1
|
Peiffer C, Brombal L, Maughan Jones CJ, Arfelli F, Astolfo A, Dreossi D, Endrizzi M, Hagen CK, Mazzolani A, Menk R, Rigon L, Olivo A, Munro PRT. On the equivalence of the X-ray scattering retrieval with beam tracking and analyser-based imaging using a synchrotron source. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2023; 56:45LT02. [PMID: 37601626 PMCID: PMC10437003 DOI: 10.1088/1361-6463/acee8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
X-ray phase contrast imaging (XPCI) methods give access to contrast mechanisms that are based on the refractive properties of matter on top of the absorption coefficient in conventional x-ray imaging. Ultra small angle x-ray scattering (USAXS) is a phase contrast mechanism that arises due to multiple refraction events caused by physical features of a scale below the physical resolution of the used imaging system. USAXS contrast can therefore give insight into subresolution structural information, which is an ongoing research topic in the vast field of different XPCI techniques. In this study, we quantitatively compare the USAXS signal retrieved by the beam tracking XPCI technique with the gold standard of the analyzer based imaging XPCI technique using a synchrotron x-ray source. We find that, provided certain conditions are met, the two methods measure the same quantity.
Collapse
Affiliation(s)
- C Peiffer
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - L Brombal
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - C J Maughan Jones
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - F Arfelli
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - A Astolfo
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - D Dreossi
- Elettra Sincrotrone Trieste SCpA, S. S. 14 km 163.5, 34012 Basovizza (TS), Italy
| | - M Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - C K Hagen
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - A Mazzolani
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - R Menk
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
- Elettra Sincrotrone Trieste SCpA, S. S. 14 km 163.5, 34012 Basovizza (TS), Italy
- Department of Computer and Electrical Engineering, Midsweden University, Sundsvall, Sweden
| | - L Rigon
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - A Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - P R T Munro
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT London, United Kingdom
| |
Collapse
|
2
|
Wang Z, Liu D, Zhang J, Huang W, Yuan Q, Gao K, Wu Z. Absorption, refraction and scattering retrieval in X-ray analyzer-based imaging. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1206-1213. [PMID: 29979183 DOI: 10.1107/s1600577518007439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
A three-image algorithm is proposed in order to retrieve the absorption, refraction and ultra-small-angle X-ray scattering (USAXS) properties of the object in X-ray analyzer-based imaging. Based on the Gaussian fitting to the rocking curve, the novel algorithm is theoretically derived and presented, and validated by synchrotron radiation experiments. Compared with multiple-image radiography, this algorithm only requires a minimum of three intensity measurements, and is therefore advantageous in terms of simplified acquisition procedure and reduced data collection times, which are especially important for specific applications such as in vivo imaging and phase tomography. Moreover, the retrieval algorithm can be specialized to particular cases where some degree of a priori knowledge on the object is available, potentially reducing the minimum number of intensity measurements to two. Furthermore, the effect of angular mis-alignment on the accuracy of the retrieved images was theoretically investigated, which can be of use in image interpretation and optimization of the data acquisition procedure.
Collapse
Affiliation(s)
- Zhili Wang
- School of Electronics and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Dalin Liu
- School of Electronics and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jin Zhang
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Wanxia Huang
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Qingxi Yuan
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Kun Gao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Anhui 230026, People's Republic of China
| | - Zhao Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Anhui 230026, People's Republic of China
| |
Collapse
|
3
|
Guan H, Hagen CK, Olivo A, Anastasio MA. Subspace-based resolution-enhancing image reconstruction method for few-view differential phase-contrast tomography. J Med Imaging (Bellingham) 2018; 5:023501. [PMID: 29963577 DOI: 10.1117/1.jmi.5.2.023501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 05/31/2018] [Indexed: 01/08/2023] Open
Abstract
It is well known that properly designed image reconstruction methods can facilitate reductions in imaging doses and data-acquisition times in tomographic imaging. The ability to do so is particularly important for emerging modalities, such as differential x-ray phase-contrast tomography (D-XPCT), which are currently limited by these factors. An important application of D-XPCT is high-resolution imaging of biomedical samples. However, reconstructing high-resolution images from few-view tomographic measurements remains a challenging task due to the high-frequency information loss caused by data incompleteness. In this work, a subspace-based reconstruction strategy is proposed and investigated for use in few-view D-XPCT image reconstruction. By adopting a two-step approach, the proposed method can simultaneously recover high-frequency details within a certain region of interest while suppressing noise and/or artifacts globally. The proposed method is investigated by the use of few-view experimental data acquired by an edge-illumination D-XPCT scanner.
