Maastro Clinic, 6229 ET, Maastricht, The Netherlands
| | - Michel C Öllers
- Radiotherapy Department, Maastro Clinic, 6229 ET, Maastricht, The Netherlands
| | - Erik Roijen
- Radiotherapy Department, Maastro Clinic, 6229 ET, Maastricht, The Netherlands
| | | | - Frank Verhaegen
- Radiotherapy Department, Maastro Clinic, 6229 ET, Maastricht, The Netherlands
| |
Collapse
|
15
|
Fogliata A, Lobefalo F, Reggiori G, Stravato A, Tomatis S, Scorsetti M, Cozzi L. Evaluation of the dose calculation accuracy for small fields defined by jaw or MLC for AAA and Acuros XB algorithms. Med Phys 2016; 43:5685. [DOI: 10.1118/1.4963219] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
Ojala JJ, Kapanen M. Quantification of dose differences between two versions of Acuros XB algorithm compared to Monte Carlo simulations--the effect on clinical patient treatment planning. J Appl Clin Med Phys 2015; 16:213-225. [PMID: 26699576 PMCID: PMC5691026 DOI: 10.1120/jacmp.v16i6.5642] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/02/2015] [Accepted: 06/24/2015] [Indexed: 12/31/2022] Open
Abstract
A commercialized implementation of linear Boltzmann transport equation solver, the Acuros XB algorithm (AXB), represents a class of most advanced type 'c' photon radiotherapy dose calculation algorithms. The purpose of the study was to quantify the effects of the modifications implemented in the more recent version 11 of the AXB (AXB11) compared to the first commercial implementation, version 10 of the AXB (AXB10), in various anatomical regions in clinical treatment planning. Both versions of the AXB were part of Varian's Eclipse clinical treatment planning system and treatment plans for 10 patients were created using intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT). The plans were first created with the AXB10 and then recalculated with the AXB11 and full Monte Carlo (MC) simulations. Considering the full MC simulations as reference, a DVH analysis for gross tumor and planning target volumes (GTV and PTV) and organs at risk was performed, and also 3D gamma agreement index (GAI) values within a 15% isodose region and for the PTV were determined. Although differences up to 12% in DVH analysis were seen between the MC simulations and the AXB, based on the results of this study no general conclusion can be drawn that the modifications made in the AXB11 compared to the AXB10 would imply that the dose calculation accuracy of the AXB10 would be inferior to the AXB11 in the clinical patient treatment planning. The only clear improvement with the AXB11 over the AXB10 is the dose calculation accuracy in air cavities. In general, no large deviations are present in the DVH analysis results between the two versions of the algorithm, and the results of 3D gamma analysis do not favor one or the other. Thus it may be concluded that the results of the comprehensive studies assessing the accuracy of the AXB10 may be extended to the AXB11.
Collapse
|
17
|
Alhakeem EA, AlShaikh S, Rosenfeld AB, Zavgorodni SF. Comparative evaluation of modern dosimetry techniques near low- and high-density heterogeneities. J Appl Clin Med Phys 2015; 16:142–158. [PMID: 26699322 PMCID: PMC5690181 DOI: 10.1120/jacmp.v16i5.5589] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/19/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study is to compare performance of several dosimetric methods in heterogeneous phantoms irradiated by 6 and 18 MV beams. Monte Carlo (MC) calculations were used, along with two versions of Acuros XB, anisotropic analytical algorithm (AAA), EBT2 film, and MOSkin dosimeters. Percent depth doses (PDD) were calculated and measured in three heterogeneous phantoms. The first two phantoms were a 30×30×30 cm3 solid‐water slab that had an air‐gap of 20×2.5×2.35 cm3. The third phantom consisted of 30×30×5 cm3 solid water slabs, two 30×30×5 cm3 slabs of lung, and one 30×30×1 cm3 solid water slab. Acuros XB, AAA, and MC calculations were within 1% in the regions with particle equilibrium. At media interfaces and buildup regions, differences between Acuros XB and MC were in the range of +4.4% to −12.8%. MOSkin and EBT2 measurements agreed to MC calculations within ∼2.5%, except for the first centimeter of buildup where differences of 4.5% were observed. AAA did not predict the backscatter dose from the high‐density heterogeneity. For the third, multilayer lung phantom, 6 MV beam PDDs calculated by all TPS algorithms were within 2% of MC. 18 MV PDDs calculated by two versions of Acuros XB and AAA differed from MC by up to 2.8%, 3.2%, and 6.8%, respectively. MOSkin and EBT2 each differed from MC by up to 2.9% and 2.5% for the 6 MV, and by −3.1% and ∼2% for the 18 MV beams. All dosimetric techniques, except AAA, agreed within 3% in the regions with particle equilibrium. Differences between the dosimetric techniques were larger for the 18 MV than the 6 MV beam. MOSkin and EBT2 measurements were in a better agreement with MC than Acuros XB calculations at the interfaces, and they were in a better agreement to each other than to MC. The latter is due to their thinner detection layers compared to MC voxel sizes. PACS numbers: 87.55.K‐, 87.55.kd, 87.55.km, 87.53.Bn, 87.55.k
Collapse
Affiliation(s)
- Eyad A Alhakeem
- University of Victoria, British Columbia Cancer Agency-Vancouver Island Centre; Ministry of Education.
