1
|
Kraus KM, Winter J, Zhang Y, Ahmed M, Combs SE, Wilkens JJ, Bartzsch S. Treatment Planning Study for Microbeam Radiotherapy Using Clinical Patient Data. Cancers (Basel) 2022; 14:685. [PMID: 35158953 PMCID: PMC8833598 DOI: 10.3390/cancers14030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Microbeam radiotherapy (MRT) is a novel, still preclinical dose delivery technique. MRT has shown reduced normal tissue effects at equal tumor control rates compared to conventional radiotherapy. Treatment planning studies are required to permit clinical application. The aim of this study was to establish a dose comparison between MRT and conventional radiotherapy and to identify suitable clinical scenarios for future applications of MRT. We simulated MRT treatment scenarios for clinical patient data using an inhouse developed planning algorithm based on a hybrid Monte Carlo dose calculation and implemented the concept of equivalent uniform dose (EUD) for MRT dose evaluation. The investigated clinical scenarios comprised fractionated radiotherapy of a glioblastoma resection cavity, a lung stereotactic body radiotherapy (SBRT), palliative bone metastasis irradiation, brain metastasis radiosurgery and hypofractionated breast cancer radiotherapy. Clinically acceptable treatment plans were achieved for most analyzed parameters. Lung SBRT seemed the most challenging treatment scenario. Major limitations comprised treatment plan optimization and dose calculation considering the tissue microstructure. This study presents an important step of the development towards clinical MRT. For clinical treatment scenarios using a sophisticated dose comparison concept based on EUD and EQD2, we demonstrated the capability of MRT to achieve clinically acceptable dose distributions.
Collapse
Affiliation(s)
- Kim Melanie Kraus
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Johanna Winter
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Physics Department, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Yating Zhang
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Mabroor Ahmed
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Physics Department, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Stephanie Elisabeth Combs
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Partner Site Munich, Deutsches Konsortium für Translationale Krebsforschung (DKTK), 80336 Munich, Germany
| | - Jan Jakob Wilkens
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Physics Department, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine and Klinikum Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (J.W.); (Y.Z.); (M.A.); (S.E.C.); (J.J.W.); (S.B.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
2
|
Laissue JA, Barré S, Bartzsch S, Blattmann H, Bouchet AM, Djonov VG, Haberthür D, Hlushchuk R, Kaser-Hotz B, Laissue PP, LeDuc G, Reding SO, Serduc R. Tolerance of Normal Rabbit Facial Bones and Teeth to Synchrotron X-Ray Microbeam Irradiation. Radiat Res 2021; 197:233-241. [PMID: 34755190 DOI: 10.1667/rade-21-00032.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/30/2021] [Indexed: 11/03/2022]
Abstract
Microbeam radiation therapy, an alternative radiosurgical treatment under preclinical investigation, aims to safely treat muzzle tumors in pet animals. This will require data on the largely unknown radiation toxicity of microbeam arrays for bones and teeth. To this end, the muzzle of six young adult New Zealand rabbits was irradiated by a lateral array of microplanar beamlets with peak entrance doses of 200, 330 or 500 Gy. The muzzles were examined 431 days postirradiation by computed microtomographic imaging (micro-CT) ex vivo, and extensive histopathology. The boundaries of the radiation field were identified histologically by microbeam tracks in cartilage and other tissues. There was no radionecrosis of facial bones in any rabbit. Conversely, normal incisor teeth exposed to peak entrance doses of 330 Gy or 500 Gy developed marked caries-like damage, whereas the incisors of the two rabbits exposed to 200 Gy remained unscathed. A single, unidirectional array of microbeams with a peak entrance dose ≤200 Gy (valley dose14 Gy) did not damage normal bone, teeth and soft tissues of the muzzle of normal rabbits longer than one year after irradiation. Because of that, Microbeam radiation therapy of muzzle tumors in pet animals is unlikely to cause sizeable damage to normal teeth, bone and soft tissues, if a single array as used here delivers a limited entrance dose of 200 Gy and a valley dose of ≤14 Gy.