Collapse
Affiliation(s)
- Huifeng Guan
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Charlotte Klara Hagen
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Alessandro Olivo
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Mark A Anastasio
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| |
Collapse
|
4
|
Abstract
Unlike conventional x-ray attenuation one of the advantages of phase contrast x-ray imaging is its capability of extracting useful physical properties of the sample. In particular the possibility to obtain information from small angle scattering about unresolvable structures with sub-pixel resolution sensitivity has drawn attention for both medical and material science applications. We report on a novel algorithm for the analyzer based x-ray phase contrast imaging modality, which allows the robust separation of absorption, refraction and scattering effects from three measured x-ray images. This analytical approach is based on a simple Gaussian description of the analyzer transmission function and this method is capable of retrieving refraction and small angle scattering angles in the full angular range typical of biological samples. After a validation of the algorithm with a simulation code, which demonstrated the potential of this highly sensitive method, we have applied this theoretical framework to experimental data on a phantom and biological tissues obtained with synchrotron radiation. Owing to its extended angular acceptance range the algorithm allows precise assessment of local scattering distributions at biocompatible radiation doses, which in turn might yield a quantitative characterization tool with sufficient structural sensitivity on a submicron length scale.
Collapse
|
5
|
Appel AA, Ibarra V, Somo SI, Larson JC, Garson AB, Guan H, McQuilling JP, Zhong Z, Anastasio MA, Opara EC, Brey EM. Imaging of Hydrogel Microsphere Structure and Foreign Body Response Based on Endogenous X-Ray Phase Contrast. Tissue Eng Part C Methods 2016; 22:1038-1048. [PMID: 27796159 PMCID: PMC5116683 DOI: 10.1089/ten.tec.2016.0253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Transplantation of functional islets encapsulated in stable biomaterials has the potential to cure Type I diabetes. However, the success of these materials requires the ability to quantitatively evaluate their stability. Imaging techniques that enable monitoring of biomaterial performance are critical to further development in the field. X-ray phase-contrast (XPC) imaging is an emerging class of X-ray techniques that have shown significant promise for imaging biomaterial and soft tissue structures. In this study, XPC imaging techniques are shown to enable three dimensional (3D) imaging and evaluation of islet volume, alginate hydrogel structure, and local soft tissue features ex vivo. Rat islets were encapsulated in sterile ultrapurified alginate systems produced using a high-throughput microfluidic system. The encapsulated islets were implanted in omentum pouches created in a rodent model of type 1 diabetes. Microbeads were imaged with XPC imaging before implantation and as whole tissue samples after explantation from the animals. XPC microcomputed tomography (μCT) was performed with systems using tube-based and synchrotron X-ray sources. Islets could be identified within alginate beads and the islet volume was quantified in the synchrotron-based μCT volumes. Omental adipose tissue could be distinguished from inflammatory regions resulting from implanted beads in harvested samples with both XPC imaging techniques. Individual beads and the local encapsulation response were observed and quantified using quantitative measurements, which showed good agreement with histology. The 3D structure of the microbeads could be characterized with XPC imaging and failed beads could also be identified. These results point to the substantial potential of XPC imaging as a tool for imaging biomaterials in small animal models and deliver a critical step toward in vivo imaging.
Collapse
Affiliation(s)
- Alyssa A. Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Chicago, Illinois
| | - Veronica Ibarra
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Sami I. Somo
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Jeffery C. Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Chicago, Illinois
| | - Alfred B. Garson
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Huifeng Guan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | | | - Zhong Zhong
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York
| | - Mark A. Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Emmanuel C. Opara
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, North Carolina
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Chicago, Illinois
| |
Collapse
|
6
|
Ibarra V, Appel AA, Anastasio MA, Opara EC, Brey EM. This paper is a winner in the Undergraduate category for the SFB awards: Evaluation of the tissue response to alginate encapsulated islets in an omentum pouch model. J Biomed Mater Res A 2016; 104:1581-90. [PMID: 27144389 PMCID: PMC5897127 DOI: 10.1002/jbm.a.35769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/02/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Abstract
Islet transplantation is currently in clinical use as a treatment for type I diabetes, but donor shortages and long-term immunosuppression limit broad application. Alginate microcapsules coated with poly-l-ornithine can be used to encapsulate islets in an environment that allows diffusion of glucose, insulin, nutrients, and waste products while inhibiting cells and antibodies. While clinical trials are ongoing using islets encapsulated in alginate microbeads, there are concerns in regards to long-term stability. Evaluation of the local tissue response following implantation provides insight into the underlying mechanisms contributing to biomaterial failure, which can be used to the design of new material strategies. Macrophages play an important role in driving the response. In this study, the stability of alginate microbeads coated with PLO containing islets transplanted in the omentum pouch model was investigated. Biomaterial structure and the inflammatory response were characterized by X-ray phase contrast (XPC) μCT imaging, histology, and immunostaining. XPC allowed evaluation of microbead 3D structure and identification of failed and stable microbeads. A robust inflammatory response characterized by high cell density and the presence of pro-inflammatory macrophages was found around the failed grafts. The results obtained provide insight into the local tissue response and possible failure mechanisms for alginate microbeads. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1581-1590, 2016.
