1
|
Abstract
Treatment planning in radiation therapy has progressed enormously over the past several decades. Such advancements came in the form of innovative hardware and algorithms, giving rise to modalities such as intensity-modulated radiation therapy and volume modulated arc therapy, greatly improving patient outcome and quality of life. While these developments have improved the overall plan quality, they have also given rise to higher treatment planning complexity. This has resulted in increased treatment planning time and higher variability in the final approved plan quality. Radiation oncology, as an already technologically advanced field, has much research and implementation involving the use of AI. The field has begun to show the efficacy of using such technologies in many of its sub-areas, such as in diagnosis, imaging, segmentation, treatment planning, quality assurance, treatment delivery, and follow-up. Some AI technologies have already been clinically implemented by commercial systems. In this article, we will provide an overview to methods involved with treatment planning in radiation therapy. In particular, we will review the recent research and literature related to automation of the treatment planning process, leading to potentially higher efficiency and higher quality plans. We will then present the current and future challenges, as well as some future perspectives.
Collapse
Affiliation(s)
- Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX.
| | - Mu-Han Lin
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| | - David Sher
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| | - Weiguo Lu
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| | - Xun Jia
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| | - Steve Jiang
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
2
|
Feygelman V, Latifi K, Bowers M, Greco K, Moros EG, Isacson M, Angerud A, Caudell J. Maintaining dosimetric quality when switching to a Monte Carlo dose engine for head and neck volumetric-modulated arc therapy planning. J Appl Clin Med Phys 2022; 23:e13572. [PMID: 35213089 PMCID: PMC9121035 DOI: 10.1002/acm2.13572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck cancers present challenges in radiation treatment planning due to the large number of critical structures near the target(s) and highly heterogeneous tissue composition. While Monte Carlo (MC) dose calculations currently offer the most accurate approximation of dose deposition in tissue, the switch to MC presents challenges in preserving the parameters of care. The differences in dose‐to‐tissue were widely discussed in the literature, but mostly in the context of recalculating the existing plans rather than reoptimizing with the MC dose engine. Also, the target dose homogeneity received less attention. We adhere to strict dose homogeneity objectives in clinical practice. In this study, we started with 21 clinical volumetric‐modulated arc therapy (VMAT) plans previously developed in Pinnacle treatment planning system. Those plans were recalculated “as is” with RayStation (RS) MC algorithm and then reoptimized in RS with both collapsed cone (CC) and MC algorithms. MC statistical uncertainty (0.3%) was selected carefully to balance the dose computation time (1–2 min) with the planning target volume (PTV) dose‐volume histogram (DVH) shape approaching that of a “noise‐free” calculation. When the hot spot in head and neck MC‐based treatment planning is defined as dose to 0.03 cc, it is exceedingly difficult to limit it to 105% of the prescription dose, as we were used to with the CC algorithm. The average hot spot after optimization and calculation with RS MC was statistically significantly higher compared to Pinnacle and RS CC algorithms by 1.2 and 1.0 %, respectively. The 95% confidence interval (CI) observed in this study suggests that in most cases a hot spot of ≤107% is achievable. Compared to the 95% CI for the previous clinical plans recalculated with RS MC “as is” (upper limit 108%), in real terms this result is at least as good or better than the historic plans.
Collapse
Affiliation(s)
- Vladimir Feygelman
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Kujtim Latifi
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Mark Bowers
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Kevin Greco
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Max Isacson
- RaySearch Laboratories AB, Stockholm, Sweden
| | | | - Jimmy Caudell
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
3
|
Shin DS, Kim KH, Kang SW, Kang SH, Kim JS, Kim TH, Kim DS, Cho W, Suh TS, Chung JB. Dose Super-Resolution in Prostate Volumetric Modulated Arc Therapy Using Cascaded Deep Learning Networks. Front Oncol 2020; 10:593381. [PMID: 33304852 PMCID: PMC7701297 DOI: 10.3389/fonc.2020.593381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose This study proposes a cascaded network model for generating high-resolution doses (i.e., a 1 mm grid) from low-resolution doses (i.e., ≥3 mm grids) with reduced computation time. Methods Using the anisotropic analytical algorithm with three grid sizes (1, 3, and 5 mm) and the Acuros XB algorithm with two grid sizes (1 and 3 mm), dose distributions were calculated for volumetric modulated arc therapy plans for 73 prostate cancer patients. Our cascaded network model consisted of a hierarchically densely connected U-net (HD U-net) and a residual dense network (RDN), which were trained separately following a two-dimensional slice-by-slice procedure. The first network (HD U-net) predicted the downsampled high-resolution dose (generated through bicubic downsampling of the baseline high-resolution dose) using the low-resolution dose; subsequently, the second network (RDN) predicted the high-resolution dose from the output of the first network. Further, the predicted high-resolution dose was converted to its absolute value. We quantified the network performance using the spatial/dosimetric parameters (dice similarity coefficient, mean dose, maximum dose, minimum dose, homogeneity index, conformity index, and V95%, V70%, V50%, and V30%) for the low-resolution and predicted high-resolution doses relative to the baseline high-resolution dose. Gamma analysis (between the baseline dose and the low-resolution dose/predicted high-resolution dose) was performed with a 2%/2 mm criterion and 10% threshold. Results The average computation time to predict a high-resolution axial dose plane was <0.02 s. The dice similarity coefficient values for the predicted doses were closer to 1 when compared to those for the low-resolution doses. Most of the dosimetric parameters for the predicted doses agreed more closely with those for the baseline than for the low-resolution doses. In most of the parameters, no significant differences (p-value of >0.05) between the baseline and predicted doses were observed. The gamma passing rates for the predicted high-resolution does were higher than those for the low-resolution doses. Conclusion The proposed model accurately predicted high-resolution doses for the same dose calculation algorithm. Our model uses only dose data as the input without additional data, which provides advantages of convenience to user over other dose super-resolution methods.