| | | | | | | |
Collapse
|
18
|
Ojala J. The accuracy of the Acuros XB algorithm in external beam radiotherapy – a comprehensive review. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2014. [DOI: 10.14319/ijcto.0204.17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
19
|
Ojala J, Kapanen M, Sipilä P, Hyödynmaa S, Pitkänen M. The accuracy of Acuros XB algorithm for radiation beams traversing a metallic hip implant - comparison with measurements and Monte Carlo calculations. J Appl Clin Med Phys 2014; 15:4912. [PMID: 25207577 PMCID: PMC5711096 DOI: 10.1120/jacmp.v15i5.4912] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/06/2014] [Accepted: 05/01/2014] [Indexed: 11/30/2022] Open
Abstract
In this study, the clinical benefit of the improved accuracy of the Acuros XB (AXB) algorithm, implemented in a commercial radiotherapy treatment planning system (TPS), Varian Eclipse, was demonstrated with beams traversing a high‐Z material. This is also the first study assessing the accuracy of the AXB algorithm applying volumetric modulated arc therapy (VMAT) technique compared to full Monte Carlo (MC) simulations. In the first phase the AXB algorithm was benchmarked against point dosimetry, film dosimetry, and full MC calculation in a water‐filled anthropometric phantom with a unilateral hip implant. Also the validity of the full MC calculation used as reference method was demonstrated. The dose calculations were performed both in original computed tomography (CT) dataset, which included artifacts, and in corrected CT dataset, where constant Hounsfield unit (HU) value assignment for all the materials was made. In the second phase, a clinical treatment plan was prepared for a prostate cancer patient with a unilateral hip implant. The plan applied a hybrid VMAT technique that included partial arcs that avoided passing through the implant and static beams traversing the implant. Ultimately, the AXB‐calculated dose distribution was compared to the recalculation by the full MC simulation to assess the accuracy of the AXB algorithm in clinical setting. A recalculation with the anisotropic analytical algorithm (AAA) was also performed to quantify the benefit of the improved dose calculation accuracy of type ‘c’ algorithm (AXB) over type ‘b’ algorithm (AAA). The agreement between the AXB algorithm and the full MC model was very good inside and in the vicinity of the implant and elsewhere, which verifies the accuracy of the AXB algorithm for patient plans with beams traversing through high‐Z material, whereas the AAA produced larger discrepancies. PACS numbers: 87.55.‐x, 87.55.D‐, 87.55.K‐, 87.55.kd, 87.55.Qr
Collapse
|
20
|
Gersh JA, Best RCM, Watts RJ. The clinical impact of detector choice for beam scanning. J Appl Clin Med Phys 2014; 15:4801. [PMID: 25207408 PMCID: PMC5875504 DOI: 10.1120/jacmp.v15i4.4801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/22/2014] [Accepted: 03/06/2014] [Indexed: 11/23/2022] Open
Abstract
