1
|
Makrani DS, Nedaei HA, Geraily G, Khorami-Moghaddam A, Banaee N, Jassim H. Monte Carlo Simulation for the Radixact™ Tomotherapy Linac Using EGSnrc. J Med Phys 2024; 49:379-386. [PMID: 39526159 PMCID: PMC11548081 DOI: 10.4103/jmp.jmp_29_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose When exact information regarding the treatment head and initial electron beam is available, the Monte Carlo (MC) approach can properly simulate any linear accelerator. However, manufacturers seldom offer information such as the incident electron beam's energy, radial intensity (spot size), or angular spread. This research aims to forecast these features and verify an MC-simulated linear accelerator model using measurements. Materials and Methods The BEAMnrc code simulated a 6 MV photon beam from a Radixact™ Tomotherapy Linac. Percentage depth dose and beam profile calculations were conducted using DOSYXZnrc by various electron energies and spot sizes and compared to measurements using a Gamma index with two distinct criterion sets. Furthermore, the fine-tuned electron energy and spot size profiles were created to minimize any disparities using distinct angle spreads. Finally, the output factors (OFs) for various field sizes were compared. Results The MC model's fine-tuned electron energy was determined to be 5.8 MeV, with 88.6% of the calculation points passing the 1%/1 mm γ test. A circular radial intensity of 1.4 mm best represented the 6 MV photon beam regarding spot size. Furthermore, a mean angular spread of 0.05 reduced the disparity in cross-field profile between computation and measurement. The most considerable disparities between the MC model OFs and observations were 1.5%. Conclusion Using the BEAMnrc code, a reliable MC model of the Radixact™ Tomotherapy Linac can be created, as shown in this paper. This model can be used to compute dose distributions with confidence.
Collapse
Affiliation(s)
- Danial Seifi Makrani
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Ali Nedaei
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khorami-Moghaddam
- Department of Radiology, Faculty of Allied Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nooshin Banaee
- Medical Radiation Research Center, Central Tehran Branch, Islamic Azad University, Tehran
| | - Hussam Jassim
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiotherapy, Euphrates Cancer Hospital, Kufa, Najaf, Iraq
| |
Collapse
|
2
|
Monte-Carlo techniques for radiotherapy applications I: introduction and overview of the different Monte-Carlo codes. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396923000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Introduction:
The dose calculation plays a crucial role in many aspects of contemporary clinical radiotherapy treatment planning process. It therefore goes without saying that the accuracy of the dose calculation is of very high importance. The gold standard for absorbed dose calculation is the Monte-Carlo algorithm.
Methods:
This first of two papers gives an overview of the main openly available and supported codes that have been widely used for radiotherapy simulations.
Results:
The paper aims to provide an overview of Monte-Carlo in the field of radiotherapy and point the reader in the right direction of work that could help them get started or develop their existing understanding and use of Monte-Carlo algorithms in their practice.
Conclusions:
It also serves as a useful companion to a curated collection of papers on Monte-Carlo that have been published in this journal.
Collapse
|
3
|
Höfel S, Fix MK, Drescher M, Zwicker F. Suitability of superficial electron paramagnetic resonance dosimetry for in vivo measurement and verification of cumulative total doses during IMRT: A proof of principle. Z Med Phys 2021; 31:365-377. [PMID: 34210537 DOI: 10.1016/j.zemedi.2021.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The present study investigates superficial in vivo dosimetry (IVD) by means of a previously proposed electron paramagnetic resonance (EPR) dosimetry system aiming at measuring and verifying total doses delivered by complex radiotherapy treatments. In view of novel regulatory requirements in Germany, differences between measured and planned total doses to the EPR dosimeters are analyzed and compared to reporting thresholds for significant occurrences. METHODS EPR dosimeters, each consisting of one lithium formate monohydrate (LFM) and one polycrystalline l-alanine (ALA) pellet, were attached to the surface of an anthropomorphic head phantom. Three head and neck treatments with total target doses ranging from 30 to 64Gy were fully delivered to the phantom by helical tomotherapy. During each treatment, eight EPR dosimeters were placed at distinct spots: (i) within or next to the planning target volume (PTV), (ii) near to organs at risk including the parotids and the lenses, (iii) at the thyroid lying out-of-field. EPR read out was always performed after all fractions were delivered. EPR results were compared to thermoluminescence dosimeter (TLD) measurements and to the planned total doses derived from the treatment planning system (TPS). Planned total doses to the EPR dosimeters ranged from about 2 to 64Gy. RESULTS By taking uncertainties into account, the measured and planned doses were in good agreement. Exceptions occurred mainly at the thyroid (out-of-field) and lenses (extreme sparing). The maximum total dose difference between EPR results and corresponding planned doses was 1.3Gy occurring at the lenses. Remarkably, each LFM and ALA pellet placed within or next to the PTV provided dose values that were within ±4% of the planned dose. Dose deviations from planned dose values were comparable for EPR and TLD measurements. CONCLUSION The results of this proof of principle study suggests that superficial EPR-IVD is applicable in a wide dose range and in various irradiation conditions - being a valuable tool for monitoring cumulative total doses delivered by complex IMRT treatments. EPR-IVD in combination with helical tomotherapy is suitable to reliably detect local dose deviations at superficial dosimeter spots in the order of current national reporting thresholds for significant occurrences (i.e. 10%/4Gy).