Collapse
Affiliation(s)
- Dong-Seok Shin
- Department of Biomedical Engineering, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyeong-Hyeon Kim
- Department of Biomedical Engineering, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sang-Won Kang
- Department of Biomedical Engineering, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seong-Hee Kang
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Bundang, South Korea
| | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Bundang, South Korea
| | - Tae-Ho Kim
- Proton Therapy Center, National Cancer Center, Goyang, South Korea
| | - Dong-Su Kim
- Korea Atomic Energy Research Institute, Daejeon, South Korea
| | - Woong Cho
- Department of Radiation Oncology, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Tae Suk Suh
- Department of Biomedical Engineering, Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Beom Chung
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Bundang, South Korea
| |
Collapse
|
4
|
Kim J, Chu A, Xu Z. Dose uncertainty from calculation grid resolution and its alignment with MLC. Med Dosim 2019; 44:e1-e7. [DOI: 10.1016/j.meddos.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/15/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
5
|
Monte Carlo dose verification of VMAT treatment plans using Elekta Agility 160-leaf MLC. Phys Med 2018; 51:22-31. [DOI: 10.1016/j.ejmp.2018.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/26/2018] [Accepted: 06/02/2018] [Indexed: 11/17/2022] Open
|
6
|
Hernandez V, Vera-Sánchez JA, Vieillevigne L, Saez J. Commissioning of the tongue-and-groove modelling in treatment planning systems: from static fields to VMAT treatments. Phys Med Biol 2017. [PMID: 28639942 DOI: 10.1088/1361-6560/aa7b1a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adequate modelling of the multi-leaf collimator (MLC) by treatment planning systems (TPS) is essential for accurate dose calculations in intensity-modulated radiation-therapy. For this reason modern TPSs incorporate MLC characteristics such as the leaf end curvature, MLC transmission and the tongue-and-groove. However, the modelling of the tongue-and-groove is often neglected during TPS commissioning and it is not known how accurate it is. This study evaluates the dosimetric consequences of the tongue-and-groove effect for two different MLC models using both film dosimetry and ionisation chambers. A set of comprehensive tests are presented that evaluate the ability of TPSs to accurately model this effect in (a) static fields, (b) sliding window beams and (c) VMAT arcs. The tests proposed are useful for the commissioning of TPSs and for the validation of major upgrades. With the ECLIPSE TPS, relevant differences were found between calculations and measurements for beams with dynamic MLCs in the presence of the TG effect, especially for the High Definition MLC, small gap sizes and the 1 mm calculation grid. For this combination, dose differences as high as 10% and 7% were obtained for dynamic MLC gaps of 5 mm and 10 mm, respectively. These differences indicate inadequate modelling of the tongue-and-groove effect, which might not be identified without the proposed tests. In particular, the TPS tended to underestimate the calculated dose, which may require tuning of other configuration parameters in the TPS (such as the dosimetric leaf gap) in order to maximise the agreement between calculations and measurements in clinical plans. In conclusion, a need for better modelling of the MLC by TPSs is demonstrated, one of the relevant aspects being the tongue-and-groove effect. This would improve the accuracy of TPS calculations, especially for plans using small MLC gaps, such as plans with small target volumes or high complexities. Improved modelling of the MLC would also reduce the need for tuning parameters in the TPS, facilitating a more comprehensive configuration and commissioning of TPSs.
Collapse
Affiliation(s)
- Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, IISPV, 43204 Tarragona, Spain
| | | | | | | |
Collapse
|
7
|
Yi J, Han C, Zheng X, Zhou Y, Deng Z, Xie C, Jin X, Jin F. Individual volume-based 3D gamma indices for pretreatment VMAT QA. J Appl Clin Med Phys 2017; 18:28-36. [PMID: 28318101 PMCID: PMC5689866 DOI: 10.1002/acm2.12062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 11/11/2022] Open
Abstract
Although gamma analysis is still a widely accepted quantitative tool to analyze and report patient-specific QA for intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), the correlation between the 2D percentage gamma passing rate (%GP), and the clinical dosimetric difference for IMRT and VMAT has been questioned. The purpose of this study was to investigate the feasibility of individual volume-based 3D gamma indices for pretreatment VMAT QA. Percentage dosimetric errors (%DE) of dose-volume histogram metrics (includes target volumes and organ at risks) between the treatment planning system and QA-reconstructed dose distribution, %GPs for individual volume and global gamma indices, as well their correlations and sensitivities were investigated for one- and two-arc VMAT plans. The %GPs of individual volumes had a higher percent of correlation with individual 15 %DE metrics compared with global %GPs. For two-arc VMAT at 2%/2 mm, 3%/3 mm, and 4%/4 mm criteria, individual volume %GPs were correlated with 9, 12, and 9 out of 15 %DE metrics, while global %GPs were correlated with only 2 out of 15 %DE metrics, respectively. For one-arc VMAT at 2%/2 mm, 3%/3 mm, and 4%/4 mm criteria, individual volume %GPs were correlated with 18, 16, and 13 out of 23 %DE metrics, and global %GPs were correlated with 19, 12, and 1 out 23 %DE metrics, respectively. The area under curves (AUC) of individual volume %GPs were higher than those of global %GPs for two-arc VMAT plans, but with mixed results for one-arc VMAT plans. In a conclusion, the idea of individual volume %GP was created and investigated to better serve for VMAT QA and individual volume-based %GP had a higher percent of correlation with DVH 15 %DE metrics compared with global %GP for both one- and two-arc VMAT plans.