Recently, the developers of Eclipse have recommended the use of ionization chambers for all profile scanning, including for the modeling of VMAT and stereotactic applications. The purpose of this study is to show the clinical impact caused by the choice of detector with respect to its ability to accurately measure dose in the penumbra and tail regions of a scanned profile. Using scan data acquired with several detectors, including an IBA CC13, a PTW 60012, and a Sun Nuclear EDGE Detector, three complete beam models are created, one for each respective detector. Next, using each beam model, dose volumes are retrospectively recalculated from actual anonymous patient plans. These plans include three full‐arc VMAT prostate plans, three left chest wall plans delivered using irregular compensators, two half‐arc VMAT lung plans, three MLC‐collimated static‐field pairs, and two SBRT liver plans. Finally, plans are reweighted to deliver the same number of monitor units, and mean dose‐to‐target volumes and organs at risk are calculated and compared. Penumbra width did not play a role. Dose in the tail region of the profile made the largest difference. By overresponding in the tail region of the profile, the 60012 diode detector scan data affected the beam model in such a way that target doses were reduced by as much as 0.4% (in comparison to CC13 and EDGE data). This overresponse also resulted in an overestimation of dose to peripheral critical structure, whose dose consisted mainly of scatter. This study shows that, for modeling the 6 MV beam of Acuros XB in Eclipse Version 11, the choice to use a CC13 scanning ion chamber or an EDGE Detector was an unimportant choice, providing nearly identical models in the treatment planning system. PACS number: 87.55.kh
Collapse
|
21
|
Khan RF, Villarreal-Barajas E, Lau H, Liu HW. Effect of Acuros XB algorithm on monitor units for stereotactic body radiotherapy planning of lung cancer. Med Dosim 2013; 39:83-7. [PMID: 24333022 DOI: 10.1016/j.meddos.2013.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/19/2013] [Accepted: 10/27/2013] [Indexed: 11/17/2022]
Abstract
Stereotactic body radiotherapy (SBRT) is a curative regimen that uses hypofractionated radiation-absorbed dose to achieve a high degree of local control in early stage non-small cell lung cancer (NSCLC). In the presence of heterogeneities, the dose calculation for the lungs becomes challenging. We have evaluated the dosimetric effect of the recently introduced advanced dose-calculation algorithm, Acuros XB (AXB), for SBRT of NSCLC. A total of 97 patients with early-stage lung cancer who underwent SBRT at our cancer center during last 4 years were included. Initial clinical plans were created in Aria Eclipse version 8.9 or prior, using 6 to 10 fields with 6-MV beams, and dose was calculated using the anisotropic analytic algorithm (AAA) as implemented in Eclipse treatment planning system. The clinical plans were recalculated in Aria Eclipse 11.0.21 using both AAA and AXB algorithms. Both sets of plans were normalized to the same prescription point at the center of mass of the target. A secondary monitor unit (MU) calculation was performed using commercial program RadCalc for all of the fields. For the planning target volumes ranging from 19 to 375cm(3), a comparison of MUs was performed for both set of algorithms on field and plan basis. In total, variation of MUs for 677 treatment fields was investigated in terms of equivalent depth and the equivalent square of the field. Overall, MUs required by AXB to deliver the prescribed dose are on an average 2% higher than AAA. Using a 2-tailed paired t-test, the MUs from the 2 algorithms were found to be significantly different (p < 0.001). The secondary independent MU calculator RadCalc underestimates the required MUs (on an average by 4% to 5%) in the lung relative to either of the 2 dose algorithms.
Collapse
Affiliation(s)
- Rao F Khan
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada.