Collapse
Affiliation(s)
- Sebastian Höfel
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Germany; Klinik und Praxis fr Strahlentherapie am Klinikum Konstanz, Konstanz, Germany.
| | - Michael K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | - Felix Zwicker
- Klinik und Praxis fr Strahlentherapie am Klinikum Konstanz, Konstanz, Germany; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Das IJ, Francescon P, Moran JM, Ahnesjö A, Aspradakis MM, Cheng CW, Ding GX, Fenwick JD, Saiful Huq M, Oldham M, Reft CS, Sauer OA. Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions. Med Phys 2021; 48:e886-e921. [PMID: 34101836 DOI: 10.1002/mp.15030] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Palmans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paolo Francescon
- Department of Radiation Oncology, Ospedale Di Vicenza, Vicenza, Italy
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria M Aspradakis
- Institute of Radiation Oncology, Cantonal Hospital of Graubünden, Chur, Switzerland
| | - Chee-Wai Cheng
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John D Fenwick
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh, School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Chester S Reft
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Otto A Sauer
- Department of Radiation Oncology, Klinik fur Strahlentherapie, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Bouchard H. Reference dosimetry of modulated and dynamic photon beams. Phys Med Biol 2021; 65:24TR05. [PMID: 33438582 DOI: 10.1088/1361-6560/abc3fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the late 1980s, a new technique was proposed that would revolutionize radiotherapy. Now referred to as intensity-modulated radiotherapy, it is at the core of state-of-the-art photon beam delivery techniques, such as helical tomotherapy and volumetric modulated arc therapy. Despite over two decades of clinical application, there are still no established guidelines on the calibration of dynamic modulated photon beams. In 2008, the IAEA-AAPM work group on nonstandard photon beam dosimetry published a formalism to support the development of a new generation of protocols applicable to nonstandard beam reference dosimetry (Alfonso et al 2008 Med. Phys. 35 5179-86). The recent IAEA Code of Practice TRS-483 was published as a result of this initiative and addresses exclusively small static beams. But the plan-class specific reference calibration route proposed by Alfonso et al (2008 Med. Phys. 35 5179-86) is a change of paradigm that is yet to be implemented in radiotherapy clinics. The main goals of this paper are to provide a literature review on the dosimetry of nonstandard photon beams, including dynamic deliveries, and to discuss anticipated benefits and challenges in a future implementation of the IAEA-AAPM formalism on dynamic photon beams.
Collapse
Affiliation(s)
- Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada. Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec H2X 0A9, Canada. Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montréal, Québec H2X 3E4, Canada
| |
Collapse
|
6
|
Höfel S, Fix MK, Zwicker F, Sterpin E, Drescher M. EPR imaging of magnetic field effects on radiation dose distributions around millimeter-size air cavities. Phys Med Biol 2019; 64:175013. [PMID: 31307018 DOI: 10.1088/1361-6560/ab325b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
New hybrid radiotherapy treatment systems combining an MRI scanner with a source of ionizing radiation are being introduced in the clinic. The strong magnetic fields of MRI considerably affect radiation dose distributions, especially at tissue-air interfaces due to the electron return effect (ERE). Experimental investigation of the ERE within a sub-millimeter thick surface layer is still highly challenging. In the present work, we examine and quantify the magnetic field induced perturbations of dose distributions within a 0.5 mm layer surrounding millimeter-size air cavities by applying electron paramagnetic resonance imaging (EPRI). Air-filled fused quartz tubes (inner diameter 3 or 4 mm) mimic small air cavities and serve as model systems. The tubes were irradiated inside a PMMA phantom by a 6 MV photon beam. The irradiations were performed in the presence or absence of a transverse, magnetic field providing a magnetic field strength of 1.0 Tesla. The spatial distributions of radiation induced paramagnetic defects in the quartz tubes were subsequently determined by applying field-swept echo-detected EPRI and were then converted to relative dose distributions. The transverse magnetic field leads to considerable local dose enhancements and reductions (up to 35%) with respect to the mean dose within the quartz tubes. The experimentally determined dose distributions are in good quantitative agreement with Monte Carlo radiation transport simulations. The results of this work demonstrate the feasibility of field-swept echo-detected EPRI to measure magnetic field induced perturbations of dose distributions within a sub-millimeter thick surface layer at the dosimeter-air interface.
Collapse
Affiliation(s)
- Sebastian Höfel
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany. Klinik und Praxis für Strahlentherapie am Klinikum Konstanz, Konstanz, Germany
| | | | | | | | | |
Collapse
|
7
|
Kodama T, Saito Y, Hatanaka S, Hariu M, Shimbo M, Takahashi T. Commissioning of the Mobius3D independent dose verification system for TomoTherapy. J Appl Clin Med Phys 2019; 20:12-20. [PMID: 30920130 PMCID: PMC6523001 DOI: 10.1002/acm2.12572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/15/2019] [Accepted: 03/05/2019] [Indexed: 11/28/2022] Open
Abstract
In radiation therapy, a secondary independent dose verification is an important component of a quality control system. Mobius3D calculates three‐dimensional (3D) patient dose using reference beam data and a collapsed cone convolution algorithm and analyzes dose‐volume histogram automatically. There are currently no published data on commissioning and determining tolerance levels of Mobius3D for TomoTherapy. To verify the calculation accuracy and adjust the parameters of this system, we compared the measured dose using an ion chamber and film in a phantom with the dose calculated using Mobius3D for nine helical intensity‐modulated radiation therapy plans, each with three nominal field widths. We also compared 126 treatment plans used in our institution to treat prostate, head‐and‐neck, and esophagus tumors based on dose calculations by treatment planning system for given dose indices and 3D gamma passing rates with those produced by Mobius3D. On the basis of these results, we showed that the action and tolerance levels at the average dose for the planning target volume (PTV) at each treatment site are at μ ± 2σ and μ ± 3σ, respectively. After adjusting parameters, the dose difference ratio on average was −0.2 ± 0.6% using ion chamber and gamma passing rate with the criteria of 3% and 3 mm on average was 98.8 ± 1.4% using film. We also established action and tolerance levels for the PTV at the prostate, head‐and‐neck, esophagus, and for the organ at risk at all treatment sites. Mobius3D calculations thus provide an accurate secondary dose verification system that can be commissioned easily and immediately after installation. Before clinical use, the Mobius3D system needs to be commissioned using the treatment plans for patients treated in each institution to determine the calculational accuracy and establish tolerances for each treatment site and dose index.