Collapse
Affiliation(s)
- Jinling Yi
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ce Han
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaomin Zheng
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongqiang Zhou
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxiang Deng
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congying Xie
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiance Jin
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fu Jin
- Physics Unit, Department of Radiation Oncology, Chongqing Cancer Hospital & Institute, Chongqing, China
| |
Collapse
|
8
|
Velec M, Juang T, Moseley JL, Oldham M, Brock KK. Utility and validation of biomechanical deformable image registration in low-contrast images. Pract Radiat Oncol 2015; 5:e401-8. [PMID: 25823381 DOI: 10.1016/j.prro.2015.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/19/2014] [Accepted: 01/23/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The application of a biomechanical deformable image registration algorithm has been demonstrated to overcome the potential limitations in the use of intensity-based algorithms on low-contrast images that lack prominent features. Because validation of deformable registration is particularly challenging on such images, the dose distribution predicted via a biomechanical algorithm was evaluated using the measured dose from a deformable dosimeter. METHODS AND MATERIALS A biomechanical model-based image registration algorithm registered computed tomographic (CT) images of an elastic radiochromic dosimeter between its undeformed and deformed positions. The algorithm aligns the external boundaries of the dosimeter, created from CT contours, and the internal displacements are solved by modeling the physical material properties of the dosimeter. The dosimeter was planned and irradiated in its deformed position, and subsequently, the delivered dose was measured with optical CT in the undeformed position. The predicted dose distribution, created by applying the deformable registration displacement map to the planned distribution, was then compared with the measured optical CT distribution. RESULTS Compared with the optical CT distribution, biomechanical image registration predicted the position and size of the deformed dose fields with mean errors of ≤1 mm (maximum, 3 mm). The accuracy did not differ between cross sections with a greater or lesser deformation magnitude despite the homogenous CT intensities throughout the dosimeter. The overall 3-dimensional voxel passing rate of the predicted distribution was γ3%/3mm = 91% compared with optical CT. CONCLUSIONS Biomechanical registration accurately predicted the deformed dose distribution measured in a deformable dosimeter, whereas previously, evaluations of a commercial intensity-based algorithm demonstrated substantial errors. The addition of biomechanical algorithms to the collection of adaptive radiation therapy tools would be valuable for dose accumulation, particularly in feature-poor images such as cone beam CT and organs such as the liver.
Collapse
Affiliation(s)
- Michael Velec
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Titania Juang
- Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina
| | - Joanne L Moseley
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mark Oldham
- Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina
| | - Kristy K Brock
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Jin X, Yan H, Han C, Zhou Y, Yi J, Xie C. Correlation between gamma index passing rate and clinical dosimetric difference for pre-treatment 2D and 3D volumetric modulated arc therapy dosimetric verification. Br J Radiol 2014; 88:20140577. [PMID: 25494412 DOI: 10.1259/bjr.20140577] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). METHODS %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose-volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). RESULTS Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. CONCLUSIONS There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. ADVANCES IN KNOWLEDGE Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time.
Collapse
Affiliation(s)
- X Jin
- Department of Radiotherapy and Chemotherapy, the 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | |
Collapse
|
10
|
Amankwaa-Frempong E, Vernimmen F, Blay S, Ezhilalan R. Irradiation of lung and esophagus tumors: A comparison of dose distributions calculated by anisotropic analytical algorithm and pencil beam convolution algorithm, a retrospective dosimetric study. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2014. [DOI: 10.14319/ijcto.0202.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Haga A, Magome T, Takenaka S, Imae T, Sakumi A, Nomoto A, Igaki H, Shiraishi K, Yamashita H, Ohtomo K, Nakagawa K. Independent absorbed-dose calculation using the Monte Carlo algorithm in volumetric modulated arc therapy. Radiat Oncol 2014; 9:75. [PMID: 24625221 PMCID: PMC3995553 DOI: 10.1186/1748-717x-9-75] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/07/2014] [Indexed: 01/24/2023] Open
Abstract
Purpose To report the result of independent absorbed-dose calculations based on a Monte Carlo (MC) algorithm in volumetric modulated arc therapy (VMAT) for various treatment sites. Methods and materials All treatment plans were created by the superposition/convolution (SC) algorithm of SmartArc (Pinnacle V9.2, Philips). The beam information was converted into the format of the Monaco V3.3 (Elekta), which uses the X-ray voxel-based MC (XVMC) algorithm. The dose distribution was independently recalculated in the Monaco. The dose for the planning target volume (PTV) and the organ at risk (OAR) were analyzed via comparisons with those of the treatment plan. Before performing an independent absorbed-dose calculation, the validation was conducted via irradiation from 3 different gantry angles with a 10- × 10-cm2 field. For the independent absorbed-dose calculation, 15 patients with cancer (prostate, 5; lung, 5; head and neck, 3; rectal, 1; and esophageal, 1) who were treated with single-arc VMAT were selected. To classify the cause of the dose difference between the Pinnacle and Monaco TPSs, their calculations were also compared with the measurement data. Result In validation, the dose in Pinnacle agreed with that in Monaco within 1.5%. The agreement in VMAT calculations between Pinnacle and Monaco using phantoms was exceptional; at the isocenter, the difference was less than 1.5% for all the patients. For independent absorbed-dose calculations, the agreement was also extremely good. For the mean dose for the PTV in particular, the agreement was within 2.0% in all the patients; specifically, no large difference was observed for high-dose regions. Conversely, a significant difference was observed in the mean dose for the OAR. For patients with prostate cancer, the mean rectal dose calculated in Monaco was significantly smaller than that calculated in Pinnacle. Conclusions There was no remarkable difference between the SC and XVMC calculations in the high-dose regions. The difference observed in the low-dose regions may have arisen from various causes such as the intrinsic dose deviation in the MC calculation, modeling accuracy, and CT-to-density table used in each planning system It is useful to perform independent absorbed-dose calculations with the MC algorithm in intensity-modulated radiation therapy commissioning.