| | | | - Harold Lau
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Hong-Wei Liu
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Fogliata A, Clivio A, Vanetti E, Nicolini G, Belosi MF, Cozzi L. Dosimetric evaluation of photon dose calculation under jaw and MLC shielding. Med Phys 2013; 40:101706. [DOI: 10.1118/1.4820443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
Practical considerations for reporting surface dose in external beam radiotherapy: a 6 MV X-ray beam study. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2012; 35:271-82. [DOI: 10.1007/s13246-012-0145-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 05/28/2012] [Indexed: 11/25/2022]
|
24
|
Jabbari N, Barati AH, Rahmatnezhad L. Multiple-source models for electron beams of a medical linear accelerator using BEAMDP computer code. Rep Pract Oncol Radiother 2012; 17:211-9. [PMID: 24377026 DOI: 10.1016/j.rpor.2012.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/13/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022] Open
Abstract
AIM The aim of this work was to develop multiple-source models for electron beams of the NEPTUN 10PC medical linear accelerator using the BEAMDP computer code. BACKGROUND One of the most accurate techniques of radiotherapy dose calculation is the Monte Carlo (MC) simulation of radiation transport, which requires detailed information of the beam in the form of a phase-space file. The computing time required to simulate the beam data and obtain phase-space files from a clinical accelerator is significant. Calculation of dose distributions using multiple-source models is an alternative method to phase-space data as direct input to the dose calculation system. MATERIALS AND METHODS Monte Carlo simulation of accelerator head was done in which a record was kept of the particle phase-space regarding the details of the particle history. Multiple-source models were built from the phase-space files of Monte Carlo simulations. These simplified beam models were used to generate Monte Carlo dose calculations and to compare those calculations with phase-space data for electron beams. RESULTS Comparison of the measured and calculated dose distributions using the phase-space files and multiple-source models for three electron beam energies showed that the measured and calculated values match well each other throughout the curves. CONCLUSION It was found that dose distributions calculated using both the multiple-source models and the phase-space data agree within 1.3%, demonstrating that the models can be used for dosimetry research purposes and dose calculations in radiotherapy.
Collapse
Affiliation(s)
- Nasrollah Jabbari
- Department of Medical Physics and Imaging, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Hoshang Barati
- Department of Medical Physics, Kurdistan University of Medical Sciences, Sannandaj, Iran
| | - Leili Rahmatnezhad
- Department of Midwifery, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
25
|
Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int J Radiat Oncol Biol Phys 2012; 83:1587-95. [PMID: 22300575 DOI: 10.1016/j.ijrobp.2011.10.078] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/29/2011] [Accepted: 10/30/2011] [Indexed: 12/14/2022]
Abstract
PURPOSE To assess the clinical impact of the Acuros XB algorithm (implemented in the Varian Eclipse treatment-planning system) in non-small-cell lung cancer (NSCLC) cases. METHODS AND MATERIALS A CT dataset of 10 patients presenting with advanced NSCLC was selected and contoured for planning target volume, lungs, heart, and spinal cord. Plans were created for 6-MV and 15-MV beams using three-dimensional conformal therapy, intensity-modulated therapy, and volumetric modulated arc therapy with RapidArc. Calculations were performed with Acuros XB and the Anisotropic Analytical Algorithm. To distinguish between differences coming from the different heterogeneity management and those coming from the algorithm and its implementation, all the plans were recalculated assigning Hounsfield Unit (HU) = 0 (Water) to the CT dataset. RESULTS Differences in dose distributions between the two algorithms calculated in Water were <0.5%. This suggests that the differences in the real CT dataset can be ascribed mainly to the different heterogeneity management, which is proven to be more accurate in the Acuros XB calculations. The planning target dose difference was stratified between the target in soft tissue, where the mean dose was found to be lower for Acuros XB, with a range of 0.4% ± 0.6% (intensity-modulated therapy, 6 MV) to 1.7% ± 0.2% (three-dimensional conformal therapy, 6 MV), and the target in lung tissue, where the mean dose was higher for 6 MV (from 0.2% ± 0.2% to 1.2% ± 0.5%) and lower for 15 MV (from 0.5% ± 0.5% to 2.0% ± 0.9%). Mean doses to organs at risk presented differences up to 3% of the mean structure dose in the worst case. No particular or systematic differences were found related to the various modalities. Calculation time ratios between calculation time for Acuros XB and the Anisotropic Analytical Algorithm were 7 for three-dimensional conformal therapy, 5 for intensity-modulated therapy, and 0.2 for volumetric modulated arc therapy with RapidArc. CONCLUSION The availability of Acuros XB could improve patient dose estimation, increasing the data consistency of clinical trials.