Collapse
Affiliation(s)
- Veronica Ibarra
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Alyssa A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Mark A Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, Illinois
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Ines, IL
| |
Collapse
|
7
|
Li P, Zhang K, Bao Y, Ren Y, Ju Z, Wang Y, He Q, Zhu Z, Huang W, Yuan Q, Zhu P. Angular signal radiography. OPTICS EXPRESS 2016; 24:5829-5845. [PMID: 27136780 DOI: 10.1364/oe.24.005829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper.
Collapse
|
8
|
Appel AA, Larson JC, Jiang B, Zhong Z, Anastasio MA, Brey EM. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants. Ann Biomed Eng 2015; 44:773-81. [PMID: 26487123 DOI: 10.1007/s10439-015-1482-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.
Collapse
Affiliation(s)
- Alyssa A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL, 60616, USA.,Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Jeffery C Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL, 60616, USA.,Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Bin Jiang
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL, 60616, USA.,Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Zhong Zhong
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY, USA
| | - Mark A Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL, 60616, USA.
| |
Collapse
|
9
|
Brankov JG, Saiz-Herranz A, Wernick MN. Noise properties and task-based evaluation of diffraction-enhanced imaging. J Med Imaging (Bellingham) 2015; 1:033503. [PMID: 26158056 DOI: 10.1117/1.jmi.1.3.033503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 11/14/2022] Open
Abstract
Diffraction-enhanced imaging (DEI) is an emerging x-ray imaging method that simultaneously yields x-ray attenuation and refraction images and holds great promise for soft-tissue imaging. The DEI has been mainly studied using synchrotron sources, but efforts have been made to transition the technology to more practical implementations using conventional x-ray sources. The main technical challenge of this transition lies in the relatively lower x-ray flux obtained from conventional sources, leading to photon-limited data contaminated by Poisson noise. Several issues that must be understood in order to design and optimize DEI imaging systems with respect to noise performance are addressed. Specifically, we: (a) develop equations describing the noise properties of DEI images, (b) derive the conditions under which the DEI algorithm is statistically optimal,
Collapse
Affiliation(s)
- Jovan G Brankov
- Illinois Institute of Technology , Medical Imaging Research Center, Department of Electrical and Computer Engineering, Chicago, Illinois 60616, United States
| | - Alejandro Saiz-Herranz
- Illinois Institute of Technology , Medical Imaging Research Center, Department of Electrical and Computer Engineering, Chicago, Illinois 60616, United States
| | - Miles N Wernick
- Illinois Institute of Technology , Medical Imaging Research Center, Department of Electrical and Computer Engineering, Chicago, Illinois 60616, United States
| |
Collapse
|
10
|
Bao Y, Wang Y, Li P, Wu Z, Shao Q, Gao K, Wang Z, Ju Z, Zhang K, Yuan Q, Huang W, Zhu P, Wu Z. A novel crystal-analyzer phase retrieval algorithm and its noise property. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:786-795. [PMID: 25931098 DOI: 10.1107/s1600577515003616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
A description of the rocking curve in diffraction enhanced imaging (DEI) is presented in terms of the angular signal response function and a simple multi-information retrieval algorithm based on the cosine function fitting. A comprehensive analysis of noise properties of DEI is also given considering the noise transfer characteristic of the X-ray source. The validation has been performed with synchrotron radiation experimental data and Monte Carlo simulations based on the Geant4 toolkit combined with the refractive process of X-rays, which show good agreement with each other. Moreover, results indicate that the signal-to-noise ratios of the refraction and scattering images are about one order of magnitude better than that of the absorption image at the edges of low-Z samples. The noise penalty is drastically reduced with the increasing photon flux and visibility. Finally, this work demonstrates that the analytical method can build an interesting connection between DEI and GDPCI (grating-based differential phase contrast imaging) and is widely suitable for a variety of measurement noise in the angular signal response imaging prototype. The analysis significantly contributes to the understanding of noise characteristics of DEI images and may allow improvements to the signal-to-noise ratio in biomedical and material science imaging.