Collapse
Affiliation(s)
- Akihiro Haga
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kathirvel M, Subramanian S, Clivio A, Arun G, Fogliata A, Nicolini G, Subramani V, Swamy ST, Vanetti E, Cozzi L. Critical appraisal of the accuracy of Acuros-XB and Anisotropic Analytical Algorithm compared to measurement and calculations with the compass system in the delivery of RapidArc clinical plans. Radiat Oncol 2013; 8:140. [PMID: 23758728 PMCID: PMC3702450 DOI: 10.1186/1748-717x-8-140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/02/2013] [Indexed: 01/09/2023] Open
Abstract
Background The accuracy of the two dose calculation engines available for RapidArc planning (both released for clinical use) is investigated in comparison to the COMPASS data. Methods Two dose calculation algorithms (Acuros-XB and Anisotropic Analytic Algorithm (AAA)) were used to calculate RA plans and compared to calculations with the Collapsed Cone Convolution algorithm (CC) from the COMPASS system (IBA Dosimetry). CC calculations, performed on patient data, are based on experimental fluence measurements with a 2D array of ion chambers mounted on the linac head. The study was conducted on clinical cases treated with RA. Five cases for each of the following groups were included: Brain, Head and Neck, Thorax, Pelvis and stereotactic body radiation therapy for hypo-fractionated treatments with small fields. COMPASS measurements were performed with the iMatrixx-2D array. RapidArc plans were optimized for delivery using 6MV photons from a Clinac-iX (Varian, Palo Alto, USA). Accuracy of the RA calculation was appraised by means of: 1) comparison of Dose Volume histograms (DVH) metrics; 2) analysis of differential dose distributions and determination of mean dose differences per organ; 3) 3D gamma analysis with distance-to-agreement and dose difference thresholds set to 3%/3 mm or 2%/2 mm for targets, organs at risks and for the volumes encompassed by the 50 and 10% isodoses. Results For almost all parameters, the better agreement was between Acuros-XB and COMPASS independently from the anatomical site and fractionation. The same result was obtained from the mean dose difference per organ with Acuros-CC average differences below 0.5% while for AAA-CC data, average deviations exceeded 0.5% and in the case of the pelvis 1%. Relevance of observed differences determined with the 3D gamma analysis resulted in a pass rate exceeding 99.5% for Acuros-CC and exceeding 97.5% for AAA-CC. Conclusions This study demonstrated that i) a good agreement exists between COMPASS-CC calculations based on measured fluences with respect to dose distributions obtained with both Acuros-XB and AAA algorithms; ii) 3D dose distributions reconstructed from actual delivery coincide very precisely with the planned data; iii) a slight preference in favor of Acuros-XB was observed suggesting the preference for this algorithm in clinical applications.
Collapse
|
13
|
Asuni G, van Beek TA, Venkataraman S, Popescu IA, McCurdy BMC. A Monte Carlo tool for evaluating VMAT and DIMRT treatment deliveries including planar detectors. Phys Med Biol 2013; 58:3535-50. [DOI: 10.1088/0031-9155/58/11/3535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Zheng BM, Dong XX, Wu H, Han SK, Sun Y. Dosimetry Comparison between Volumetric Modulated Arc Therapy with Rapid Arcand Fixed Field Dynamic IMRT for Local-Regionally Advanced Nasopharyngeal Carcinoma. Chin J Cancer Res 2013; 23:259-64. [PMID: 23359752 DOI: 10.1007/s11670-011-0259-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 08/23/2011] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE A dosimetric study was performed to evaluate the performance of volumetric modulated arc radiotherapy with RapidArc on locally advanced nasopharyngeal carcinoma (NPC). METHODS The CT scan data sets of 20 patients of locally advanced NPC were selected randomly. The plans were managed using volumetric modulated arc with RapidArc and fixed nine-field coplanar dynamic intensity-modulated radiotherapy (IMRT) for these patients. The dosimetry of the planning target volumes (PTV), the organs at risk (OARs) and the healthy tissue were evaluated. The dose prescription was set to 70 Gy to the primary tumor and 60 Gy to the clinical target volumes (CTV) in 33 fractions. Each fraction applied daily, five fractions per week. The monitor unit (MU) values and the delivery time were scored to evaluate the expected treatment efficiency. RESULTS Both techniques had reached clinical treatment's requirement. The mean dose (Dmean), maximum dose (Dmax) and minimum dose (Dmin) in RapidArc and fixed field IMRT for PTV were 68.4±0.6 Gy, 74.8±0.9 Gy and 56.8±1.1 Gy; and 67.6±0.6 Gy, 73.8±0.4 Gy and 57.5±0.6 Gy (P<0.05), respectively. Homogeneity index was 78.85±1.29 in RapidArc and 80.34±0.54 (P<0.05) in IMRT. The conformity index (CI: 95%) was 0.78±0.01 for both techniques (P>0.05). Compared to IMRT, RapidArc allowed a reduction of Dmean to the brain stem, mandible and optic nerves of 14.1% (P<0.05), 5.6% (P<0.05) and 12.2% (P<0.05), respectively. For the healthy tissue and the whole absorbed dose, Dmean of RapidArc was reduced by 3.6% (P<0.05), and 3.7% (P<0.05), respectively. The Dmean to the parotids, the spinal cord and the lens had no statistical difference among them. The mean MU values of RapidArc and IMRT were 550 and 1,379. The mean treatment time of RapidArc and IMRT was 165 s and 447 s. Compared to IMRT, the delivery time and the MU values of RapidArc were reduced by 63% and 60%, respectively. CONCLUSION For locally advanced NPC, both RapidArc and IMRT reached the clinic requirement. The target volume coverage was similar for the different techniques. The RapidArc technique showed some improvements in OARs and other tissue sparing while using reduced MUs and delivery time.