Collapse
Affiliation(s)
- Antonella Fogliata
- Medical Physics Unit, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| | | | | | | | | |
Collapse
|
26
|
Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Accuracy of Acuros XB and AAA dose calculation for small fields with reference to RapidArc®
stereotactic treatments. Med Phys 2011; 38:6228-37. [DOI: 10.1118/1.3654739] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
27
|
Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment. Radiat Oncol 2011; 6:103. [PMID: 21871079 PMCID: PMC3170219 DOI: 10.1186/1748-717x-6-103] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/26/2011] [Indexed: 11/13/2022] Open
Abstract
Background A new algorithm for photon dose calculation, Acuros XB, has been recently introduced in the Eclipse, Varian treatment planning system, allowing, similarly to the classic Monte Carlo methods, for accurate modelling of dose deposition in media. Aim of the present study was the assessment of its behaviour in clinical cases. Methods Datasets from ten breast patients scanned under different breathing conditions (free breathing and deep inspiration) were used to calculate dose plans using the simple two tangential field setting, with Acuros XB (in its versions 10 and 11) and the Anisotropic Analytical Algorithm (AAA) for a 6MV beam. Acuros XB calculations were performed as dose-to-medium distributions. This feature was investigated to appraise the capability of the algorithm to distinguish between different elemental compositions in the human body: lobular vs. adipose tissue in the breast, lower (deep inspiration condition) vs. higher (free breathing condition) densities in the lung. Results The analysis of the two breast structures presenting densities compatible with muscle and with adipose tissue showed an average difference in dose calculation between Acuros XB and AAA of 1.6%, with AAA predicting higher dose than Acuros XB, for the muscle tissue (the lobular breast); while the difference for adipose tissue was negligible. From histograms of the dose difference plans between AAA and Acuros XB (version 10), the dose of the lung portion inside the tangential fields presented an average difference of 0.5% in the free breathing conditions, increasing to 1.5% for the deep inspiration cases, with AAA predicting higher doses than Acuros XB. In lung tissue significant differences are found also between Acuros XB version 10 and 11 for lower density lung. Conclusions Acuros XB, differently from AAA, is capable to distinguish between the different elemental compositions of the body, and suggests the possibility to further improve the accuracy of the dose plans computed for actual treatment of patients.
Collapse
Affiliation(s)
- Antonella Fogliata
- Oncology Institute of Southern Switzerland, Medical Physics Unit, Bellinzona.
| | | | | | | | | |
Collapse
|
28
|
Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys 2011; 38:2651-64. [PMID: 21776802 PMCID: PMC3107831 DOI: 10.1118/1.3582690] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The deterministic Acuros XB (AXB) algorithm was recently implemented in the Eclipse treatment planning system. The goal of this study was to compare AXB performance to Monte Carlo (MC) and two standard clinical convolution methods: the anisotropic analytical algorithm (AAA) and the collapsed-cone convolution (CCC) method. METHODS Homogeneous water and multilayer slab virtual phantoms were used for this study. The multilayer slab phantom had three different materials, representing soft tissue, bone, and lung. Depth dose and lateral dose profiles from AXB v10 in Eclipse were compared to AAA v10 in Eclipse, CCC in Pinnacle3, and EGSnrc MC simulations for 6 and 18 MV photon beams with open fields for both phantoms. In order to further reveal the dosimetric differences between AXB and AAA or CCC, three-dimensional (3D) gamma index analyses were conducted in slab regions and subregions defined by AAPM Task Group 53. RESULTS The AXB calculations were found to be closer to MC than both AAA and CCC for all the investigated plans, especially in bone and lung regions. The average differences of depth dose profiles between MC and AXB, AAA, or CCC was within 1.1, 4.4, and 2.2%, respectively, for all fields and energies. More specifically, those differences in bone region were up to 1.1, 6.4, and 1.6%; in lung region were up to 0.9, 11.6, and 4.5% for AXB, AAA, and CCC, respectively. AXB was also found to have better dose predictions than AAA and CCC at the tissue interfaces where backscatter occurs. 3D gamma index analyses (percent of dose voxels passing a 2%/2 mm criterion) showed that the dose differences between AAA and AXB are significant (under 60% passed) in the bone region for all field sizes of 6 MV and in the lung region for most of field sizes of both energies. The difference between AXB and CCC was generally small (over 90% passed) except in the lung region for 18 MV 10 x 10 cm2 fields (over 26% passed) and in the bone region for 5 x 5 and 10 x 10 cm2 fields (over 64% passed). With the criterion relaxed to 5%/2 mm, the pass rates were over 90% for both AAA and CCC relative to AXB for all energies and fields, with the exception of AAA 18 MV 2.5 x 2.5 cm2 field, which still did not pass. CONCLUSIONS In heterogeneous media, AXB dose prediction ability appears to be comparable to MC and superior to current clinical convolution methods. The dose differences between AXB and AAA or CCC are mainly in the bone, lung, and interface regions. The spatial distributions of these differences depend on the field sizes and energies.
