1
|
Vinnikov V, Belyakov O. Clinical Applications of Biological Dosimetry in Patients Exposed to Low Dose Radiation Due to Radiological, Imaging or Nuclear Medicine Procedures. Semin Nucl Med 2021; 52:114-139. [PMID: 34879905 DOI: 10.1053/j.semnuclmed.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Radiation dosimetric biomarkers have found applications beyond radiation protection area and now are actively introduced into clinical practice. Cytogenetic assays appeared to be a valuable tool for individualized quantifying radiation effects in patients, with high capability for assessing genotoxicity of various medical exposure modalities and providing meaningful radiation dose estimates for prognoses of radiation-related cancer risk. This review summarized current data on the use of biological dosimetry methods in patients undergoing various medical irradiations to low doses. The highlighted topics include basic aspects of biological dosimetry and its limitations in the range of low radiation doses, and main patterns of in vivo induction of radiation biomarkers in clinical exposure scenarios, occurring in X-ray diagnostics, computed tomography, interventional radiology, low dose radiotherapy, and nuclear medicine (internally administered 131I and other radiopharmaceuticals). Additionally, several specific issues, examined by biodosimetry techniques, are analysed, such as contrast media effect, radiation response in pediatric patients, impact of magnetic resonance imaging, evaluation of radioprotectors, detection of patients' abnormal intrinsic radiosensitivity and dose estimation in persons involved in medical radiation incidents. A prognosis of possible directions for further improvements in this area includes the automation of cytogenetic analysis, introduction of molecular biodosimeters and development of multiparametric biodosimetry platforms. A potential approach to the advanced biodosimetry of internal exposure and/or low dose external irradiation is suggested; this can be a multiparametric platform based on the combination of the γ-H2AX foci, dicentric, and translocation assays, each applied in the optimum postexposure time range, with the amalgamation of the dose estimates. The study revealed the necessity of further research, which might clarify medical radiation safety concerns for patients via using stringent biodosimetry methodology.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- International Atomic Energy Agency (IAEA), Vienna, Austria; Grigoriev Institute for Medical Radiology and Oncology (GIMRO), Kharkiv, Ukraine.
| | - Oleg Belyakov
- International Atomic Energy Agency (IAEA), Vienna, Austria
| |
Collapse
|
2
|
Abtahi SMM, Aghamiri SMR, Yadolahi M, Mahmoudzadeh A. Dependence of micronuclei assay on the depth of absorbed dose. Rep Pract Oncol Radiother 2017; 22:470-476. [PMID: 28951698 DOI: 10.1016/j.rpor.2017.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/07/2017] [Accepted: 08/22/2017] [Indexed: 11/25/2022] Open
Abstract
AIM The purpose of the present study is to investigate the dependence of micronuclei response on the depth of absorbed dose. BACKGROUND One of the most common cytogenetic methods used for radiation dosimetry is micronuclei (MN). Being less complex and faster than other methods are two remarkable advantages of the MN method which make it suitable for monitoring of population. In biological dosimetry based on the micronuclei method, the investigation into the dependence of response on the depth in which dose is absorbed is significant, though has received less attention so far. MATERIALS AND METHODS Blood samples were poured in separate vials to be irradiated at different depths using a linear accelerator system. RESULTS According to the results, MN, as a function of the absorbed dose, had the best fitness with the linear-quadratic model at all depths. Furthermore, the results showed the dependence of MN response on the depth of absorbed dose. For doses up to 2 Gy, the maximum difference from the reference depth of 1.5 cm was related to the depth of 10 cm; however, by increasing the absorbed dose, the response associated with the depth of 20 cm showed the maximum deviation from the reference depth. CONCLUSIONS Consequently, it is necessary to apply a correction factor to the biological dosimetry. The correction factor is dependent on the depth and the absorbed dose.