Collapse
Affiliation(s)
- Bao-Min Zheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| | | | | | | | | | | |
Collapse
|
15
|
Wijesooriya K, Aliotta E, Benedict S, Read P, Rich T, Larner J. RapidArc patient specific mechanical delivery accuracy under extreme mechanical limits using linac log files. Med Phys 2012; 39:1846-53. [DOI: 10.1118/1.3690464] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
Van Esch A, Huyskens DP, Behrens CF, Samsoe E, Sjolin M, Bjelkengren U, Sjostrom D, Clermont C, Hambach L, Sergent F. Implementing RapidArc into clinical routine: a comprehensive program from machine QA to TPS validation and patient QA. Med Phys 2011; 38:5146-66. [PMID: 21978060 DOI: 10.1118/1.3622672] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE With the increased commercial availability of intensity modulated arc therapy (IMAT) comes the need for comprehensive QA programs, covering the different aspects of this newly available technology. This manuscript proposes such a program for the RapidArc (RA) (Varian Medical Systems, Palo Alto) IMAT solution. METHODS The program was developed and tested out for a Millennium120 MLC on iX Clinacs and a HighDefinition MLC on a Novalis TX, using a variety of measurement equipment including Gafchromic film, 2D ion chamber arrays (Seven29 and StarCheck, PTW, Freiburg, Germany) with inclinometer and Octavius phantom, the Delta4 systam (ScandiDos, Uppsala, Sweden) and the portal imager (EPID). First, a number of complementary machine QA tests were developed to monitor the correct interplay between the accelerating/decelerating gantry, the variable dose rate and the MLC position, straining the delivery to the maximum allowed limits. Second, a systematic approach to the validation of the dose calculation for RA was adopted, starting with static gantry and RA specific static MLC shapes and gradually moving to dynamic gantry, dynamic MLC shapes. RA plans were then optimized on a series of artificial structures created within the homogeneous Octavius phantom and within a heterogeneous lung phantom. These served the double purpose of testing the behavior of the optimization algorithm (PRO) as well as the precision of the forward dose calculation. Finally, patient QA on a series of clinical cases was performed with different methods. In addition to the well established in-phantom QA, we evaluated the portal dosimetry solution within the Varian approach. RESULTS For routine machine QA, the "Snooker Cue" test on the EPID proved to be the most sensitive to overall problem detection. It is also the most practical one. The "Twinkle" and "Sunrise" tests were useful to obtain well differentiated information on the individual treatment delivery components. The AAA8.9 dose calculations showed excellent agreement with all corresponding measurements, except in areas where the 2.5 mm fixed fluence resolution was insufficient to accurately model the tongue and groove effect or the dose through nearly closed opposing leafs. Such cases benefited from the increased fluence resolution in AAA10.0. In the clinical RA fields, these effects were smeared out spatially and the impact of the fluence resolution was considerably less pronounced. The RA plans on the artificial structure sets demonstrated some interesting characteristics of the PRO8.9 optimizer, such as a sometimes unexpected dependence on the collimator rotation and a suboptimal coverage of targets within lung tissue. Although the portal dosimetry was successfully validated, we are reluctant to use it as a sole means of patient QA as long as no gantry angle information is embedded. CONCLUSIONS The all-in validation program allows a systematic approach in monitoring the different levels of RA treatments. With the systematic approach comes a better understanding of both the capabilities and the limits of the used solution. The program can be useful for implementation, but also for the validation of major upgrades.
Collapse
Affiliation(s)
- Ann Van Esch
- 7Sigma, QA-team in Radiotherapy Physics, 3150 Tildonk, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ong CL, Cuijpers JP, Senan S, Slotman BJ, Verbakel WFAR. Impact of the calculation resolution of AAA for small fields and RapidArc treatment plans. Med Phys 2011; 38:4471-9. [PMID: 21928616 DOI: 10.1118/1.3605468] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate the impact of the calculation resolution of the anisotropic analytical algorithms (AAA) for a variety of small fields in homogeneous and heterogeneous media and for RapidArc plans. METHODS Dose distributions calculated using AAA version 8.6.15 (AAA8) and 10.0.25 (AAA10) were compared to measurements performed with GafChromic EBT film, using phantoms made of polystyrene or a combination of polystyrene and cork. The accuracy of the algorithms calculated using grid resolutions of 2.5 and 1.0 mm was investigated for different field sizes, and for a limited selection of RapidArc plans (head and neck, small meningioma, and lung). Additional plans were optimized to create excessive multileaf collimator modulation and measured on a homogenous phantom. Gamma evaluation criterion of 3% dose difference and 2- or 1-mm distance to agreement (DTA) were applied to evaluate the accuracy of the algorithms. RESULTS For fields < or = 3 x 3 cm2, both versions of AAA predicted lower peak doses and broader penumbra widths than the measurements. However, AAA10 and a finer calculation grid improved the agreement. For RapidArc plans with many small multileaf collimator (MLC) segments and relatively high number of monitor units (MU), AAA8 failed to identify small dose peaks within the target. Both versions performed better in polystyrene than in cork. In homogeneous cork layers, AAA8 underestimated the average target dose for a clinical lung plan. This was improved with AAA10 calculated using a 1 mm grid. CONCLUSIONS AAA10 improves the accuracy of dose calculations, and calculation grid of 1.0 mm is superior to using 2.5 mm, although calculation times increased by factor of 5. A suitable upper MU constraint should be assigned during optimization to avoid plans with high modulation. For plans with a relative high number of monitor units, calculations using 1 mm grid resolution are recommended. For planning target volume (PTV) which contains relatively large area of low density tissue, users should be aware of possible dose underestimation in the low density region and recalculation with AAA10 grid 1.0 mm is recommended.