Collapse
Affiliation(s)
- Takumi Kodama
- Department of Radiation Oncology, Saitama Cancer Center, Saitama, Japan.,Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yoshihiro Saito
- Department of Radiation Oncology, Saitama Cancer Center, Saitama, Japan
| | - Shogo Hatanaka
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Masatsugu Hariu
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Munefumi Shimbo
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Takeo Takahashi
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
8
|
Hui C, Chen Q, Khandelwal S, Neal B, Watkins W. Detection of dose delivery variations on TomoTherapy using on-board detector based verification. Phys Med Biol 2018; 63:14NT02. [DOI: 10.1088/1361-6560/aacebb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Yuan J, Zheng Y, Wessels B, Lo SS, Ellis R, Machtay M, Yao M. Experimental Validation of Monte Carlo Simulations Based on a Virtual Source Model for TomoTherapy in a RANDO Phantom. Technol Cancer Res Treat 2016; 15:796-804. [DOI: 10.1177/1533034615605007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/29/2015] [Accepted: 08/17/2015] [Indexed: 11/17/2022] Open
Abstract
A virtual source model for Monte Carlo simulations of helical TomoTherapy has been developed previously by the authors. The purpose of this work is to perform experiments in an anthropomorphic (RANDO) phantom with the same order of complexity as in clinical treatments to validate the virtual source model to be used for quality assurance secondary check on TomoTherapy patient planning dose. Helical TomoTherapy involves complex delivery pattern with irregular beam apertures and couch movement during irradiation. Monte Carlo simulation, as the most accurate dose algorithm, is desirable in radiation dosimetry. Current Monte Carlo simulations for helical TomoTherapy adopt the full Monte Carlo model, which includes detailed modeling of individual machine component, and thus, large phase space files are required at different scoring planes. As an alternative approach, we developed a virtual source model without using the large phase space files for the patient dose calculations previously. In this work, we apply the simulation system to recompute the patient doses, which were generated by the treatment planning system in an anthropomorphic phantom to mimic the real patient treatments. We performed thermoluminescence dosimeter point dose and film measurements to compare with Monte Carlo results. Thermoluminescence dosimeter measurements show that the relative difference in both Monte Carlo and treatment planning system is within 3%, with the largest difference less than 5% for both the test plans. The film measurements demonstrated 85.7% and 98.4% passing rate using the 3 mm/3% acceptance criterion for the head and neck and lung cases, respectively. Over 95% passing rate is achieved if 4 mm/4% criterion is applied. For the dose–volume histograms, very good agreement is obtained between the Monte Carlo and treatment planning system method for both cases. The experimental results demonstrate that the virtual source model Monte Carlo system can be a viable option for the accurate dose calculation of helical TomoTherapy.
Collapse
Affiliation(s)
- Jiankui Yuan
- University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Yiran Zheng
- University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Barry Wessels
- University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Simon S. Lo
- University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Rodney Ellis
- University Hospitals, Case Medical Center, Cleveland, OH, USA
| | | | - Min Yao
- University Hospitals, Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
10
|
Sterpin E. Potential pitfalls of the PTV concept in dose-to-medium planning optimization. Phys Med 2016; 32:1103-10. [PMID: 27546868 DOI: 10.1016/j.ejmp.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/25/2022] Open
|
11
|
Yang YM, Geurts M, Smilowitz JB, Sterpin E, Bednarz BP. Monte Carlo simulations of patient dose perturbations in rotational-type radiotherapy due to a transverse magnetic field: a tomotherapy investigation. Med Phys 2015; 42:715-25. [PMID: 25652485 DOI: 10.1118/1.4905168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Several groups are exploring the integration of magnetic resonance (MR) image guidance with radiotherapy to reduce tumor position uncertainty during photon radiotherapy. The therapeutic gain from reducing tumor position uncertainty using intrafraction MR imaging during radiotherapy could be partially offset if the negative effects of magnetic field-induced dose perturbations are not appreciated or accounted for. The authors hypothesize that a more rotationally symmetric modality such as helical tomotherapy will permit a systematic mediation of these dose perturbations. This investigation offers a unique look at the dose perturbations due to homogeneous transverse magnetic field during the delivery of Tomotherapy(®) Treatment System plans under varying degrees of rotational beamlet symmetry. METHODS The authors accurately reproduced treatment plan beamlet and patient configurations using the Monte Carlo code geant4. This code has a thoroughly benchmarked electromagnetic particle transport physics package well-suited for the radiotherapy energy regime. The three approved clinical treatment plans for this study were for a prostate, head and neck, and lung treatment. The dose heterogeneity index metric was used to quantify the effect of the dose perturbations to the target volumes. RESULTS The authors demonstrate the ability to reproduce the clinical dose-volume histograms (DVH) to within 4% dose agreement at each DVH point for the target volumes and most planning structures, and therefore, are able to confidently examine the effects of transverse magnetic fields on the plans. The authors investigated field strengths of 0.35, 0.7, 1, 1.5, and 3 T. Changes to the dose heterogeneity index of 0.1% were seen in the prostate and head and neck case, reflecting negligible dose perturbations to the target volumes, a change from 5.5% to 20.1% was observed with the lung case. CONCLUSIONS This study demonstrated that the effect of external magnetic fields can be mitigated by exploiting a more rotationally symmetric treatment modality.