Collapse
Affiliation(s)
- Jean Albert Laissue
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH -3012 Bern, Switzerland
| | - Sébastien Barré
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH -3012 Bern, Switzerland
| | - Stefan Bartzsch
- Department of Radiation Oncology, Klinikum rechts der Isar - TU Munich, Germany
| | - Hans Blattmann
- Niederwiesstrasse 13C, CH-5417 Untersiggenthal, Switzerland
| | - Audrey M Bouchet
- INSERM UA8, "Radiations : Défense, Santé, Environnement," 69008 Lyon, France
| | | | - David Haberthür
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH -3012 Bern, Switzerland
| | - Ruslan Hlushchuk
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH -3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
3
|
First experimental measurement of the effect of cardio‐synchronous brain motion on the dose distribution during microbeam radiation therapy. Med Phys 2019; 47:213-222. [DOI: 10.1002/mp.13899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/16/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023] Open
|
4
|
Film dosimetry studies for patient specific quality assurance in microbeam radiation therapy. Phys Med 2019; 65:227-237. [DOI: 10.1016/j.ejmp.2019.09.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 09/05/2019] [Indexed: 11/21/2022] Open
|
5
|
Identifying optimal clinical scenarios for synchrotron microbeam radiation therapy: A treatment planning study. Phys Med 2019; 60:111-119. [DOI: 10.1016/j.ejmp.2019.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/20/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022] Open
|
6
|
Meyer J, Eley J, Schmid TE, Combs SE, Dendale R, Prezado Y. Spatially fractionated proton minibeams. Br J Radiol 2019; 92:20180466. [PMID: 30359081 PMCID: PMC6541186 DOI: 10.1259/bjr.20180466] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022] Open
Abstract
Extraordinary normal tissue response to highly spatially fractionated X-ray beams has been explored for over 25 years. More recently, alternative radiation sources have been developed and utilized with the aim to evoke comparable effects. These include protons, which lend themselves well for this endeavour due to their physical depth dose characteristics as well as corresponding variable biological effectiveness. This paper addresses the motivation for using protons to generate spatially fractionated beams and reviews the technological implementations and experimental results to date. This includes simulation and feasibility studies, collimation and beam characteristics, dosimetry and biological considerations as well as the results of in vivo and in vitro studies. Experimental results are emerging indicating an extraordinary normal tissue sparing effect analogous to what has been observed for synchrotron generated X-ray microbeams. The potential for translational research and feasibility of spatially modulated proton beams in clinical settings is discussed.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - John Eley
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | - Remi Dendale
- Institut Curie, Centre de Protonthérapie d’Orsay, Orsay, France
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique, Universités Paris 11 and Paris 7, Campus d'Orsay, Orsay, France
| |
Collapse
|
7
|
Manchado de Sola F, Vilches M, Prezado Y, Lallena AM. Impact of cardiosynchronous brain pulsations on Monte Carlo calculated doses for synchrotron micro‐ and minibeam radiation therapy. Med Phys 2018; 45:3379-3390. [DOI: 10.1002/mp.12973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/02/2018] [Accepted: 05/05/2018] [Indexed: 11/07/2022] Open
Affiliation(s)
- Francisco Manchado de Sola
- Servicio de Radiofísica y Protección Radiológica Hospital Juan Ramón Jiménez Ronda Exterior Norte, s/n E‐21005Huelva Spain
| | - Manuel Vilches
- Servicio de Radiofísica y Protección Radiológica Centro Médico de Asturias/IMOMA Avda. Richard Grandío, s/n E‐33193Oviedo Spain
| | - Yolanda Prezado
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie CNRS 5 rue Georges Clemenceau F‐91406Orsay Cedex France
| | - Antonio M. Lallena
- Departamento de Física Atómica, Molecular y Nuclear Universidad de Granada E‐18071Granada Spain
| |
Collapse
|
8
|
Donzelli M, Bräuer-Krisch E, Oelfke U, Wilkens JJ, Bartzsch S. Hybrid dose calculation: a dose calculation algorithm for microbeam radiation therapy. Phys Med Biol 2018; 63:045013. [PMID: 29324439 PMCID: PMC5964549 DOI: 10.1088/1361-6560/aaa705] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/07/2017] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
Abstract
Microbeam radiation therapy (MRT) is still a preclinical approach in radiation oncology that uses planar micrometre wide beamlets with extremely high peak doses, separated by a few hundred micrometre wide low dose regions. Abundant preclinical evidence demonstrates that MRT spares normal tissue more effectively than conventional radiation therapy, at equivalent tumour control. In order to launch first clinical trials, accurate and efficient dose calculation methods are an inevitable prerequisite. In this work a hybrid dose calculation approach is presented that is based on a combination of Monte Carlo and kernel based dose calculation. In various examples the performance of the algorithm is compared to purely Monte Carlo and purely kernel based dose calculations. The accuracy of the developed algorithm is comparable to conventional pure Monte Carlo calculations. In particular for inhomogeneous materials the hybrid dose calculation algorithm out-performs purely convolution based dose calculation approaches. It is demonstrated that the hybrid algorithm can efficiently calculate even complicated pencil beam and cross firing beam geometries. The required calculation times are substantially lower than for pure Monte Carlo calculations.