Collapse
Affiliation(s)
| | | | - Masoumeh Yadolahi
- Nursing Care Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Aziz Mahmoudzadeh
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Allen BJ. A comparative evaluation of Ac225 vs Bi213 as therapeutic radioisotopes for targeted alpha therapy for cancer. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:369-376. [PMID: 28342027 DOI: 10.1007/s13246-017-0534-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/08/2017] [Indexed: 10/19/2022]
Abstract
The Ac225:Bi213 generator is the mainstay for preclinical and clinical studies of targeted alpha therapy for cancer. Both Ac225 (four alpha decays) and Bi213 (one alpha decay) are being used to label targeting vectors to form the alpha immunoconjugate for cancer therapy. This paper considers the radiobiological and economic aspects of Ac225 vs Bi213 as the preferred radioisotope for preclinical and clinical TAT. The in vitro and in vivo evidence and the role of DNA repair processes is examined. The maximum tolerance dose and therapeutic gain are endpoints for comparison. Ac225 has the higher therapeutic gain, when normalised to equal alpha production. However, the slow repair of double strand breaks reduces this advantage. Comparisons are made for the specific energy deposition in targeted and non-targeted cells, for endothelial cells by direct or indirect targeting, the need for sparing agents to save critical organs and cost considerations for preclinical and clinical trials and clinical use. Overall, Ac225 is found to have the better or equal performance to Bi213 at a much lower cost.
Collapse
Affiliation(s)
- Barry J Allen
- Faculty of Medicine, University Western Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Abstract
Targeted alpha therapy (TAT) is an emerging option for local and systemic cancer treatment. Preclinical research and clinical trials show that alpha-emitting radionuclides can kill targeted cancer cells while sparing normal cells, thus reducing toxicity. (223)RaCl2 (Xofigo(®)) is the first alpha emitting radioisotope to gain registration in the US for palliative therapy of prostate cancer bone metastases by indirect physiological targeting. The alpha emitting radioisotopes (211)At, (213)Bi, (225)Ac and (227)Th are being used to label targeting vectors such as monoclonal antibodies for specific cancer therapy indications. In this review, safety and tolerance aspects are considered with respect to microdosimetry, specific energy, Monte Carlo model calculations, biodosimetry, equivalent dose and mutagenesis. The clinical efficacy of TAT for solid tumors may also be enhanced by its capacity for tumor anti-vascular (TAVAT) effects. This review emphasizes key aspects of TAT research with respect to the PAI2-uPAR complex and the monoclonal antibodies bevacizumab, C595 and J591. Clinical trial outcomes are reviewed for neuroendocrine tumors, leukemia, glioma, melanoma, non-Hodgkins lymphoma, and prostate bone metastases. Recommendations and future directions are proposed.
Collapse
Affiliation(s)
- Barry J Allen
- Faculty of Physics, University of Sydney, Sydney, NSW, Australia ; Faculty of Medicine, Ingham Institute, University of Western Sydney, Liverpool, NSW, Australia
| | - Chen-Yu Huang
- Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Raymond A Clarke
- Faculty of Medicine, Ingham Institute, University of Western Sydney, Liverpool, NSW, Australia
| |
Collapse
|
5
|
Ropolo M, Balia C, Roggieri P, Lodi V, Nucci MC, Violante FS, Silingardi P, Colacci A, Bolognesi C. The micronucleus assay as a biological dosimeter in hospital workers exposed to low doses of ionizing radiation. Mutat Res 2012; 747:7-13. [PMID: 22525360 DOI: 10.1016/j.mrgentox.2012.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 01/09/2012] [Accepted: 02/25/2012] [Indexed: 10/28/2022]
Abstract
The health risk associated with low levels of ionizing radiation is still a matter of debate. A number of factors, such as non-target effects, adaptive responses and low-dose hypersensitivity, affect the long-term outcome of low-dose exposures. Cytogenetic bio-dosimetry provides a measure of the absorbed dose, taking into account the individual radiation sensitivity. The aim of the present study is to evaluate the value of the micronucleus (MN) test as a bio-dosimeter in hospital workers exposed to low doses of ionizing radiation. Blood samples were obtained from 30 subjects selected among workers exposed to X- and gamma-radiation, and 30 controls matched for sex, age and smoking from the same hospital. Micronucleus frequencies were analyzed by use of the cytokinesis-block method. The MN frequency was compared among the groups considering the confounding factors and the length of employment. No increase in the number of bi-nucleated cells with MN (BNMN), but a significant increase in the number of mono-nucleated cells with micronuclei (MOMN) was observed in exposed subjects compared with the controls. The relationship between MN frequency and accumulated dose (mSv) was evaluated. The length of employment did not affect the extent of MN frequency, but an increase of BNMN and MOMN cells was observed based on the accumulated radiation dose. Our study shows the sensitivity of the MN test in the detection of cytogenetic effects of cumulative exposure levels, suggesting the potential usefulness of this assay in providing a biological index in medical surveillance programs.