Collapse
Affiliation(s)
- Y M Yang
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin 53703
| | - M Geurts
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin 53703
| | - J B Smilowitz
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin 53703
| | - E Sterpin
- Molecular Imaging, Radiotherapy and Oncology, Université catholique de Louvain, Brussels, Belgium 1348
| | - B P Bednarz
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin 53703
| |
Collapse
|
12
|
Handsfield LL, Jones R, Wilson DD, Siebers JV, Read PW, Chen Q. Phantomless patient-specific TomoTherapy QA via delivery performance monitoring and a secondary Monte Carlo dose calculation. Med Phys 2015; 41:101703. [PMID: 25281942 DOI: 10.1118/1.4894721] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To describe the validation and implementation of a novel quality assurance (QA) system for TomoTherapy using a Monte Carlo (MC)-based secondary dose calculation and CT detector-based multileaf collimator (MLC) leaf opening time measurement QA verification. This system is capable of detecting plan transfer and delivery errors and evaluating the dosimetric impact of those errors. METHODS The authors' QA process, MCLogQA, utilizes an independent pretreatment MC secondary dose calculation and postdelivery TomoTherapy exit detector-based MLC sinogram comparison and log file examination to confirm accurate dose calculation, accurate dose delivery, and to verify machine performance. MC radiation transport simulations are performed to estimate patient dose utilizing prestored treatment machine-specific phase-space information, the patient's planning CT, and MLC sinogram data. Sinogram data are generated from both the treatment planning system (MC_TPS) and from beam delivery log files (MC_Log). TomoTherapy treatment planning dose (DTPS) is compared with DMC_TPS and DMC_Log via dose-volume metrics and mean region of interest dose statistics. For validation, in-phantom ionization chamber dose measurements (DIC) for ten sample patient plans are compared with the computed values. RESULTS Dose comparisons to in-phantom ion chamber measurements validate the capability of the MCLogQA method to detect delivery errors. DMC_Log agreed with DIC within 1%, while DTPS values varied by 2%-5% compared to DIC. The authors demonstrated that TomoTherapy treatments can be vulnerable to MLC deviations and interfraction output variations during treatment delivery. Interfractional Linac output variations for each patient were approximately 2% and average output was 1%-1.5% below the gold standard. While average MLC leaf opening time error from patient to patient varied from -0.6% to 1.6%, the MLC leaf errors varied little between fractions for the same patient plan, excluding one patient. CONCLUSIONS MCLogQA is a new TomoTherapy QA process that validates the planned dose before delivery and analyzes the delivered dose using the treatment exit detector and log file data. The MCLogQA procedure is an effective and efficient alternative to traditional phantom-based TomoTherapy plan-specific QA because it allows for comprehensive 3D dose verification, accounts for tissue heterogeneity, uses patient CT density tables, reduces total QA time, and provides for a comprehensive QA methodology for each treatment fraction.
Collapse
Affiliation(s)
- Lydia L Handsfield
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Ryan Jones
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - David D Wilson
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Jeffery V Siebers
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Paul W Read
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Quan Chen
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
13
|
Su L, Yang Y, Bednarz B, Sterpin E, Du X, Liu T, Ji W, Xu XG. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy. Med Phys 2015; 41:071709. [PMID: 24989378 DOI: 10.1118/1.4884229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head & neck. METHODS To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. RESULTS For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified Woodcock tracking algorithm performed inferior to the original one. ARCHERRT achieves a fast speed for PSF-based dose calculations. With a single M2090 card, the simulations cost about 60, 50, 80 s for three cases, respectively, with the 1% statistical error in the PTV. Using the latest K40 card, the simulations are 1.7-1.8 times faster. More impressively, six M2090 cards could finish the simulations in 8.9-13.4 s. For comparison, the same simulations on Intel E5-2620 (12 hyperthreading) cost about 500-800 s. CONCLUSIONS ARCHERRT was developed successfully to perform fast and accurate MC dose calculation for radiotherapy using PSFs and patient CT phantoms.
Collapse
Affiliation(s)
- Lin Su
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Youming Yang
- Medical Physics, University of Wisconsin, Madison, Wisconsin 53706
| | - Bryan Bednarz
- Medical Physics, University of Wisconsin, Madison, Wisconsin 53706
| | - Edmond Sterpin
- Molecular Imaging, Radiotherapy and Oncology, Université catholique de Louvain, Brussels, Belgium 1348
| | - Xining Du
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Tianyu Liu
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Wei Ji
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - X George Xu
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
14
|
Sterpin E. Monte Carlo evaluation of the dose calculation algorithm of TomoTherapy for clinical cases in dynamic jaws mode. Phys Med 2015; 31:273-80. [PMID: 25661978 DOI: 10.1016/j.ejmp.2015.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022] Open
Abstract
PURPOSE For the TomoTherapy(®) system, longitudinal conformation can be improved by selecting a smaller field width but at the expense of longer treatment time. Recently, the TomoEdge(®) feature has been released with the possibility to move dynamically the jaws at the edges of the target volume, improving longitudinal penumbra and enabling faster treatments. Such delivery scheme requires additional modeling of treatment delivery. Using a previously validated Monte Carlo model (TomoPen), we evaluated the accuracy of the implementation of TomoEdge in the new dose engine of TomoTherapy for 15 clinical cases. METHODS TomoPen is based on PENELOPE. Particle tracking in the treatment head is performed almost instantaneously by 1) reading a particle from a phase-space file corresponding to the largest field and 2) correcting the weight of the particle depending on the actual jaw and MLC configurations using Monte Carlo pre-generated data. 15 clinical plans (5 head-and-neck, 5 lung and 5 prostate tumors) planned with TomoEdge and with the last release of the treatment planning system (VoLO(®)) were re-computed with TomoPen. The resulting dose-volume histograms were compared. RESULTS Good agreement was achieved overall, with deviations for the target volumes typically within 2% (D95), excepted for small lung tumors (17 cm(3)) where a maximum deviation of 4.4% was observed for D95. The results were consistent with previously reported values for static field widths. CONCLUSIONS For the clinical cases considered in the present study, the introduction of TomoEdge did not impact significantly the accuracy of the computed dose distributions.
Collapse
Affiliation(s)
- E Sterpin
- Center of Molecular Imaging, Radiotherapy and Oncology, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium.