Collapse
Affiliation(s)
- Tao Han
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
29
|
Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiat Oncol 2011; 6:82. [PMID: 21771317 PMCID: PMC3168411 DOI: 10.1186/1748-717x-6-82] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/19/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A study was realised to evaluate and determine relative figures of merit of a new algorithm for photon dose calculation when applied to inhomogeneous media. METHODS The new Acuros XB algorithm implemented in the Varian Eclipse treatment planning system was compared against a Monte Carlo method (VMC++), and the Analytical Anisotropic Algorithm (AAA). The study was carried out in virtual phantoms characterized by simple geometrical structures. An insert of different material and density was included in a phantom built of skeletal-muscle and HU = 0 (setting "A"): Normal Lung (lung, 0.198 g/cm3); Light Lung (lung, 0.035 g/cm3); Bone (bone, 1.798 g/cm3); another phantom (setting "B") was built of adipose material and including thin layers of bone (1.85 g/cm3), adipose (0.92 g/cm3), cartilage (1.4745 g/cm3), air (0.0012 g/cm3). Investigations were performed for 6 and 15 MV photon beams, and for a large (13 × 13 cm2) and a small (2.8 × 13 cm2) field. RESULTS Results are provided in terms of depth dose curves, transverse profiles and Gamma analysis (3 mm/3% and 2 mm/2% distance to agreement/dose difference criteria) in planes parallel to the beam central axis; Monte Carlo simulations were assumed as reference. Acuros XB gave an average gamma agreement, with a 3 mm/3% criteria, of 100%, 86% and 100% for Normal Lung, Light Lung and Bone settings, respectively, and dose to medium calculations. The same figures were 86%, 11% and 100% for AAA, where only dose rescaled to water calculations are possible. CONCLUSIONS In conclusion, Acuros XB algorithm provides a valid and accurate alternative to Monte Carlo calculations for heterogeneity management.
Collapse
Affiliation(s)
- Antonella Fogliata
- Medical Physics Unit, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| | | | | | | | | |
Collapse
|
30
|
Cho W, Kielar KN, Mok E, Xing L, Park JH, Jung WG, Suh TS. Multisource modeling of flattening filter free (FFF) beam and the optimization of model parameters. Med Phys 2011; 38:1931-42. [PMID: 21626926 PMCID: PMC3188653 DOI: 10.1118/1.3560426] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/06/2011] [Accepted: 02/07/2011] [Indexed: 11/07/2022] Open
Abstract
PURPOSE With the introduction of flattening filter free (FFF) linear accelerators to radiation oncology, new analytical source models for a FFF beam applicable to current treatment planning systems is needed. In this work, a multisource model for the FFF beam and the optimization of involved model parameters were designed. METHODS The model is based on a previous three source model proposed by Yang et al. ["A three-source model for the calculation of head scatter factors," Med. Phys. 29, 2024-2033 (2002)]. An off axis ratio (OAR) of photon fluence was introduced to the primary source term to generate cone shaped profiles. The parameters of the source model were determined from measured head scatter factors using a line search optimization technique. The OAR of the photon fluence was determined from a measured dose profile of a 40 x 40 cm2 field size with the same optimization technique, but a new method to acquire gradient terms for OARs was developed to enhance the speed of the optimization process. The improved model was validated with measured dose profiles from 3 x 3 to 40 x 40 cm2 field sizes at 6 and 10 MV from a TrueBeam STx linear accelerator. Furthermore, planar dose distributions for clinically used radiation fields were also calculated and compared to measurements using a 2D array detector using the gamma index method. RESULTS All dose values for the calculated profiles agreed with the measured dose profiles within 0.5% at 6 and 10 MV beams, except for some low dose regions for larger field sizes. A slight overestimation was seen in the lower penumbra region near the field edge for the large field sizes by 1%-4%. The planar dose calculations showed comparable passing rates (> 98%) when the criterion of the gamma index method was selected to be 3%/3 mm. CONCLUSIONS The developed source model showed good agreements between measured and calculated dose distributions. The model is easily applicable to any other linear accelerator using FFF beams as the required data include only the measured PDD, dose profiles, and output factors for various field sizes, which are easily acquired during conventional beam commissioning process.