Collapse
Affiliation(s)
- Yuan Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Yan Wang
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Panyun Li
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Zhao Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Qigang Shao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Kun Gao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Zhili Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Zaiqiang Ju
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Kai Zhang
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Qingxi Yuan
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Wanxia Huang
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Peiping Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Ziyu Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| |
Collapse
|
11
|
Appel AA, Larson JC, Garson AB, Guan H, Zhong Z, Nguyen BNB, Fisher JP, Anastasio MA, Brey EM. X-ray phase contrast imaging of calcified tissue and biomaterial structure in bioreactor engineered tissues. Biotechnol Bioeng 2014; 112:612-20. [DOI: 10.1002/bit.25467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Alyssa A. Appel
- Department of Biomedical Engineering; Illinois Institute of Technology; 3255 South Dearborn St Chicago Illinois 60616
- Research Services; Edward Hines Jr. VA Hospital; 5000 S. 5th Avenue Hines Illinois 60141
| | - Jeffery C. Larson
- Department of Biomedical Engineering; Illinois Institute of Technology; 3255 South Dearborn St Chicago Illinois 60616
- Research Services; Edward Hines Jr. VA Hospital; 5000 S. 5th Avenue Hines Illinois 60141
| | - Alfred B. Garson
- Department of Biomedical Engineering; Washington University in St. Louis; St. Louis Missouri
| | - Huifeng Guan
- Department of Biomedical Engineering; Washington University in St. Louis; St. Louis Missouri
| | - Zhong Zhong
- National Synchrotron Light Source; Brookhaven National Laboratory; Upton New York
| | - Bao-Ngoc B. Nguyen
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland
| | - John P. Fisher
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland
| | - Mark A. Anastasio
- Department of Biomedical Engineering; Washington University in St. Louis; St. Louis Missouri
| | - Eric M. Brey
- Department of Biomedical Engineering; Illinois Institute of Technology; 3255 South Dearborn St Chicago Illinois 60616
- Research Services; Edward Hines Jr. VA Hospital; 5000 S. 5th Avenue Hines Illinois 60141
| |
Collapse
|
12
|
Olubamiji AD, Izadifar Z, Chen DX. Synchrotron Imaging Techniques for Bone and Cartilage Tissue Engineering: Potential, Current Trends, and Future Directions. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:503-22. [DOI: 10.1089/ten.teb.2013.0493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Zohreh Izadifar
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Daniel Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
13
|
Zhou W, Majidi K, Brankov JG. Analyzer-based phase-contrast imaging system using a micro focus X-ray source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:085114. [PMID: 25173319 PMCID: PMC4141915 DOI: 10.1063/1.4890281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα1 line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.
Collapse
Affiliation(s)
- Wei Zhou
- BME Department, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - Keivan Majidi
- ECE Department, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - Jovan G Brankov
- ECE Department, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
14
|
Majidi K, Li J, Muehleman C, Brankov JG. Noise and analyzer-crystal angular position analysis for analyzer-based phase-contrast imaging. Phys Med Biol 2014; 59:1877-97. [PMID: 24651402 DOI: 10.1088/0031-9155/59/8/1877] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The analyzer-based phase-contrast x-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile of the x-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this paper is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the multiple-image radiography, diffraction enhanced imaging and scatter diffraction enhanced imaging estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique.
Collapse
Affiliation(s)
- Keivan Majidi
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | | | | | |
Collapse
|
15
|
Appel AA, Chou CY, Larson JC, Zhong Z, Schoen FJ, Johnston CM, Brey EM, Anastasio MA. An initial evaluation of analyser-based phase-contrast X-ray imaging of carotid plaque microstructure. Br J Radiol 2013; 86:20120318. [PMID: 23239697 DOI: 10.1259/bjr.20120318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Carotid artery plaque instability can result in rupture and lead to ischaemic stroke. Stability of plaques appears to be a function of composition. Current non-invasive imaging techniques are limited in their ability to classify distinct histological regions within plaques. Phase-contrast (PC) X-ray imaging methods are an emerging class of techniques that have shown promise for identifying soft-tissue features without use of exogenous contrast agents. This is the first study to apply analyser-based X-ray PC imaging in CT mode to provide three-dimensional (3D) images of excised atherosclerotic plaques. The results provide proof of principle for this technique as a promising method for analysis of carotid plaque microstructure. Multiple image radiography CT (MIR-CT), a tomographic implementation of X-ray PC imaging that employs crystal optics, was employed to image excised carotid plaques. MIR-CT imaging yields three complementary images of the plaque's 3D X-ray absorption, refraction and scatter properties. These images were compared with histological sections of the tissue. X-ray PC images were able to identify the interface between the plaque and the medial wall. In addition, lipid-rich and highly vascularized regions were visible in the images as well as features depicting inflammation. This preliminary research shows MIR-CT imaging can reveal details about plaque structure not provided by traditional absorption-based X-ray imaging and appears to identify specific histological regions within plaques. This is the first study to apply analyser-based X-ray PC imaging to human carotid artery plaques to identify distinct soft-tissue regions.