| |
Collapse
|
15
|
Yuan J, Rong Y, Chen Q. A virtual source model for Monte Carlo simulation of helical tomotherapy. J Appl Clin Med Phys 2015; 16:4992. [PMID: 25679157 PMCID: PMC5689983 DOI: 10.1120/jacmp.v16i1.4992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/29/2014] [Accepted: 08/25/2014] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase‐space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS‐generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of <1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of <2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM‐based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose‐volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent with literature. The VSM‐based MC simulation approach can be feasibly built from the gold standard beam model of a tomotherapy unit. The accuracy of the VSM was validated against measurements in homogeneous media, as well as published full MC model in heterogeneous media. PACS numbers: 87.53.‐j, 87.55.K‐
Collapse
|
16
|
Ishihara Y, Sawada A, Nakamura M, Miyabe Y, Tanabe H, Kaneko S, Takayama K, Mizowaki T, Kokubo M, Hiraoka M. Development of a dose verification system for Vero4DRT using Monte Carlo method. J Appl Clin Med Phys 2014; 15:4961. [PMID: 25493521 PMCID: PMC5711115 DOI: 10.1120/jacmp.v15i6.4961] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/08/2014] [Accepted: 07/01/2014] [Indexed: 11/23/2022] Open
Abstract
Vero4DRT is an innovative image-guided radiotherapy system employing a C-band X-ray head with gimbal mechanics. The purposes of this study were to propose specific MC models of the linac head and multileaf collimator (MLC) for the Vero4DRT and to verify their accuracy. For a 6 MV photon beam delivered by the Vero4DRT, a simulation code was implemented using EGSnrc. The linac head model and the MLC model were simulated based on its specification. Next, the percent depth dose (PDD) and beam profiles at depths of 15, 100, and 200 mm were simulated under source-to-surface distance of 900 and 1000 mm. Field size was set to 150 × 150 mm2 at a depth of 100 mm. Each of the simulated dosimetric metrics was then compared with the corresponding measurements by a 0.125 cc ionization chamber. After that, intra- and interleaf leakage, tongue-and-groove, and rounded-leaf profiles were simulated for the static MLC model. Meanwhile, film measurements were performed using EDR2 films under similar conditions to simulation. The measurement for the rounded-leaf profile was performed using the water phantom and the ionization chamber. The leaf physical density and abutting leaf gap were adjusted to obtain good agreement between the simulated intra- and interleaf leakage profiles and measurements. For the MLC model in step-and-shoot cases, a pyramid and a prostate IMRT field were simulated, while film measurements were performed using EDR2. For the linac head, exclusive of MLC, the difference in PDD was < 1.0% after the buildup region. The simulated beam profiles agreed to within 1.3% at each depth. The MLC model has been shown to reproduce dose measurements within 2.5% for static tests. The MLC is made of tungsten alloy with a purity of 95%. The leaf gap of 0.015 cm and the MLC physical density of 18.0 g/ cm3, which provided the best agreement between the simulated and measured leaf leakage, were assigned to our MC model. As a result, the simulated step-and-shoot IMRT dose distributions agreed with the film measurements to within 3.3%, with exception of the penumbra region. We have developed specific MC models of the linac head and the MLC in the Vero4DRT system. The results have demonstrated that our MC models have high accuracy.
Collapse
Affiliation(s)
- Yoshitomo Ishihara
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Klüter S, Schubert K, Lissner S, Sterzing F, Oetzel D, Debus J, Schlegel W, Oelfke U, Nill S. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system. Med Phys 2014; 41:081709. [PMID: 25086519 DOI: 10.1118/1.4887779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. METHODS A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose-volume histograms were calculated for the patient plans. RESULTS Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of -0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local voxel-based deviation of -2.41% ± 0.75% for all voxels with dose values >20% were found for 11 modulated plans in the cheese phantom. Averaged over nine patient plans, the deviations amounted to -0.14% ± 1.97% (voxels >80%) and -0.95% ± 2.27% (>20%, local deviations). For a lung case, mean voxel-based deviations of more than 4% were found, while for all other patient plans, all mean voxel-based deviations were within ± 2.4%. CONCLUSIONS The presented method is suitable for independent dose calculation for helical tomotherapy within the known limitations of the pencil beam algorithm. It can serve as verification of the primary dose calculation and thereby reduce the need for time-consuming measurements. By using the patient anatomy and generating full 3D dose data, and combined with measurements of additional machine parameters, it can substantially contribute to overall patient safety.
Collapse
Affiliation(s)
- Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Kai Schubert
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Steffen Lissner
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Florian Sterzing
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Dieter Oetzel
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Wolfgang Schlegel
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Uwe Oelfke
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| | - Simeon Nill
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom
| |
Collapse
|
18
|
Validation of the mid-position strategy for lung tumors in helical TomoTherapy. Radiother Oncol 2014; 110:529-37. [DOI: 10.1016/j.radonc.2013.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/18/2013] [Accepted: 10/20/2013] [Indexed: 12/25/2022]
|
19
|
Usmani MN, Masai N, Oh RJ, Shiomi H, Tatsumi D, Miura H, Inoue T, Koizumi M. Comparison of Absorbed Dose to Medium and Absorbed Dose to Water for Spine IMRT Plans Using a Commercial Monte Carlo Treatment Planning System. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ijmpcero.2014.31010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Sterpin E, Sorriaux J, Vynckier S. Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4. Med Phys 2013; 40:111705. [DOI: 10.1118/1.4823469] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
21
|
Koivunoro H, Siiskonen T, Kotiluoto P, Auterinen I, Hippelainen E, Savolainen S. Accuracy of the electron transport in mcnp5 and its suitability for ionization chamber response simulations: A comparison with the egsnrc and penelope codes. Med Phys 2013; 39:1335-44. [PMID: 22380366 DOI: 10.1118/1.3685446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In this work, accuracy of the mcnp5 code in the electron transport calculations and its suitability for ionization chamber (IC) response simulations in photon beams are studied in comparison to egsnrc and penelope codes. METHODS The electron transport is studied by comparing the depth dose distributions in a water phantom subdivided into thin layers using incident energies (0.05, 0.1, 1, and 10 MeV) for the broad parallel electron beams. The IC response simulations are studied in water phantom in three dosimetric gas materials (air, argon, and methane based tissue equivalent gas) for photon beams ((60)Co source, 6 MV linear medical accelerator, and mono-energetic 2 MeV photon source). Two optional electron transport models of mcnp5 are evaluated: the ITS-based electron energy indexing (mcnp5(ITS)) and the new detailed electron energy-loss straggling logic (mcnp5(new)). The electron substep length (ESTEP parameter) dependency in mcnp5 is investigated as well. RESULTS For the electron beam studies, large discrepancies (>3%) are observed between the MCNP5 dose distributions and the reference codes at 1 MeV and lower energies. The discrepancy is especially notable for 0.1 and 0.05 MeV electron beams. The boundary crossing artifacts, which are well known for the mcnp5(ITS), are observed for the mcnp5(new) only at 0.1 and 0.05 MeV beam energies. If the excessive boundary crossing is eliminated by using single scoring cells, the mcnp5(ITS) provides dose distributions that agree better with the reference codes than mcnp5(new). The mcnp5 dose estimates for the gas cavity agree within 1% with the reference codes, if the mcnp5(ITS) is applied or electron substep length is set adequately for the gas in the cavity using the mcnp5(new). The mcnp5(new) results are found highly dependent on the chosen electron substep length and might lead up to 15% underestimation of the absorbed dose. CONCLUSIONS Since the mcnp5 electron transport calculations are not accurate at all energies and in every medium by general clinical standards, caution is needed, if mcnp5 is used with the current electron transport models for dosimetric applications.
