1
|
Jafari R, Chhabra S, Prince MR, Wang Y, Spincemaille P. Vastly accelerated linear least-squares fitting with numerical optimization for dual-input delay-compensated quantitative liver perfusion mapping. Magn Reson Med 2017; 79:2415-2421. [PMID: 28833534 DOI: 10.1002/mrm.26888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE To propose an efficient algorithm to perform dual input compartment modeling for generating perfusion maps in the liver. METHODS We implemented whole field-of-view linear least squares (LLS) to fit a delay-compensated dual-input single-compartment model to very high temporal resolution (four frames per second) contrast-enhanced 3D liver data, to calculate kinetic parameter maps. Using simulated data and experimental data in healthy subjects and patients, whole-field LLS was compared with the conventional voxel-wise nonlinear least-squares (NLLS) approach in terms of accuracy, performance, and computation time. RESULTS Simulations showed good agreement between LLS and NLLS for a range of kinetic parameters. The whole-field LLS method allowed generating liver perfusion maps approximately 160-fold faster than voxel-wise NLLS, while obtaining similar perfusion parameters. CONCLUSIONS Delay-compensated dual-input liver perfusion analysis using whole-field LLS allows generating perfusion maps with a considerable speedup compared with conventional voxel-wise NLLS fitting. Magn Reson Med 79:2415-2421, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ramin Jafari
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Shalini Chhabra
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Martin R Prince
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Yi Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
2
|
Gill AB, Black RT, Bowden DJ, Priest AN, Graves MJ, Lomas DJ. An investigation into the effects of temporal resolution on hepatic dynamic contrast-enhanced MRI in volunteers and in patients with hepatocellular carcinoma. Phys Med Biol 2014; 59:3187-200. [PMID: 24862216 DOI: 10.1088/0031-9155/59/12/3187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2-20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR.
Collapse
Affiliation(s)
- Andrew B Gill
- Department of Radiology, University of Cambridge, Cambridge, UK. Department of Medical Physics, Cambridge University Hospitals, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
3
|
Garpebring A, Brynolfsson P, Yu J, Wirestam R, Johansson A, Asklund T, Karlsson M. Uncertainty estimation in dynamic contrast-enhanced MRI. Magn Reson Med 2012; 69:992-1002. [DOI: 10.1002/mrm.24328] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/27/2012] [Accepted: 04/18/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Anders Garpebring
- Division of Radiation Physics; Department of Radiation Sciences; Umeå University; Umeå; Sweden
| | - Patrik Brynolfsson
- Division of Radiation Physics; Department of Radiation Sciences; Umeå University; Umeå; Sweden
| | - Jun Yu
- Centre of Biostochastics; Swedish University of Agricultural Sciences; Umeå; Sweden
| | - Ronnie Wirestam
- Department of Medical Radiation Physics; Lund University; Lund; Sweden
| | - Adam Johansson
- Division of Radiation Physics; Department of Radiation Sciences; Umeå University; Umeå; Sweden
| | - Thomas Asklund
- Division of Oncology; Department of Radiation Sciences; Umeå University; Umeå; Sweden
| | - Mikael Karlsson
- Division of Radiation Physics; Department of Radiation Sciences; Umeå University; Umeå; Sweden
| |
Collapse
|
4
|
An Elevated Arterial Enhancement Fraction Is Associated With Clinical and Imaging Indices of Liver Fibrosis and Cirrhosis. J Comput Assist Tomogr 2012. [DOI: 10.1097/rct.0b013e3182702ee3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Zhang MB, Qu EZ, Liu JB, Wang JR. Quantitative Assessment of Hepatic Fibrosis by Contrast-enhanced Ultrasonography. ACTA ACUST UNITED AC 2011; 26:208-15. [DOI: 10.1016/s1001-9294(12)60002-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Usefulness of a dual-input single-compartment model for quantitative evaluation of thioacetamide-induced acute liver injury in rats using dynamic contrast-enhanced computed tomography. Radiol Phys Technol 2011; 5:27-33. [DOI: 10.1007/s12194-011-0130-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/01/2011] [Accepted: 08/03/2011] [Indexed: 01/03/2023]
|
7
|
Patel KD, Abeysekera KWM, Marlais M, McPhail MJW, Thomas HC, Fitzpatrick JA, Lim AKP, Taylor-Robinson SD, Thomas EL. Recent advances in imaging hepatic fibrosis and steatosis. Expert Rev Gastroenterol Hepatol 2011; 5:91-104. [PMID: 21309675 DOI: 10.1586/egh.10.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Liver disease is an increasing cause of morbidity and mortality worldwide. Currently, the gold standard for diagnosis and assessment of parenchymal disease is histopathological assessment of a percutaneous or transjugular liver biopsy. The risks and limitations of this technique are well recognized and as a result, significant effort has gone into the development of novel noninvasive methods of diagnosis and longitudinal assessment. Imaging techniques have improved significantly over the past decade and new technologies are beginning to enter clinical practice. Ultrasound, computed tomography and MRI are the main modalities currently used, but novel MRI-based techniques will have an increasing role. While there has been extensive research into the imaging of focal liver disease, the evidence base for imaging in diffuse disease has also undergone recent rapid development, particularly in the assessment of fibrosis and steatosis. Both of these abnormalities of the parenchyma can lead to cirrhosis and/or hepatocellular carcinoma and represent an important opportunity for detection of early liver disease. We discuss the recent advances in liver imaging techniques and their role in the diagnosis and monitoring of diffuse liver disease, with a focus on their current and potential clinical relevance and whether they may replace or augment liver biopsy. We also discuss techniques currently under development and their potential clinical applications in the future.