Collapse
Affiliation(s)
- Mattia Donzelli
- The European
Synchrotron Radiation Facility, 71 Avenue des Martyrs 38000,
Grenoble, France
- The Institute of
Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG,
United Kingdom
- Author to whom any correspondence should be
addressed
| | - Elke Bräuer-Krisch
- The European
Synchrotron Radiation Facility, 71 Avenue des Martyrs 38000,
Grenoble, France
| | - Uwe Oelfke
- The Institute of
Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG,
United Kingdom
| | - Jan J Wilkens
- Department of Radiation Oncology, Klinikum rechts
der Isar, Technical University of
Munich, Ismaninger Straße 22, 81675 Munich,
Germany
| | - Stefan Bartzsch
- The Institute of
Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG,
United Kingdom
- Department of Radiation Oncology, Klinikum rechts
der Isar, Technical University of
Munich, Ismaninger Straße 22, 81675 Munich,
Germany
| |
Collapse
|
9
|
Livingstone J, Stevenson AW, Häusermann D, Adam JF. Experimental optimisation of the X-ray energy in microbeam radiation therapy. Phys Med 2017; 45:156-161. [PMID: 29472081 DOI: 10.1016/j.ejmp.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 11/30/2022] Open
Abstract
Microbeam radiation therapy has demonstrated superior normal tissue sparing properties compared to broadbeam radiation fields. The ratio of the microbeam peak dose to the valley dose (PVDR), which is dependent on the X-ray energy/spectrum and geometry, should be maximised for an optimal therapeutic ratio. Simulation studies in the literature report the optimal energy for MRT based on the PVDR. However, most of these studies have considered different microbeam geometries to that at the Imaging and Medical Beamline (50 μm beam width with a spacing of 400 μm). We present the first fully experimental investigation of the energy dependence of PVDR and microbeam penumbra. Using monochromatic X-ray energies in the range 40-120 keV the PVDR was shown to increase with increasing energy up to 100 keV before plateauing. PVDRs measured for pink beams were consistently higher than those for monochromatic energies similar or equivalent to the average energy of the spectrum. The highest PVDR was found for a pink beam average energy of 124 keV. Conversely, the microbeam penumbra decreased with increasing energy before plateauing for energies above 90 keV. The effect of bone on the PVDR was investigated at energies 60, 95 and 120 keV. At depths greater than 20 mm beyond the bone/water interface there was almost no effect on the PVDR. In conclusion, the optimal energy range for MRT at IMBL is 90-120 keV, however when considering the IMBL flux at different energies, a spectrum with 95 keV weighted average energy was found to be the best compromise.
Collapse
Affiliation(s)
- Jayde Livingstone
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia.