Collapse
Affiliation(s)
- Woong Cho
- Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Fogliata A, Nicolini G, Clivio A, Vanetti E, Mancosu P, Cozzi L. Dosimetric validation of the Acuros XB Advanced Dose Calculation algorithm: fundamental characterization in water. Phys Med Biol 2011; 56:1879-904. [PMID: 21364257 DOI: 10.1088/0031-9155/56/6/022] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Asuni G, Jensen JM, McCurdy BMC. A Monte Carlo investigation of contaminant electrons due to a novel in vivo transmission detector. Phys Med Biol 2011; 56:1207-23. [PMID: 21285480 DOI: 10.1088/0031-9155/56/4/020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle(3) dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the contaminant electron source model of the Eclipse AAA dose algorithm. The off-axis coefficient in the Pinnacle(3) dose calculation algorithm decreases in the presence of TRD compared to without the device. The electron model parameters were modified to reflect the increase in electron contamination with the TRD, a necessary step for accurate beam modeling when using the device.
Collapse
Affiliation(s)
- G Asuni
- Division of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
33
|
Basran PS, Zavgorodni S, Berrang T, Olivotto IA, Beckham W. The impact of dose calculation algorithms on partial and whole breast radiation treatment plans. Radiat Oncol 2010; 5:120. [PMID: 21162739 PMCID: PMC3016285 DOI: 10.1186/1748-717x-5-120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/16/2010] [Indexed: 11/10/2022] Open
Abstract
Background This paper compares the calculated dose to target and normal tissues when using pencil beam (PBC), superposition/convolution (AAA) and Monte Carlo (MC) algorithms for whole breast (WBI) and accelerated partial breast irradiation (APBI) treatment plans. Methods Plans for 10 patients who met all dosimetry constraints on a prospective APBI protocol when using PBC calculations were recomputed with AAA and MC, keeping the monitor units and beam angles fixed. Similar calculations were performed for WBI plans on the same patients. Doses to target and normal tissue volumes were tested for significance using the paired Student's t-test. Results For WBI plans the average dose to target volumes when using PBC calculations was not significantly different than AAA calculations, the average PBC dose to the ipsilateral breast was 10.5% higher than the AAA calculations and the average MC dose to the ipsilateral breast was 11.8% lower than the PBC calculations. For ABPI plans there were no differences in dose to the planning target volume, ipsilateral breast, heart, ipsilateral lung, or contra-lateral lung. Although not significant, the maximum PBC dose to the contra-lateral breast was 1.9% higher than AAA and the PBC dose to the clinical target volume was 2.1% higher than AAA. When WBI technique is switched to APBI, there was significant reduction in dose to the ipsilateral breast when using PBC, a significant reduction in dose to the ipsilateral lung when using AAA, and a significant reduction in dose to the ipsilateral breast and lung and contra-lateral lung when using MC. Conclusions There is very good agreement between PBC, AAA and MC for all target and most normal tissues when treating with APBI and WBI and most of the differences in doses to target and normal tissues are not clinically significant. However, a commonly used dosimetry constraint, as recommended by the ASTRO consensus document for APBI, that no point in the contra-lateral breast volume should receive >3% of the prescribed dose needs to be relaxed to >5%.