Collapse
Affiliation(s)
- A A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Appel AA, Chou CY, Greisler HP, Larson JC, Vasireddi S, Zhong Z, Anastasio MA, Brey EM. Analyzer-based phase-contrast x-ray imaging of carotid plaque microstructure. Am J Surg 2013; 204:631-6. [PMID: 23140828 DOI: 10.1016/j.amjsurg.2012.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Plaque vulnerability depends, in part, on composition. Imaging techniques are needed that can aid the prediction of plaque stability. High-contrast images of soft-tissue structure have been obtained with x-ray phase-contrast (PC) imaging. This research investigates multiple image radiography (MIR), an x-ray PC imaging technique, for evaluation of human carotid artery plaques. METHODS Carotid plaques were imaged with ultrasound and subsequently excised and formalin fixed. MIR imaging was performed. By using synchrotron radiation, conventional radiographs were acquired for comparison. Image texture measures were computed for soft-tissue regions of the plaques. RESULTS Ultrasound evaluation identified plaques as homogeneous without calcifications. MIR images revealed complex heterogeneous structure with multiple microcalcifications consistent with histology, and possessed more image texture in specific regions than conventional radiographs (P < .05). MIR refraction images allowed imaging of the geometric structure of tissue interfaces within the plaques, while scatter images contained more texture in soft-tissue regions than absorption or refraction images. CONCLUSIONS X-ray PC imaging better depicts plaque soft-tissue heterogeneity than ultrasound or conventional radiographs. MIR imaging technique should be investigated further as a viable imaging technique to identify high-risk plaques.
Collapse
Affiliation(s)
- Alyssa A Appel
- Department of Research, Hines VA Hospital, Hines, IL 60616-3793, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Synchrotron-based non-destructive diffraction-enhanced imaging systems to image walnut at 20 keV. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2013. [DOI: 10.1007/s11694-012-9134-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Bravin A, Coan P, Suortti P. X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 2012; 58:R1-35. [PMID: 23220766 DOI: 10.1088/0031-9155/58/1/r1] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phase-contrast x-ray imaging (PCI) is an innovative method that is sensitive to the refraction of the x-rays in matter. PCI is particularly adapted to visualize weakly absorbing details like those often encountered in biology and medicine. In past years, PCI has become one of the most used imaging methods in laboratory and preclinical studies: its unique characteristics allow high contrast 3D visualization of thick and complex samples even at high spatial resolution. Applications have covered a wide range of pathologies and organs, and are more and more often performed in vivo. Several techniques are now available to exploit and visualize the phase-contrast: propagation- and analyzer-based, crystal and grating interferometry and non-interferometric methods like the coded aperture. In this review, covering the last five years, we will give an overview of the main theoretical and experimental developments and of the important steps performed towards the clinical implementation of PCI.
Collapse
Affiliation(s)
- Alberto Bravin
- European Synchrotron Radiation Facility, 6 rue Horowitz, 38043 Grenoble Cedex, France.
| | | | | |
Collapse
|
19
|
Chen RC, Dreossi D, Mancini L, Menk R, Rigon L, Xiao TQ, Longo R. PITRE: software for phase-sensitive X-ray image processing and tomography reconstruction. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:836-45. [PMID: 22898966 DOI: 10.1107/s0909049512029731] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/29/2012] [Indexed: 05/22/2023]
Abstract
Synchrotron-radiation computed tomography has been applied in many research fields. Here, PITRE (Phase-sensitive X-ray Image processing and Tomography REconstruction) and PITRE_BM (PITRE Batch Manager) are presented. PITRE supports phase retrieval for propagation-based phase-contrast imaging/tomography (PPCI/PPCT), extracts apparent absorption, refractive and scattering information of diffraction enhanced imaging (DEI), and allows parallel-beam tomography reconstruction for conventional absorption CT data and for PPCT phase retrieved and DEI-CT extracted information. PITRE_BM is a batch processing manager for PITRE: it executes a series of tasks, created via PITRE, without manual intervention. Both PITRE and PITRE_BM are coded in Interactive Data Language (IDL), and have a user-friendly graphical user interface. They are freeware and can run on Microsoft Windows systems via IDL Virtual Machine, which can be downloaded for free and does not require a license. The data-processing principle and some examples of application will be presented.