| | - Andrew W Stevenson
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia
| | - Daniel Häusermann
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia
| | - Jean-François Adam
- Equipe d'accueil Rayonnement Synchrotron et Recherche Médicale, Université Grenoble-Alpes, Grenoble, France; Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| |
Collapse
|
10
|
Lin H, Jing J, Xu L, Mao X. Monte Carlo study of the influence of energy spectra, mesh size, high Z element on dose and PVDR based on 1-D and 3-D heterogeneous mouse head phantom for Microbeam Radiation Therapy. Phys Med 2017; 44:96-107. [DOI: 10.1016/j.ejmp.2017.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/01/2022] Open
|
11
|
Abstract
Microbeam radiation therapy (MRT) is a treatment approach in radiation therapy where the treatment field is spatially fractionated into arrays of a few tens of micrometre wide planar beams of unusually high peak doses separated by low dose regions of several hundred micrometre width. In preclinical studies, this treatment approach has proven to spare normal tissue more effectively than conventional radiation therapy, while being equally efficient in tumour control. So far dose calculations in MRT, a prerequisite for future clinical applications are based on Monte Carlo simulations. However, they are computationally expensive, since scoring volumes have to be small. In this article a kernel based dose calculation algorithm is presented that splits the calculation into photon and electron mediated energy transport, and performs the calculation of peak and valley doses in typical MRT treatment fields within a few minutes. Kernels are analytically calculated depending on the energy spectrum and material composition. In various homogeneous materials peak, valley doses and microbeam profiles are calculated and compared to Monte Carlo simulations. For a microbeam exposure of an anthropomorphic head phantom calculated dose values are compared to measurements and Monte Carlo calculations. Except for regions close to material interfaces calculated peak dose values match Monte Carlo results within 4% and valley dose values within 8% deviation. No significant differences are observed between profiles calculated by the kernel algorithm and Monte Carlo simulations. Measurements in the head phantom agree within 4% in the peak and within 10% in the valley region. The presented algorithm is attached to the treatment planning platform VIRTUOS. It was and is used for dose calculations in preclinical and pet-clinical trials at the biomedical beamline ID17 of the European synchrotron radiation facility in Grenoble, France.
Collapse
Affiliation(s)
- Charlotte Debus
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
12
|
Martínez-Rovira I, González W, Brons S, Prezado Y. Carbon and oxygen minibeam radiation therapy: An experimental dosimetric evaluation. Med Phys 2017; 44:4223-4229. [PMID: 28556241 DOI: 10.1002/mp.12383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 05/03/2017] [Accepted: 05/21/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To perform dosimetric characterization of a minibeam collimator in both carbon and oxygen ion beams to guide optimal setup geometry and irradiation for future radiobiological studies. METHODS Carbon and oxygen minibeams were generated using a prototype tungsten multislit collimator presenting line apertures 700 μm wide, which are spaced 3500 μm centre-to-centre distance apart. Several radiation beam spots generated the desired field size of 15 × 15 mm2 and production of a 50 mm long spread out Bragg peak (SOBP) centered at 80 mm depth in water. Dose evaluations were performed with two different detectors: a PTW microDiamond® single crystal diamond detector and radiochromic films (EBT3). Peak-to-valley dose ratio (PVDR) values, output factors (OF), penumbras, and full width at half maximum (FWHM) were measured. RESULTS Measured lateral dose profiles exhibited spatial fractionation of dose at depth in a water phantom in the expected form of peaks and valleys for both carbon and oxygen radiation fields. The diamond detector and radiochromic film provided measurements of PVDR in good agreement. PVDR values at shallow depth were about 60 and decreased to about 10 at 80 mm depth in water. OF in the center of the SOBP was about 0.4; this value is larger than the corresponding one in proton minibeam radiation therapy measured using a comparable collimator due to a reduced lateral scattering for carbon and oxygen minibeams. CONCLUSIONS Carbon and oxygen minibeams may be produced by a mechanical collimator. PVDR values and output factors measured in this first study of these minibeam radiation types indicate there is potential for their therapeutic use. Optimization of minibeam collimator design and the number and size of focal spots for irradiation are advocated to improve PDVR values and dose distributions for each specific applied use.
Collapse
Affiliation(s)
- Immaculada Martínez-Rovira
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage - 15 rue Georges Clemenceau, 91406, Orsay Cedex, France.,Ionizing Radiation Research Group (GRRI), Physics Department, Universitat Autònoma de Barcelona, Campus UAB, Avinguda de l'Eix Central, Edicifi C, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Wilfredo González
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage - 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Clinic, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage - 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| |
Collapse
|
13
|
Peucelle C, Nauraye C, Patriarca A, Hierso E, Fournier-Bidoz N, Martínez-Rovira I, Prezado Y. Proton minibeam radiation therapy: Experimental dosimetry evaluation. Med Phys 2016; 42:7108-13. [PMID: 26632064 DOI: 10.1118/1.4935868] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. METHODS Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. RESULTS A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. CONCLUSIONS pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth, the worst scenario), while a spatial fractionation of the dose is retained in the normal tissues in the beam path, potentially leading to a gain in tissue sparing. This is the first complete experimental implementation of this promising technique. Biological experiments are needed in order to confirm the clinical potential of pMBRT.