Collapse
Affiliation(s)
- Kayur D Patel
- Liver Unit, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, 10th Floor Queen Elizabeth the Queen Mother Wing, St Mary's Hospital Campus, Imperial College London, South Wharf Street, London W2 1NY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Faria SC, Ganesan K, Mwangi I, Shiehmorteza M, Viamonte B, Mazhar S, Peterson M, Kono Y, Santillan C, Casola G, Sirlin CB. MR imaging of liver fibrosis: current state of the art. Radiographics 2010. [PMID: 19959511 DOI: 10.1148/rg.296095512.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chronic liver disease is a major public health problem worldwide. Liver fibrosis, a common feature of almost all causes of chronic liver disease, involves the accumulation of collagen, proteoglycans, and other macromolecules within the extracellular matrix. Fibrosis tends to progress, leading to hepatic dysfunction, portal hypertension, and ultimately cirrhosis. Liver biopsy, the standard of reference for diagnosing liver fibrosis, is invasive, costly, and subject to complications and sampling variability. These limitations make it unsuitable for diagnosis and longitudinal monitoring in the general population. Thus, development of a noninvasive, accurate, and reproducible test for diagnosis and monitoring of liver fibrosis would be of great value. Conventional cross-sectional imaging techniques have limited capability to demonstrate liver fibrosis. In clinical practice, imaging studies are usually reserved for evaluation of the presence of portal hypertension or hepatocellular carcinoma in cases that have progressed to cirrhosis. In response to the rising prevalence of chronic liver diseases in Western nations, a number of imaging-based methods including ultrasonography-based transient elastography, computed tomography-based texture analysis, and diverse magnetic resonance (MR) imaging-based techniques have been proposed for noninvasive diagnosis and grading of hepatic fibrosis across its entire spectrum of severity. State-of-the-art MR imaging-based techniques in current practice and in development for noninvasive assessment of liver fibrosis include conventional contrast material-enhanced MR imaging, double contrast-enhanced MR imaging, MR elastography, diffusion-weighted imaging, and MR perfusion imaging.
Collapse
Affiliation(s)
- Silvana C Faria
- Department of Radiology, University of California, San Diego Medical Center, University of California at San Diego, MR 3.0T Laboratory, 408 Dickinson St, San Diego, CA 92103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Faria SC, Ganesan K, Mwangi I, Shiehmorteza M, Viamonte B, Mazhar S, Peterson M, Kono Y, Santillan C, Casola G, Sirlin CB. MR imaging of liver fibrosis: current state of the art. Radiographics 2010; 29:1615-35. [PMID: 19959511 DOI: 10.1148/rg.296095512] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic liver disease is a major public health problem worldwide. Liver fibrosis, a common feature of almost all causes of chronic liver disease, involves the accumulation of collagen, proteoglycans, and other macromolecules within the extracellular matrix. Fibrosis tends to progress, leading to hepatic dysfunction, portal hypertension, and ultimately cirrhosis. Liver biopsy, the standard of reference for diagnosing liver fibrosis, is invasive, costly, and subject to complications and sampling variability. These limitations make it unsuitable for diagnosis and longitudinal monitoring in the general population. Thus, development of a noninvasive, accurate, and reproducible test for diagnosis and monitoring of liver fibrosis would be of great value. Conventional cross-sectional imaging techniques have limited capability to demonstrate liver fibrosis. In clinical practice, imaging studies are usually reserved for evaluation of the presence of portal hypertension or hepatocellular carcinoma in cases that have progressed to cirrhosis. In response to the rising prevalence of chronic liver diseases in Western nations, a number of imaging-based methods including ultrasonography-based transient elastography, computed tomography-based texture analysis, and diverse magnetic resonance (MR) imaging-based techniques have been proposed for noninvasive diagnosis and grading of hepatic fibrosis across its entire spectrum of severity. State-of-the-art MR imaging-based techniques in current practice and in development for noninvasive assessment of liver fibrosis include conventional contrast material-enhanced MR imaging, double contrast-enhanced MR imaging, MR elastography, diffusion-weighted imaging, and MR perfusion imaging.
Collapse
Affiliation(s)
- Silvana C Faria
- Department of Radiology, University of California, San Diego Medical Center, University of California at San Diego, MR 3.0T Laboratory, 408 Dickinson St, San Diego, CA 92103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Investigation on the optimal position for the quantification of hepatic perfusion by use of dynamic contrast-enhanced computed tomography in rats. Radiol Phys Technol 2009; 2:183-8. [DOI: 10.1007/s12194-009-0063-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
|
12
|
Miyazaki M, Tsushima Y, Miyazaki A, Paudyal B, Amanuma M, Endo K. Quantification of hepatic arterial and portal perfusion with dynamic computed tomography: comparison of maximum-slope and dual-input one-compartment model methods. Jpn J Radiol 2009; 27:143-50. [DOI: 10.1007/s11604-008-0312-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/11/2008] [Indexed: 11/24/2022]
|