Collapse
|
20
|
Rao DV, Swapna M, Cesareo R, Brunetti A, Akatsuka T, Yuasa T, Zhong Z, Takeda T, Gigante GE. Synchrotron-based DEI for bio-imaging and DEI-CT to image phantoms with contrast agents. Appl Radiat Isot 2012; 70:1570-8. [DOI: 10.1016/j.apradiso.2012.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/04/2012] [Accepted: 05/04/2012] [Indexed: 11/28/2022]
|
21
|
Appel AA, Larson JC, Somo S, Zhong Z, Spicer PP, Kasper FK, Garson AB, Zysk AM, Mikos AG, Anastasio MA, Brey EM. Imaging of poly(α-hydroxy-ester) scaffolds with X-ray phase-contrast microcomputed tomography. Tissue Eng Part C Methods 2012; 18:859-65. [PMID: 22607529 DOI: 10.1089/ten.tec.2012.0123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Porous scaffolds based on poly(α-hydroxy-esters) are under investigation in many tissue engineering applications. A biological response to these materials is driven, in part, by their three-dimensional (3D) structure. The ability to evaluate quantitatively the material structure in tissue-engineering applications is important for the continued development of these polymer-based approaches. X-ray imaging techniques based on phase contrast (PC) have shown a tremendous promise for a number of biomedical applications owing to their ability to provide a contrast based on alternative X-ray properties (refraction and scatter) in addition to X-ray absorption. In this research, poly(α-hydroxy-ester) scaffolds were synthesized and imaged by X-ray PC microcomputed tomography. The 3D images depicting the X-ray attenuation and phase-shifting properties were reconstructed from the measurement data. The scaffold structure could be imaged by X-ray PC in both cell culture conditions and within the tissue. The 3D images allowed for quantification of scaffold properties and automatic segmentation of scaffolds from the surrounding hard and soft tissues. These results provide evidence of the significant potential of techniques based on X-ray PC for imaging polymer scaffolds.
Collapse
Affiliation(s)
- Alyssa A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Appel A, Anastasio MA, Brey EM. Potential for imaging engineered tissues with X-ray phase contrast. TISSUE ENGINEERING. PART B, REVIEWS 2011; 17:321-30. [PMID: 21682604 PMCID: PMC3179620 DOI: 10.1089/ten.teb.2011.0230] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/15/2011] [Indexed: 11/12/2022]
Abstract
As the field of tissue engineering advances, it is crucial to develop imaging methods capable of providing detailed three-dimensional information on tissue structure. X-ray imaging techniques based on phase-contrast (PC) have great potential for a number of biomedical applications due to their ability to provide information about soft tissue structure without exogenous contrast agents. X-ray PC techniques retain the excellent spatial resolution, tissue penetration, and calcified tissue contrast of conventional X-ray techniques while providing drastically improved imaging of soft tissue and biomaterials. This suggests that X-ray PC techniques are very promising for evaluation of engineered tissues. In this review, four different implementations of X-ray PC imaging are described and applications to tissues of relevance to tissue engineering reviewed. In addition, recent applications of X-ray PC to the evaluation of biomaterial scaffolds and engineered tissues are presented and areas for further development and application of these techniques are discussed. Imaging techniques based on X-ray PC have significant potential for improving our ability to image and characterize engineered tissues, and their continued development and optimization could have significant impact on the field of tissue engineering.
Collapse
Affiliation(s)
- Alyssa Appel
- Department of Biomedical Engineering and Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Service, Hines Veterans Administration Hospital, Hines, Illinois
| | - Mark A. Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Eric M. Brey
- Department of Biomedical Engineering and Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Service, Hines Veterans Administration Hospital, Hines, Illinois
| |
Collapse
|
23
|
Fogarty DP, Reinhart B, Tzvetkov T, Nesch I, Williams C. In-Laboratory Diffraction-Enhanced X-Ray Imaging of an Equine Hoof. J Equine Vet Sci 2011. [DOI: 10.1016/j.jevs.2011.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Yu Y, Ning R, Cai W. Performance Evaluation of a Differential Phase-contrast Cone-beam (DPC-CBCT) System for Soft Tissue Imaging. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2011; 7961:79614X. [PMID: 24027607 DOI: 10.1117/12.878492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Differential phase-contrast (DPC) technique is promising as the next breakthrough in the field of X-ray CT imaging. Utilizing the long ignored X-ray phase information, Differential phase-contrast (DPC) technique has the potential of providing us with projection images with higher contrast in a CT scan without increasing the X-ray dose. While traditional absorption-based X-ray imaging is not very efficient at differentiating soft tissues, differential phase-contrast (DPC) is promising as a new method to boast the quality of the CT reconstruction images in term of contrast noise ratio (CNR) in soft tissue imaging. In order to validate and investigate the use of DPC technique in cone-beam CT imaging scheme, a new bench-top micro-focus DPC-based cone-beam computed tomography DPC-CBCT system has been designed and constructed in our lab for soft tissue imaging. The DPC-CBCT system consists of a micro-focus X-ray tube (focal spot 8 μm), a high-resolution detector, a rotating phantom holder and two gratings, i.e. a phase grating and an analysis. The detector system has a phosphor screen, an optical fiber coupling unit and a CMOS chip with an effective pixel pitch of 22.5 microns. The optical elements are aligned to minimize unexpected moiré patterns, and system parameters, including tube voltage (or equivalently X-ray spectrum), distances between gratings, source-to-object distance and object-to-detector distance are chosen as practicable to be applied in a rotating system. The system is tested with two simple phantoms for performance evaluation. 3-D volumetric phase-coefficients are reconstructed. The performance of the system is compared with conventional absorption-based CT in term of contrast noise ratio (CNR) under the condition of equal X-ray dose level.