Collapse
Affiliation(s)
- Chin Loon Ong
- Department of Radiation Oncology, Vu University Medical Center, 1081HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Wagner D, Vorwerk H. Two years experience with quality assurance protocol for patient related Rapid Arc treatment plan verification using a two dimensional ionization chamber array. Radiat Oncol 2011; 6:21. [PMID: 21342509 PMCID: PMC3049120 DOI: 10.1186/1748-717x-6-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/22/2011] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To verify the dose distribution and number of monitor units (MU) for dynamic treatment techniques like volumetric modulated single arc radiation therapy-Rapid Arc-each patient treatment plan has to be verified prior to the first treatment. The purpose of this study was to develop a patient related treatment plan verification protocol using a two dimensional ionization chamber array (MatriXX, IBA, Schwarzenbruck, Germany). METHOD Measurements were done to determine the dependence between response of 2D ionization chamber array, beam direction, and field size. Also the reproducibility of the measurements was checked. For the patient related verifications the original patient Rapid Arc treatment plan was projected on CT dataset of the MatriXX and the dose distribution was calculated. After irradiation of the Rapid Arc verification plans measured and calculated 2D dose distributions were compared using the gamma evaluation method implemented in the measuring software OmniPro (version 1.5, IBA, Schwarzenbruck, Germany). RESULTS The dependence between response of 2D ionization chamber array, field size and beam direction has shown a passing rate of 99% for field sizes between 7 cm×7 cm and 24 cm×24 cm for measurements of single arc. For smaller and larger field sizes than 7 cm×7 cm and 24 cm×24 cm the passing rate was less than 99%. The reproducibility was within a passing rate of 99% and 100%. The accuracy of the whole process including the uncertainty of the measuring system, treatment planning system, linear accelerator and isocentric laser system in the treatment room was acceptable for treatment plan verification using gamma criteria of 3% and 3 mm, 2D global gamma index. CONCLUSION It was possible to verify the 2D dose distribution and MU of Rapid Arc treatment plans using the MatriXX. The use of the MatriXX for Rapid Arc treatment plan verification in clinical routine is reasonable. The passing rate should be 99% than the verification protocol is able to detect clinically significant errors.
Collapse
Affiliation(s)
- Daniela Wagner
- Department of Radiotherapy and Radiooncology, University Hospital Goettingen, Robert-Koch-Str, 40, 37075 Goettingen, Germany.
| | | |
Collapse
|
19
|
Rong Y, Tang G, Welsh JS, Mohiuddin MM, Paliwal B, Yu CX. Helical tomotherapy versus single-arc intensity-modulated arc therapy: a collaborative dosimetric comparison between two institutions. Int J Radiat Oncol Biol Phys 2011; 81:284-96. [PMID: 21236598 DOI: 10.1016/j.ijrobp.2010.10.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 10/22/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE Both helical tomotherapy (HT) and single-arc intensity-modulated arc therapy (IMAT) deliver radiation using rotational beams with multileaf collimators. We report a dual-institution study comparing dosimetric aspects of these two modalities. METHODS AND MATERIALS Eight patients each were selected from the University of Maryland (UMM) and the University of Wisconsin Cancer Center Riverview (UWR), for a total of 16 cases. Four cancer sites including brain, head and neck (HN), lung, and prostate were selected. Single-arc IMAT plans were generated at UMM using Varian RapidArc (RA), and HT plans were generated at UWR using Hi-Art II TomoTherapy. All 16 cases were planned based on the identical anatomic contours, prescriptions, and planning objectives. All plans were swapped for analysis at the same time after final approval. Dose indices for targets and critical organs were compared based on dose-volume histograms, the beam-on time, monitor units, and estimated leakage dose. After the disclosure of comparison results, replanning was done for both techniques to minimize diversity in optimization focus from different operators. RESULTS For the 16 cases compared, the average beam-on time was 1.4 minutes for RA and 4.8 minutes for HT plans. HT provided better target dose homogeneity (7.6% for RA and 4.2% for HT) with a lower maximum dose (110% for RA and 105% for HT). Dose conformation numbers were comparable, with RA being superior to HT (0.67 vs. 0.60). The doses to normal tissues using these two techniques were comparable, with HT showing lower doses for more critical structures. After planning comparison results were exchanged, both techniques demonstrated improvements in dose distributions or treatment delivery times. CONCLUSIONS Both techniques created highly conformal plans that met or exceeded the planning goals. The delivery time and total monitor units were lower in RA than in HT plans, whereas HT provided higher target dose uniformity.
Collapse
Affiliation(s)
- Yi Rong
- Department of Human Oncology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Yin Y, Chen J, Xing L, Dong X, Liu T, Lu J, Yu J. Applications of IMAT in cervical esophageal cancer radiotherapy: a comparison with fixed-field IMRT in dosimetry and implementation. J Appl Clin Med Phys 2011; 12:3343. [PMID: 21587177 PMCID: PMC5718659 DOI: 10.1120/jacmp.v12i2.3343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 10/07/2010] [Accepted: 11/15/2010] [Indexed: 11/23/2022] Open
Abstract
This study aimed to compare fixed-field, intensity-modulated radiotherapy (f-IMRT) with intensity-modulated arc therapy (IMAT) treatment plans in dosimetry and practical application for cervical esophageal carcinoma. For ten cervical esophageal carcinoma cases, f-IMRT plan (seven fixed-fields) and two IMAT plans, namely RA (coplanar 360° arcs) and RAx (coplanar 360° arcs without sectors from 80° to 110°, and 250° to 280°), were generated. DVHs were adopted for the statistics of above parameters, as well as conformal index (CI), homogeneity index (HI), dose-volumetric parameters of normal tissues, total accelerator output MUs and total treatment time. There were differences between RAx and f-IMRT, as well as RA in PTV parameters such as HI, V(95%) and V(110%), but not in CI. RAx reduced lung V₅ from (50.9% ± 9.8% in f-IMRT and (51.4% ± 10.8% in RA to (49.3% ± 10.4% in RAx (p < 0.05). However, lung V₃₀, V₄₀, V₅₀ and MLD increased in RAx. There was no difference in the mean heart dose in three plans. Total MU was reduced from 1174.8 ± 144.6 in f-IMRT to 803.8 ± 122.2 in RA and 736.2 ± 186.9 in RAx (p < 0.05). Compared with f-IMRT, IMAT reduced low dose volumes of lung and total MU on the basis of meeting clinical requirements.