Collapse
Affiliation(s)
- Monica Ropolo
- Environmental Carcinogenesis Unit, IRCCS Azienda Ospedaliera Universitaria San Martino -IST, Istituto Nazionale Ricerca sul Cancro, Largo R. Benzi 10, 16132, Genova, Italy
| | - Cristina Balia
- Environmental Carcinogenesis Unit, IRCCS Azienda Ospedaliera Universitaria San Martino -IST, Istituto Nazionale Ricerca sul Cancro, Largo R. Benzi 10, 16132, Genova, Italy
| | - Paola Roggieri
- Environmental Carcinogenesis Unit, IRCCS Azienda Ospedaliera Universitaria San Martino -IST, Istituto Nazionale Ricerca sul Cancro, Largo R. Benzi 10, 16132, Genova, Italy
| | - Vittorio Lodi
- Occupational Health Unit S.Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | | | | | - Paola Silingardi
- Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency-Emilia Romagna Region (ER-EPA), 40126 Bologna, Italy
| | - Annamaria Colacci
- Occupational Health Unit S.Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, IRCCS Azienda Ospedaliera Universitaria San Martino -IST, Istituto Nazionale Ricerca sul Cancro, Largo R. Benzi 10, 16132, Genova, Italy.
| |
Collapse
|
6
|
Allen BJ. Can α-radioimmunotherapy increase efficacy for the systemic control of cancer? Immunotherapy 2011; 3:455-8. [PMID: 21463184 DOI: 10.2217/imt.11.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Tremoleda JL, Khalil M, Gompels LL, Wylezinska-Arridge M, Vincent T, Gsell W. Imaging technologies for preclinical models of bone and joint disorders. EJNMMI Res 2011; 1:11. [PMID: 22214535 PMCID: PMC3251252 DOI: 10.1186/2191-219x-1-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/29/2011] [Indexed: 11/24/2022] Open
Abstract
Preclinical models for musculoskeletal disorders are critical for understanding the pathogenesis of bone and joint disorders in humans and the development of effective therapies. The assessment of these models primarily relies on morphological analysis which remains time consuming and costly, requiring large numbers of animals to be tested through different stages of the disease. The implementation of preclinical imaging represents a keystone in the refinement of animal models allowing longitudinal studies and enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time. Our aim is to highlight examples that demonstrate the advantages and limitations of different imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging. All of which are in current use in preclinical skeletal research. MRI can provide high resolution of soft tissue structures, but imaging requires comparatively long acquisition times; hence, animals require long-term anaesthesia. CT is extensively used in bone and joint disorders providing excellent spatial resolution and good contrast for bone imaging. Despite its excellent structural assessment of mineralized structures, CT does not provide in vivo functional information of ongoing biological processes. Nuclear medicine is a very promising tool for investigating functional and molecular processes in vivo with new tracers becoming available as biomarkers. The combined use of imaging modalities also holds significant potential for the assessment of disease pathogenesis in animal models of musculoskeletal disorders, minimising the use of conventional invasive methods and animal redundancy.