Collapse
Affiliation(s)
- Yang Yu
- Department of Imaging Sciences, University of Rochester, Box 648, 601 Elmwood Avenue, Rochester, NY 14642
| | | | | |
Collapse
|
25
|
Diemoz PC, Bravin A, Glaser C, Coan P. Comparison of analyzer-based imaging computed tomography extraction algorithms and application to bone-cartilage imaging. Phys Med Biol 2010; 55:7663-79. [DOI: 10.1088/0031-9155/55/24/018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Kitchen MJ, Paganin DM, Uesugi K, Allison BJ, Lewis RA, Hooper SB, Pavlov KM. X-ray phase, absorption and scatter retrieval using two or more phase contrast images. OPTICS EXPRESS 2010; 18:19994-20012. [PMID: 20940891 DOI: 10.1364/oe.18.019994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We have developed two phase-retrieval techniques for analyser-based phase contrast imaging that provide information about an object's X-ray absorption, refraction and scattering properties. The first requires rocking curves to be measured with and without the sample and improves upon existing techniques by accurately fitting the curves with Pearson type VII functions. The second employs an iterative approach using two simultaneously recorded images by exploiting the Laue crystal geometry. This technique provides a substantial reduction in X-ray dose and enables quantitative phase retrieval to be performed on images of moving objects.
Collapse
|
27
|
Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates. Appl Radiat Isot 2010; 68:1687-93. [DOI: 10.1016/j.apradiso.2010.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 04/04/2010] [Accepted: 04/04/2010] [Indexed: 11/19/2022]
|
28
|
Brey EM, Appel A, Chiu YC, Zhong Z, Cheng MH, Engel H, Anastasio MA. X-ray imaging of poly(ethylene glycol) hydrogels without contrast agents. Tissue Eng Part C Methods 2010; 16:1597-600. [PMID: 20662738 DOI: 10.1089/ten.tec.2010.0150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hydrogels have shown promise for a number of tissue engineering applications. However, their high water content results in little or no image contrast when using conventional X-ray imaging techniques. X-ray imaging techniques based on phase-contrast have shown promise for biomedical application due to their ability to provide information about the X-ray refraction properties of samples. Nonporous and porous poly(ethylene glycol) hydrogels were synthesized and imaged using a synchrotron light source employing a silicon analyzer crystal and an X-ray energy of 40-keV. Data were acquired at 21 angular analyzer positions spanning the range of -5 to 5 μrad. Images that depict the projected X-ray absorption, refraction, and ultra-small-angle scatter (USAXS) properties of the hydrogels were reconstructed from the measurement data. The poly(ethylene glycol) hydrogels could be discerned from surrounding water and soft tissue in the refraction image but not the absorption or USAXS images. In addition, the refraction images of the porous hydrogels have a speckle pattern resulting in increased image texture in comparison to nonporous hydrogels. To our knowledge, this is the first study to show that X-ray phase-contrast imaging techniques can identify and provide detail on hydrogel structure without the addition of contrast agents.
Collapse
Affiliation(s)
- Eric M Brey
- Department of Biomedical Engineering, Illinois Institut e of Technology, Chicago, Illinois 60616, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Arfelli F, Rigon L, Menk RH. Microbubbles as x-ray scattering contrast agents using analyzer-based imaging. Phys Med Biol 2010; 55:1643-58. [DOI: 10.1088/0031-9155/55/6/008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Nesch I, Fogarty DP, Tzvetkov T, Reinhart B, Walus AC, Khelashvili G, Muehleman C, Chapman D. The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:093702. [PMID: 19791939 DOI: 10.1063/1.3213621] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We describe the design and application of a new in-laboratory diffraction-enhanced x-ray imaging (DEXI) instrument that uses a nonsynchrotron, conventional x-ray source to image the internal structure of an object. In the work presented here, a human cadaveric thumb is used as a test-sample to demonstrate the imaging capability of our instrument. A 22 keV monochromatic x-ray beam is prepared using a mismatched, two-crystal monochromator; a silicon analyzer crystal is placed in a parallel crystal geometry with the monochromator allowing both diffraction-enhanced imaging and multiple-imaging radiography to be performed. The DEXI instrument was found to have an experimentally determined spatial resolution of 160+/-7 mum in the horizontal direction and 153+/-7 mum in the vertical direction. As applied to biomedical imaging, the DEXI instrument can detect soft tissues, such as tendons and other connective tissues, that are normally difficult or impossible to image via conventional x-ray techniques.