Collapse
|
22
|
Sterpin E, Verboomen C, Vynckier S. Impact of the number of discrete angles used during dose computation for TomoTherapy treatments. Med Phys 2012; 39:6947-56. [PMID: 23127088 DOI: 10.1118/1.4762684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To quantify systematically the effect on accuracy of discretizing gantry rotation during the dose calculation process of TomoTherapy treatments. METHODS Up to version 4.0.x included, TomoTherapy treatment planning system (TPS) approximates gantry rotation by computing dose from 51 discrete angles corresponding to the center of the projections used to control the binary multileaf collimator. Potential effects on dose computation accuracy for off-axis targets and low modulation factors have been shown previously for a few treatment configurations. In versions 4.1.x and later, TomoTherapy oversamples the projections to better account for gantry rotation, but only during full scatter optimization and final calculation (i.e., not during optimization in "beamlet" mode). The effect on accuracy of changing the number of angles was quantified with the following framework: (1) predict the impact of the discretization of gantry rotation for various modulation factors, target sizes, and off-axis positions using a simplified analytical algorithm; (2) perform regular quality assurance using measurements with EDR2 radiographic films; (3) isolating the effect of changing the number of discretized angles only (51, 153, and 459) using a previously validated Monte Carlo model (TomoPen). The diameters of the targets were 2, 3, and 5 cm; off-axis central positions of target volumes were 5, 10 and 15, and 17 cm (when accepted by the treatment unit); planned modulation factors were 1.3 and 2.0. RESULTS For extreme configurations (3 cm tumor, 1.3 modulation factor, 15 cm off-axis position), effects on dose distributions were significant with 89.3% and 95.4% of the points passing gamma tests with 2%∕2 mm and 3%∕3 mm criteria, respectively, for TPS software version 4.0.x (51 gantry angles). The passing rate was 100% for both gamma criteria for the 4.1.x version (153 gantry angles). Those differences could be attributed almost completely to gantry motion discretization using TomoPen. Using 51 gantry angles for dose computation, TomoPen reproduced within statistical uncertainties (<1% standard deviation) dose distributions computed with version 4.0.x. Using 153 and 459 gantry angles, TomoPen reproduced within statistical uncertainties measurements and dose distributions computed with version 4.1.x. CONCLUSIONS When low modulation factors and significant off-axis positions are used, accounting for gantry rotation during dose computation using at least 153 gantry angles is required to ensure optimal accuracy.
Collapse
Affiliation(s)
- E Sterpin
- Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
23
|
Sterpin E, Janssens G, Orban de Xivry J, Goossens S, Wanet M, Lee JA, Delor A, Bol V, Vynckier S, Gregoire V, Geets X. Helical tomotherapy for SIB and hypo-fractionated treatments in lung carcinomas: a 4D Monte Carlo treatment planning study. Radiother Oncol 2012; 104:173-80. [PMID: 22841518 DOI: 10.1016/j.radonc.2012.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 05/29/2012] [Accepted: 06/17/2012] [Indexed: 12/25/2022]
Abstract
PURPOSE To evaluate the impact of intra-fraction motion induced by regular breathing on treatment quality for helical tomotherapy treatments. MATERIAL AND METHODS Four patients treated by simultaneous-integrated boost (SIB) and three by hypo-fractionated stereotactic treatments (hypo-fractionated, 18 Gy/fraction) were included. All patients were coached to ensure regular breathing. For the SIB group, the tumor volume was delineated using CT information only (CTV(CT)) and the boost region was based on PET information (GTV(PET), no CTV extension). In the hypo-fractionated group, a GTV based on CT information was contoured. In both groups, ITVs were defined according to 4D data. The PTV included the ITV plus a setup error margin. The treatment was planned using the tomotherapy TPS on 3D CT images. In order to verify the impact of intra-fraction motion and interplay effects, dose calculations were performed using a previously validated Monte Carlo model of tomotherapy (TomoPen): first on the planning 3D CT ("planned dose") and second, on the 10 phases of the 4D scan. For the latter, two dose distributions, termed "interplay simulated" or "no interplay" were computed with and without beamlet-phase correlation over the 10 phases and combined using deformable dose registration. RESULTS In all cases, DVHs of "interplay simulated" dose distributions complied within 1% of the original clinical objectives used for planning, defined according to ICRU (report 83) and RTOG (trials 0236 and 0618) recommendations, for SIB and hypo-fractionated groups, respectively. For one patient in the hypo-fractionated group, D(mean) to the CTV(CT) was 2.6% and 2.5% higher than "planned" for "interplay simulated" and "no interplay", respectively. CONCLUSION For the patients included in this study, assuming regular breathing, the results showed that interplay of breathing and tomotherapy delivery motions did not affect significantly plan delivery accuracy. Hence, accounting for intra-fraction motion through the definition of an ITV volume was sufficient to ensure tumor coverage.
Collapse
|
24
|
Chen Q, Lu W, Chen Y, Chen M, Henderson D, Sterpin E. Validation of GPU based TomoTherapy dose calculation engine. Med Phys 2012; 39:1877-86. [PMID: 22482609 DOI: 10.1118/1.3693057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. METHODS Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. RESULTS The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) < 1. The worst case observed in the phantom had 0.22% voxels violating the criterion. In patient cases, the worst percentage of voxels violating the criterion was 0.57%. For absolute point dose verification, all cases agreed with measurement to within ±3% with average error magnitude within 1%. All cases passed the acceptance criterion that more than 95% of the pixels have Γ(3%, 3 mm) < 1 in film measurement, and the average passing pixel percentage is 98.5%-99%. The GPU dose engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. CONCLUSIONS It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.