Collapse
Affiliation(s)
- Yong Yin
- School of Information Science and Engineering, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Chow JCL, Jiang R, Leung MKK. Dosimetry of oblique tangential photon beams calculated by superposition/convolution algorithms: a Monte Carlo evaluation. J Appl Clin Med Phys 2010; 12:3424. [PMID: 21330989 PMCID: PMC5718594 DOI: 10.1120/jacmp.v12i1.3424] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/14/2010] [Accepted: 09/24/2010] [Indexed: 11/23/2022] Open
Abstract
Although there are many works on evaluating dose calculations of the anisotropic analytical algorithm (AAA) using various homogeneous and heterogeneous phantoms, related work concerning dosimetry due to tangential photon beam is lacking. In this study, dosimetry predicted by the AAA and collapsed cone convolution (CCC) algorithm was evaluated using the tangential photon beam and phantom geometry. The photon beams of 6 and 15 MV with field sizes of 4 × 4 (or 7 × 7), 10 × 10 and 20 × 20 cm², produced by a Varian 21 EX linear accelerator, were used to test performances of the AAA and CCC using Monte Carlo (MC) simulation (EGSnrc-based code) as a benchmark. Horizontal dose profiles at different depths, phantom skin profiles (i.e., vertical dose profiles at a distance of 2 mm from the phantom lateral surface), gamma dose distributions, and dose-volume histograms (DVHs) of skin slab were determined. For dose profiles at different depths, the CCC agreed better with doses in the air-phantom region, while both the AAA and CCC agreed well with doses in the penumbra region, when compared to the MC. Gamma evaluations between the AAA/CCC and MC showed that deviations of 2D dose distribution occurred in both beam edges in the phantom and air-phantom interface. Moreover, the gamma dose deviation is less significant in the air-phantom interface than the penumbra. DVHs of skin slab showed that both the AAA and CCC underestimated the width of the dose drop-off region for both the 6 and 15 MV photon beams. When the gantry angle was 0°, it was found that both the AAA and CCC overestimated doses in the phantom skin profiles compared to the MC, with various photon beam energies and field sizes. The mean dose differences with doses normalized to the prescription point for the AAA and CCC were respectively: 7.6% ± 2.6% and 2.1% ± 1.3% for a 10 × 10 cm2 field, 6 MV; 16.3%± 2.1% and 6.7% ± 2.1% for a 20 × 20 cm2 field, 6 MV; 5.5% ± 1.2% and 1.7% ± 1.4% for a 10 × 10 cm2, 15 MV; 18.0% ± 1.3% and 8.3% ± 1.8% for a 20 × 20 cm², 15 MV. However, underestimations of doses in the phantom skin profile were found with small fields of 4 × 4 and 7 × 7 cm² for the 6 and 15 MV photon beams, respectively, when the gantry was turned 5° anticlockwise. As surface dose with tangential photon beam geometry is important in some radiation treatment sites such as breast, chest wall and sarcoma, it is found that neither of the treatment planning system algorithms can predict the dose well at depths shallower than 2 mm. The dosimetry data and beam and phantom geometry in this study provide a better knowledge of a dose calculation algorithm in tangential-like irradiation.
Collapse
Affiliation(s)
- James C L Chow
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Toronto, ON, Canada.
| | | | | |
Collapse
|
22
|
Bush K, Zavgorodni S, Gagne I, Townson R, Ansbacher W, Beckham W. Monte Carlo evaluation of RapidArc oropharynx treatment planning strategies for sparing of midline structures. Phys Med Biol 2010; 55:4465-79. [PMID: 20668338 DOI: 10.1088/0031-9155/55/16/s03] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of the study was to perform the Monte Carlo (MC) evaluation of RapidArc (Varian Medical Systems, Palo Alto, CA) dose calculations for four oropharynx midline sparing planning strategies. Six patients with squamous cell cancer of the oropharynx were each planned with four RapidArc head and neck treatment strategies consisting of single and double photon arcs. In each case, RTOG0522 protocol objectives were used during planning optimization. Dose calculations performed with the analytical anisotropic algorithm (AAA) are compared against BEAMnrc/DOSXYZnrc dose calculations for the 24-plan dataset. Mean dose and dose-to-98%-of-structure-volume (D(98%)) were used as metrics in the evaluation of dose to planning target volumes (PTVs). Mean dose and dose-to-2%-of-structure-volume (D(2%)) were used to evaluate dose differences within organs at risk (OAR). Differences in the conformity index (CI) and the homogeneity index (HI) as well as 3D dose distributions were also observed. AAA calculated PTV mean dose, D(98%), and HIs showed very good agreement with MC dose calculations within the 0.8% MC (statistical) calculation uncertainty. Regional node volume (PTV-80%) mean dose and D(98%) were found to be overestimated (1.3%, sigma = 0.8% and 2.3%, sigma = 0.8%, respectively) by the AAA with respect to MC calculations. Mean dose and D(2%) to OAR were also observed to be consistently overestimated by the AAA. Increasing dose calculation differences were found in planning strategies exhibiting a higher overall fluence modulation. From the plan dataset, the largest local dose differences were observed in heavily shielded regions and within the esophageal and sinus cavities. AAA dose calculations as implemented in RapidArc demonstrate excellent agreement with MC calculations in unshielded regions containing moderate inhomogeneities. Acceptable agreement is achieved in regions of increased MLC shielding. Differences in dose are attributed to inaccuracies in the AAA-modulated fluence modeling, modeling of material inhomogeneities and dose deposition within low-density materials. The use of MC dose calculations leads to the same general conclusion as using AAA that a two arc delivery with limited collimator opening can provide the greatest amount of midline sparing compared to the other techniques investigated.