Collapse
Affiliation(s)
- Ivan Nesch
- Nesch, LLC 9800 Connecticut Drive, Crown Point, Indiana 46307, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Akio Y, Jin W, Kazuyuki H, Tohoru T. Quantitative comparison of imaging performance of x-ray interferometric imaging and diffraction enhanced imaging. Med Phys 2008; 35:4724-34. [PMID: 18975717 DOI: 10.1118/1.2977543] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
For detailed biomedical observations using the optimum phase-contrast x-ray imaging, quantitative comparisons of imaging performances of two major imaging methods--x-ray interferometric imaging (XII) and diffraction enhanced imaging (DEI)--were performed. Density sensitivity and spatial resolution of each imaging method were evaluated using phantom tomograms obtained by each method with the same x-ray dosage. For practical comparison of the methods, biological samples were also observed under the same conditions. The results show that XII has a higher sensitivity than that of DEI and is thus suitable for observation of soft biological tissues. On the other hand, DEI has a wider dynamic range of density and is thus suitable for observation of samples with large differences in density of different regions.
Collapse
Affiliation(s)
- Yoneyama Akio
- Advanced Research Laboratory, Hitachi, Ltd., 2520 Akanuma, Hatoyama, Saitama, 350-0395, Japan.
| | | | | | | |
Collapse
|
32
|
Fernández M, Suhonen H, Keyriläinen J, Bravin A, Fiedler S, Karjalainen-Lindsberg ML, Leidenius M, von Smitten K, Suortti P. USAXS and SAXS from cancer-bearing breast tissue samples. Eur J Radiol 2008; 68:S89-94. [DOI: 10.1016/j.ejrad.2008.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/25/2008] [Indexed: 10/21/2022]
|
33
|
Rigon L, Astolfo A, Arfelli F, Menk RH. Generalized diffraction enhanced imaging: Application to tomography. Eur J Radiol 2008; 68:S3-7. [DOI: 10.1016/j.ejrad.2008.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/25/2008] [Indexed: 10/21/2022]
|
34
|
Keyriläinen J, Fernández M, Karjalainen-Lindsberg ML, Virkkunen P, Leidenius M, von Smitten K, Sipilä P, Fiedler S, Suhonen H, Suortti P, Bravin A. Toward High-Contrast Breast CT at Low Radiation Dose. Radiology 2008; 249:321-7. [PMID: 18796684 DOI: 10.1148/radiol.2491072129] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jani Keyriläinen
- Department of Oncology and Radiotherapy, Turku University Central Hospital, Savitehtaankatu 1, FIN-20521 Turku, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhou SA, Brahme A. Development of phase-contrast X-ray imaging techniques and potential medical applications. Phys Med 2008; 24:129-48. [PMID: 18602852 DOI: 10.1016/j.ejmp.2008.05.006] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shu-Ang Zhou
- Karolinska Institute, Department of Oncology-Pathology, Division of Medical Radiation Physics, Stockholm, Sweden.
| | | |
Collapse
|
36
|
Westneat MW, Socha JJ, Lee WK. Advances in biological structure, function, and physiology using synchrotron X-ray imaging*. Annu Rev Physiol 2008; 70:119-42. [PMID: 18271748 DOI: 10.1146/annurev.physiol.70.113006.100434] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of the physiology and biomechanics of small ( approximately 1 cm) organisms are often limited by the inability to see inside the animal during a behavior or process of interest and by a lack of three-dimensional morphology at the submillimeter scale. These constraints can be overcome by an imaging probe that has sensitivity to soft tissue, the ability to penetrate opaque surfaces, and high spatial and temporal resolution. Synchrotron X-ray imaging has been successfully used to visualize millimeter-centimeter-sized organisms with micrometer-range spatial resolutions in fixed and living specimens. Synchrotron imaging of small organisms has been the key to recent novel insights into structure and function, particularly in the area of respiratory physiology and function of insects. X-ray imaging has been effectively used to examine the morphology of tracheal systems, the mechanisms of tracheal and air sac compression in insects, and the function of both chewing and sucking mouthparts in insects. Synchrotron X-ray imaging provides an exciting new window into the internal workings of small animals, with future promise to contribute to a range of physiological and biomechanical questions in comparative biology.
Collapse
Affiliation(s)
- Mark W Westneat
- Department of Zoology, Field Museum of Natural History, Chicago, IL 60605, USA.
| | | | | |
Collapse
|