Collapse
Affiliation(s)
- Parminder S Basran
- Department of Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
34
|
Sikora M, Alber M. A virtual source model of electron contamination of a therapeutic photon beam. Phys Med Biol 2009; 54:7329-44. [PMID: 19926911 DOI: 10.1088/0031-9155/54/24/006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The most efficient way of generating particles for Monte Carlo (MC) dose calculation is through a virtual source model (VSM) of the linear accelerator head. We have previously developed a VSM based on three sources: a primary photon source, a secondary photon source and an electron contamination source (Sikora et al 2007). In this work, we present an improvement of the electron contamination source. The VSM of contamination electrons (eVSM) is derived from a full MC simulation of the accelerator head with the BEAMnrc MC system. It comprises a Gaussian source located at the base of the flattening filter. The eVSM models two effects: an energy-dependent source diameter and an angular dependence of the particle fluence. The air scatter of the contamination electrons is approximated by energetic properties of the eVSM so that explicit in-air transport is not required during MC simulation of the dose distributions in the patient. The calculations of electron dose distributions were compared between the eVSM and the full MC simulation. Good agreement was achieved for various rectangular field sizes as well as for complex conformal segment shapes for the contamination electrons of 6 and 15 MV beams. The 3D dose evaluation of the surface dose in a CT-based patient geometry shows high accuracy (2%/2 mm) of the eVSM for both energies. The model has one tunable parameter, the mean energy of the spectrum at the patient surface. High accuracy and efficiency of particle generation make the eVSM a valuable virtual source of contamination electrons for MC treatment planning systems.
Collapse
Affiliation(s)
- M Sikora
- Section for Biomedical Physics, University Hospital for Radiation Oncology, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany.
| | | |
Collapse
|
35
|
Aarup LR, Nahum AE, Zacharatou C, Juhler-Nøttrup T, Knöös T, Nyström H, Specht L, Wieslander E, Korreman SS. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: Implications for tumour coverage. Radiother Oncol 2009; 91:405-14. [PMID: 19297051 DOI: 10.1016/j.radonc.2009.01.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 01/22/2009] [Accepted: 01/24/2009] [Indexed: 11/27/2022]
|
36
|
Djouguela A, Harder D, Kollhoff R, Foschepoth S, Kunth W, Rühmann A, Willborn K, Poppe B. Fourier deconvolution reveals the role of the Lorentz function as the convolution kernel of narrow photon beams. Phys Med Biol 2009; 54:2807-27. [DOI: 10.1088/0031-9155/54/9/015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Tillikainen L, Helminen H, Torsti T, Siljamäki S, Alakuijala J, Pyyry J, Ulmer W. A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media. Phys Med Biol 2008; 53:3821-39. [PMID: 18583728 DOI: 10.1088/0031-9155/53/14/008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this work, a novel three-dimensional superposition algorithm for photon dose calculation is presented. The dose calculation is performed as a superposition of pencil beams, which are modified based on tissue electron densities. The pencil beams have been derived from Monte Carlo simulations, and are separated into lateral and depth-directed components. The lateral component is modeled using exponential functions, which allows accurate modeling of lateral scatter in heterogeneous tissues. The depth-directed component represents the total energy deposited on each plane, which is spread out using the lateral scatter functions. Finally, convolution in the depth direction is applied to account for tissue interface effects. The method can be used with the previously introduced multiple-source model for clinical settings. The method was compared against Monte Carlo simulations in several phantoms including lung- and bone-type heterogeneities. Comparisons were made for several field sizes for 6 and 18 MV energies. The deviations were generally within (2%, 2 mm) of the field central axis d(max). Significantly larger deviations (up to 8%) were found only for the smallest field in the lung slab phantom for 18 MV. The presented method was found to be accurate in a wide range of conditions making it suitable for clinical planning purposes.
Collapse
Affiliation(s)
- L Tillikainen
- Varian Medical Systems Finland Oy, Paciuksenkatu 21, FIN-00270 Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
38
|
Tillikainen L, Siljamäki S. A multiple-source photon beam model and its commissioning process for VMC++ Monte Carlo code. ACTA ACUST UNITED AC 2008. [DOI: 10.1088/1742-6596/102/1/012024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|