Collapse
Affiliation(s)
- K Bush
- Department of Medical Physics, BC Cancer Agency-Vancouver Island Center, 2410 Lee Avenue, Victoria, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Mayo CS, Ding L, Addesa A, Kadish S, Fitzgerald TJ, Moser R. Initial experience with volumetric IMRT (RapidArc) for intracranial stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 2010; 78:1457-66. [PMID: 20207494 DOI: 10.1016/j.ijrobp.2009.10.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 12/20/2022]
Abstract
PURPOSE Initial experience with delivering frameless stereotactic radiotherapy (SRT) using volumetric intensity-modulated radiation therapy (IMRT) delivered with RapidArc is presented. METHODS AND MATERIALS Treatment details for 12 patients (14 targets) with a mean clinical target volume (CTV) of 12.8 ± 4.0 cm(3) were examined. Dosimetric indices for conformality, homogeneity, and dose gradient were calculated and compared with published results for other frameless, intracranial SRT techniques, including CyberKnife, TomoTherapy, and static-beam IMRT. Statistics on setup and treatment times and per patient dose validations were examined. RESULTS Dose indices compared favorably with other techniques. Mean conformality, gradient, and homogeneity index values were 1.10 ± 0.11, 64.9 ± 14.1, 1.083 ± 0.026, respectively. Median treatment times were 4.8 ± 1.7 min. CONCLUSION SRT using volumetric IMRT is a viable alternative to other techniques and enables short treatment times. This is anticipated to have a positive impact on radiobiological effect and for facilitating wider use of SRT.
Collapse
Affiliation(s)
- Charles S Mayo
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Radiotherapy of malignant gliomas: comparison of volumetric single arc technique (RapidArc), dynamic intensity-modulated technique and 3D conformal technique. Radiother Oncol 2009; 93:593-6. [PMID: 19897266 DOI: 10.1016/j.radonc.2009.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 09/26/2009] [Accepted: 10/03/2009] [Indexed: 11/23/2022]
Abstract
PURPOSE The analysis was designed to identify the optimal radiation technique for patients with malignant glioma. METHODS A volumetric-modulated radiation treatment technique (RapidArc), an IMRT technique and a 3D conformal technique were calculated on computed tomograms of 14 consecutive patients with malignant glioma. The treatment plans were compared with each other using dose-volume histograms. RESULTS The 3D conformal technique showed a good PTV coverage, if PTV was distant to organs at risk (OAR). If PTV was nearby OAR, the 3D technique revealed a poor PTV coverage in contrast to both intensity-modulated techniques. The conventional IMRT technique showed a slightly better PTV coverage than RapidArc. The advantages of RapidArc were a shorter treatment time, less monitor units and a small V(107%). CONCLUSIONS If PTV is distant to OAR, the use of 3D conformal technique is sufficient. Otherwise an intensity-modulated technique should be used. RapidArc was faster than conventional IMRT and should be preferred if PTV coverage is adequate.
Collapse
|
25
|
Zacarias AS, Brown MF, Mills MD. Volumetric modulated Arc therapy (VMAT) treatment planning for superficial tumors. Med Dosim 2009; 35:226-9. [PMID: 19931036 DOI: 10.1016/j.meddos.2009.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/10/2009] [Accepted: 06/16/2009] [Indexed: 11/28/2022]
Abstract
The physician's planning objective is often a uniform dose distribution throughout the planning target volume (PTV), including superficial PTVs on or near the surface of a patient's body. Varian's Eclipse treatment planning system uses a progressive resolution optimizer (PRO), version 8.2.23, for RapidArc dynamic multileaf collimator volumetric modulated arc therapy planning. Because the PRO is a fast optimizer, optimization convergence errors (OCEs) produce dose nonuniformity in the superficial area of the PTV. We present a postsurgical cranial case demonstrating the recursive method our clinic uses to produce RapidArc treatment plans. The initial RapidArc treatment plan generated using one 360 degrees arc resulted in substantial dose nonuniformity in the superficial section of the PTV. We demonstrate the use of multiple arcs to produce improved dose uniformity in this region. We also compare the results of this superficial dose compensation method to the results of a recursive method of dose correction that we developed in-house to correct optimization convergence errors in static intensity-modulated radiation therapy treatment plans. The results show that up to 4 arcs may be necessary to provide uniform dose to the surface of the PTV with the current version of the PRO.
Collapse
Affiliation(s)
- Albert S Zacarias
- James Graham Brown Cancer Center, University of Louisville Healthcare, Louisville, KY 40202, USA
| | | | | |
Collapse
|
26
|
Sterpin E, Salvat F, Olivera G, Vynckier S. Monte Carlo evaluation of the convolution/superposition algorithm of Hi-Art™ tomotherapy in heterogeneous phantoms and clinical cases. Med Phys 2009; 36:1566-75. [DOI: 10.1118/1.3112364] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
27
|
|