Collapse
Affiliation(s)
- Quan Chen
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Sterpin E, Mackie TR, Vynckier S. Monte Carlo computed machine-specific correction factors for reference dosimetry of TomoTherapy static beam for several ion chambers. Med Phys 2012; 39:4066-72. [DOI: 10.1118/1.4722752] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
De Ost B, Schaeken B, Vynckier S, Sterpin E, Van den Weyngaert D. Reference dosimetry for helical tomotherapy: Practical implementation and a multicenter validation. Med Phys 2011; 38:6020-6. [DOI: 10.1118/1.3651496] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
27
|
Sterpin E, Chen Y, Chen Q, Lu W, Mackie TR, Vynckier S. Monte Carlo-based simulation of dynamic jaws tomotherapy. Med Phys 2011; 38:5230-8. [DOI: 10.1118/1.3626486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
Chen Q, Chen Y, Chen M, Chao E, Sterpin E, Lu W. A slit method to determine the focal spot size and shape of TomoTherapy system. Med Phys 2011; 38:2841-9. [PMID: 21815359 DOI: 10.1118/1.3589133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To obtain accurate x-ray source profile measurements using a slit-collimator, the slit-collimator should have a narrow width, large height, and be positioned near the source. However, these conditions may not always be met. In this paper, the authors provide a detailed analysis of the slit measurement geometry and the relationship between the slit parameters and the measured x-ray source profile. The slit model allows the use of a shorter and more easily available slit-collimator, while accurate source profile measurements can still be obtained. METHODS Measurements were performed with a variety of slit widths and/or slit to source distances. The relationship derived between the slit parameters and the measured profile was used to determine the true focal spot profile through a least square fit of the profile data. The model was verified by comparing the predicted profiles at a variety of slit-collimator parameters with the measured results on the TomoTherapy Hi-Art system. RESULTS Both the treatment beam and the imaging beam were measured. For treatment mode, it was found that a source consisting of one Gaussian with a 0.75 mm full-width-half-maximum (FWHM) and 72% peak amplitude and a second Gaussian with a 2.27 mm FWHM and 18% peak amplitude matched measurement profiles. The overall source profile has a FWHM of 0.93 mm, but with a higher amplitude in the tail region than a single Gaussian. For imaging mode, the source consists of one Gaussian with a 0.68 mm FWHM and 82% peak amplitude and a second Gaussian with a 1.83 mm FWHM and 18% peak amplitude. The overall source profile has a FWHM of 0.77 mm. CONCLUSIONS Our study of the focal spot measurement using slit-collimators showed that accurate source profile measurements can be achieved through fitting of measurement results at different slit widths and source-to-slit distances (SSD). Quantitative measurements of the TomoTherapy linac focal spot showed that the source distribution could be better described with a model consisting of two Gaussian components rather than a single Gaussian model as assumed in previous studies.
Collapse
Affiliation(s)
- Quan Chen
- TomoTherapy, Inc., 1240 Deming Way, Madison, Wisconsin 53717, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Hundertmark B, Sterpin E, Mackie T. A robust procedure for verifying TomoTherapy Hi-Art™ source models for small fields. Phys Med Biol 2011; 56:3685-99. [DOI: 10.1088/0031-9155/56/12/015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Georg D, Knöös T, McClean B. Current status and future perspective of flattening filter free photon beams. Med Phys 2011; 38:1280-93. [PMID: 21520840 DOI: 10.1118/1.3554643] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Flattening filters (FFs) have been considered as an integral part of the treatment head of a medical accelerator for more than 50 years. The reasons for the longstanding use are, however, historical ones. Advanced treatment techniques, such as stereotactic radiotherapy or intensity modulated radiotherapy have stimulated the interest in operating linear accelerators in a flattening filter free (FFF) mode. The current manuscript reviews treatment head physics of FFF beams, describes their characteristics and the resulting potential advantages in their medical use, and closes with an outlook. METHODS A number of dosimetric benefits have been determined for FFF beams, which range from increased dose rate and dose per pulse to favorable output ratio in-air variation with field size, reduced energy variation across the beam, and reduced leakage and out-of-field dose, respectively. Finally, the softer photon spectrum of unflattened beams has implications on imaging strategies and radiation protection. RESULTS The dosimetric characteristics of FFF beams have an effect on treatment delivery, patient comfort, dose calculation accuracy, beam matching, absorbed dose determination, treatment planning, machine specific quality assurance, imaging, and radiation protection. When considering conventional C-arm linacs in a FFF mode, more studies are needed to specify and quantify the clinical advantages, especially with respect to treatment plan quality and quality assurance. CONCLUSIONS New treatment units are already on the market that operate without a FF or can be operated in a dedicated clinical FFF mode. Due to the convincing arguments of removing the FF, it is expected that more vendors will offer dedicated treatment units for advanced photon beam therapy in the near future. Several aspects related to standardization, dosimetry, treatment planning, and optimization need to be addressed in more detail in order to facilitate the clinical implementation of unflattened beams.
Collapse
Affiliation(s)
- Dietmar Georg
- Department of Radiotherapy, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, A-1090 Vienna, Austria.