Collapse
Affiliation(s)
- Jordi L Tremoleda
- Biological Imaging Centre (BIC), Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Bolognesi C, Balia C, Roggieri P, Cardinale F, Bruzzi P, Sorcinelli F, Lista F, D’Amelio R, Righi E. Micronucleus test for radiation biodosimetry in mass casualty events: Evaluation of visual and automated scoring. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2010.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Furness DLF, Dekker GA, Hague WM, Khong TY, Fenech MF. Increased lymphocyte micronucleus frequency in early pregnancy is associated prospectively with pre-eclampsia and/or intrauterine growth restriction. Mutagenesis 2010; 25:489-98. [PMID: 20581221 DOI: 10.1093/mutage/geq032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genome stability is essential for normal foetal growth and development. To date, genome stability in human lymphocytes has not been studied in relation to late pregnancy diseases, such as pre-eclampsia (PE) and intrauterine growth restriction (IUGR), which can be life-threatening to mother and baby and together affect >10% of pregnancies. We performed a prospective cohort study investigating the association of maternal chromosomal damage in mid-pregnancy (20 weeks gestation) with pregnancy outcomes. Chromosome damage was measured using the cytokinesis-block micronucleus cytome (CBMNcyt) assay in peripheral blood lymphocytes. The odds ratio for PE and/or IUGR in a mixed cohort of low- and high-risk pregnancies (N = 136) and a cohort of only high-risk pregnancies (N = 91) was 15.97 (P = 0.001) and 17.85 (P = 0.007), respectively, if the frequency of lymphocytes with micronuclei (MN) at 20 weeks gestation was greater than the mean + 2 SDs of the cohort. These results suggest that the presence of lymphocyte MN is significantly increased in women who develop PE and/or IUGR before the clinical signs or symptoms appear relative to women with normal pregnancy outcomes. The CBMNcyt assay may provide a new approach for the early detection of women at risk of developing these late pregnancy diseases and for biomonitoring the efficacy of interventions to reduce DNA damage, which may in turn ameliorate pregnancy outcome.
Collapse
Affiliation(s)
- D L F Furness
- Department of Obstetrics and Gynaecology, Robinson Institute, Research Centre for Reproductive Health, The Medical School, Frome Road, University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | | | | | | | | |
Collapse
|
10
|
Senthamizhchelvan S, Pant G, Rath G, Julka P, Nair O. Biodosimetry using micronucleus assay in acute partial body therapeutic irradiation. Phys Med 2009; 25:82-7. [DOI: 10.1016/j.ejmp.2008.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 05/02/2008] [Accepted: 05/16/2008] [Indexed: 10/21/2022] Open
|
11
|
Hamza VZ, Mohankumar MN. Cytogenetic damage in human blood lymphocytes exposed in vitro to radon. Mutat Res 2008; 661:1-9. [PMID: 19022267 DOI: 10.1016/j.mrfmmm.2008.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/14/2008] [Accepted: 10/17/2008] [Indexed: 11/29/2022]
Abstract
The effect of radon in inducing DNA damage was investigated in vitro by two well-established cytogenetic assays. Blood samples were irradiated with radon using a novel irradiation assembly. Doses varied between 0 and 127 mGy for chromosome aberration (CA) assay and 0 and 120 mGy for cytokinesis blocked micronucleus (CBMN) assay. Dose-rates varied between 0.000054 and 0.708 mGy/min. After the irradiation period of 3h, excess radon gas was released and cultures were initiated using standard procedures. Chromosome aberrations such as dicentrics, excess acentric fragments, acentric rings, centric rings, chromatid breaks were observed. Micronuclei, nucleoplasmic bridges and nuclear buds were scored by the CBMN assay. A significant increase in the frequency of dicentrics, excess acentric fragments and centric rings was observed with increasing radon dose, whereas total acentric rings plus double minute and chromatid breaks/cell were not significantly elevated. In CBMN assay, the frequency of micronuclei was found to be significantly raised whereas that of nucleoplasmic bridges and nuclear buds were not. Nucleoplasmic bridges and nuclear buds tended to increase with dose but did not achieve statistical significance. There was a strong positive correlation between nucleoplasmic bridges and dicentrics (P<0.028) or rings (P<0.0001) and between micronuclei and acentric fragments (P<0.0005). The study shows that radon is capable of inducing significant chromosome damage at very low doses and dose-rates.
Collapse
Affiliation(s)
- V Zareena Hamza
- Radiological Safety Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam-603 102, Tamilnadu, India
| | | |
Collapse
|
12
|
Chaudhry MA. Biomarkers for human radiation exposure. J Biomed Sci 2008; 15:557-63. [DOI: 10.1007/s11373-008-9253-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 03/12/2008] [Indexed: 02/01/2023] Open
|