| | | | | |
Collapse
|
31
|
González W, Lallena AM, Alfonso R. Monte Carlo simulation of the dynamic micro-multileaf collimator of a LINAC Elekta Precise using PENELOPE. Phys Med Biol 2011; 56:3417-31. [DOI: 10.1088/0031-9155/56/11/015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Belec J, Ploquin N, La Russa DJ, Clark BG. Position-probability-sampled Monte Carlo calculation of VMAT, 3DCRT, step-shoot IMRT, and helical tomotherapy dose distributions using BEAMnrc/DOSXYZnrc. Med Phys 2011; 38:948-60. [PMID: 21452731 DOI: 10.1118/1.3538922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The commercial release of volumetric modulated arc therapy techniques using a conventional linear accelerator and the growing number of helical tomotherapy users have triggered renewed interest in dose verification methods, and also in tools for exploring the impact of machine tolerance and patient motion on dose distributions without the need to approximate time-varying parameters such as gantry position, MLC leaf motion, or patient motion. To this end we have developed a Monte Carlo-based calculation method capable of simulating a wide variety of treatment techniques without the need to resort to discretization approximations. METHODS The ability to perform complete position-probability-sampled Monte Carlo dose calculations was implemented in the BEAMnrc/DOSXZYnrc user codes of EGSnrc. The method includes full accelerator head simulations of our tomotherapy and Elekta linacs, and a realistic representation of continous motion via the sampling of a time variable. The functionality of this algorithm was tested via comparisons with both measurements and treatment planning dose distributions for four types of treatment techniques: 3D conformal, step-shoot intensity modulated radiation therapy, helical tomotherapy, and volumetric modulated are therapy. RESULTS For static fields, the absolute dose agreement between the EGSnrc Monte Carlo calculations and measurements is within 2%/1 mm. Absolute dose agreement between Monte Carlo calculations and treatment planning system for the four different treatment techniques is within 3%/3 mm. Discrepancies with the tomotherapy TPS on the order of 10%/5 mm were observed for the extreme example of a small target located 15 cm off-axis and planned with a low modulation factor. The increase in simulation time associated with using position-probability sampling, as opposed to the discretization approach, was less than 2% in most cases. CONCLUSIONS A single Monte Carlo simulation method can be used to calculate patient dose distribution for various types of treatment techniques delivered with either tomotherapy or a conventional linac. The method simplifies the simulation process, improves dose calculation accuracy, and involves an acceptably small change in computation time.
Collapse
Affiliation(s)
- Jason Belec
- Department of Medical Physics, The Ottawa Hospital Cancer Centre, 501 Smyth Road, Box 927, Ottawa, Ontario K1H 8L6, Canada.
| | | | | | | |
Collapse
|
33
|
Ma CM, Li J. Dose specification for radiation therapy: dose to water or dose to medium? Phys Med Biol 2011; 56:3073-89. [DOI: 10.1088/0031-9155/56/10/012] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Sterpin E, Chen Y, Lu W, Mackie TR, Olivera GH, Vynckier S. On the relationships between electron spot size, focal spot size, and virtual source position in Monte Carlo simulations. Med Phys 2011; 38:1579-86. [DOI: 10.1118/1.3556560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
35
|
Langen KM, Papanikolaou N, Balog J, Crilly R, Followill D, Goddu SM, Grant W, Olivera G, Ramsey CR, Shi C. QA for helical tomotherapy: Report of the AAPM Task Group 148a). Med Phys 2010; 37:4817-53. [DOI: 10.1118/1.3462971] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
36
|
Martínez-Rovira I, Sempau J, Fernández-Varea JM, Bravin A, Prezado Y. Monte Carlo dosimetry for forthcoming clinical trials in x-ray microbeam radiation therapy. Phys Med Biol 2010; 55:4375-88. [DOI: 10.1088/0031-9155/55/15/012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Palmans H, Thomas RAS, Duane S, Sterpin E, Vynckier S. Ion recombination for ionization chamber dosimetry in a helical tomotherapy unit. Med Phys 2010; 37:2876-89. [DOI: 10.1118/1.3427411] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
38
|
Monte Carlo-based analytical model for small and variable fields delivered by TomoTherapy. Radiother Oncol 2010; 94:229-34. [DOI: 10.1016/j.radonc.2009.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/15/2009] [Accepted: 12/20/2009] [Indexed: 11/19/2022]
|
39
|
Sterpin E, Salvat F, Olivera G, Vynckier S. Response to “Comment on ‘Monte Carlo evaluation of the convolution∕superposition algorithm of Hi-Art TM
tomotherapy in heterogeneous phantoms and clinical cases’ ” [Med. Phys., (2009)]. Med Phys 2009; 36:3857. [DOI: 10.1118/1.3160766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/10/2009] [Indexed: 11/07/2022] Open
|
40
|
Sterpin E, Salvat F, Olivera G, Vynckier S. Monte Carlo evaluation of the convolution/superposition algorithm of Hi-Art™ tomotherapy in heterogeneous phantoms and clinical cases. Med Phys 2009; 36:1566-75. [DOI: 10.1118/1.3112364] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
41
|
Bush K, Townson R, Zavgorodni S. Monte Carlo simulation of RapidArc radiotherapy delivery. Phys Med Biol 2008; 53:N359-70. [PMID: 18758001 DOI: 10.1088/0031-9155/53/19/n01] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RapidArc radiotherapy technology from Varian Medical Systems is one of the most complex delivery systems currently available, and achieves an entire intensity-modulated radiation therapy (IMRT) treatment in a single gantry rotation about the patient. Three dynamic parameters can be continuously varied to create IMRT dose distributions-the speed of rotation, beam shaping aperture and delivery dose rate. Modeling of RapidArc technology was incorporated within the existing Vancouver Island Monte Carlo (VIMC) system (Zavgorodni et al 2007 Radiother. Oncol. 84 S49, 2008 Proc. 16th Int. Conf. on Medical Physics). This process was named VIMC-Arc and has become an efficient framework for the verification of RapidArc treatment plans. VIMC-Arc is a fully automated system that constructs the Monte Carlo (MC) beam and patient models from a standard RapidArc DICOM dataset, simulates radiation transport, collects the resulting dose and converts the dose into DICOM format for import back into the treatment planning system (TPS). VIMC-Arc accommodates multiple arc IMRT deliveries and models gantry rotation as a series of segments with dynamic MLC motion within each segment. Several verification RapidArc plans were generated by the Eclipse TPS on a water-equivalent cylindrical phantom and re-calculated using VIMC-Arc. This includes one 'typical' RapidArc plan, one plan for dual arc treatment and one plan with 'avoidance' sectors. One RapidArc plan was also calculated on a DICOM patient CT dataset. Statistical uncertainty of MC simulations was kept within 1%. VIMC-Arc produced dose distributions that matched very closely to those calculated by the anisotropic analytical algorithm (AAA) that is used in Eclipse. All plans also demonstrated better than 1% agreement of the dose at the isocenter. This demonstrates the capabilities of our new MC system to model all dosimetric features required for RapidArc dose calculations.
Collapse
Affiliation(s)
- K Bush
- Department of Physics and Astronomy, University of Victoria, PO Box 3055, STN CSC, Victoria, British Columbia V8W 3P6, Canada
| | | | | |
Collapse
|