Collapse
Affiliation(s)
- C Peucelle
- IMNC-UMR 8165, CNRS; Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| | - C Nauraye
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - A Patriarca
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - E Hierso
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - N Fournier-Bidoz
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - I Martínez-Rovira
- IMNC-UMR 8165, CNRS; Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| | - Y Prezado
- IMNC-UMR 8165, CNRS; Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| |
Collapse
|
14
|
Martínez-Rovira I, Fois G, Prezado Y. Dosimetric evaluation of new approaches in GRID therapy using nonconventional radiation sources. Med Phys 2015; 42:685-93. [PMID: 25652482 DOI: 10.1118/1.4905042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Spatial fractionation of the dose has proven to be a promising approach to increase the tolerance of healthy tissue, which is the main limitation of radiotherapy. A good example of that is GRID therapy, which has been successfully used in the management of large tumors with low toxicity. The aim of this work is to explore new avenues using nonconventional sources: GRID therapy by using kilovoltage (synchrotron) x-rays, the use of very high-energy electrons, and proton GRID therapy. They share in common the use of the smallest possible grid sizes in order to exploit the dose-volume effects. METHODS Monte Carlo simulations (penelope/peneasy and geant4/GATE codes) were used as a method to study dose distributions resulting from irradiations in different configurations of the three proposed techniques. As figure of merit, percentage (peak and valley) depth dose curves, penumbras, and central peak-to-valley dose ratios (PVDR) were evaluated. As shown in previous biological experiments, high PVDR values are requested for healthy tissue sparing. A superior tumor control may benefit from a lower PVDR. RESULTS High PVDR values were obtained in the healthy tissue for the three cases studied. When low energy photons are used, the treatment of deep-seated tumors can still be performed with submillimetric grid sizes. Superior PVDR values were reached with the other two approaches in the first centimeters along the beam path. The use of protons has the advantage of delivering a uniform dose distribution in the tumor, while healthy tissue benefits from the spatial fractionation of the dose. In the three evaluated techniques, there is a net reduction in penumbra with respect to radiosurgery. CONCLUSIONS The high PVDR values in the healthy tissue and the use of small grid sizes in the three presented approaches might constitute a promising alternative to treat tumors with such spatially fractionated radiotherapy techniques. The dosimetric results presented here support the interest of performing radiobiology experiments in order to evaluate these new avenues.
Collapse
Affiliation(s)
- I Martínez-Rovira
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage-15 rue Georges Clemenceau, Orsay cedex 91406, France
| | - G Fois
- Dipartimento di Fisica, Università degli Studi di Cagliari, Strada provinciale Monserrato Sestu km 0.700, Monserrato, Cagliari 09042, Italy
| | - Y Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage-15 rue Georges Clemenceau, Orsay cedex 91406, France
| |
Collapse
|
15
|
Bräuer-Krisch E, Adam JF, Alagoz E, Bartzsch S, Crosbie J, DeWagter C, Dipuglia A, Donzelli M, Doran S, Fournier P, Kalef-Ezra J, Kock A, Lerch M, McErlean C, Oelfke U, Olko P, Petasecca M, Povoli M, Rosenfeld A, Siegbahn EA, Sporea D, Stugu B. Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT). Phys Med 2015; 31:568-83. [PMID: 26043881 DOI: 10.1016/j.ejmp.2015.04.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
Stereotactic Synchrotron Radiotherapy (SSRT) and Microbeam Radiation Therapy (MRT) are both novel approaches to treat brain tumor and potentially other tumors using synchrotron radiation. Although the techniques differ by their principles, SSRT and MRT share certain common aspects with the possibility of combining their advantages in the future. For MRT, the technique uses highly collimated, quasi-parallel arrays of X-ray microbeams between 50 and 600 keV. Important features of highly brilliant Synchrotron sources are a very small beam divergence and an extremely high dose rate. The minimal beam divergence allows the insertion of so called Multi Slit Collimators (MSC) to produce spatially fractionated beams of typically ∼25-75 micron-wide microplanar beams separated by wider (100-400 microns center-to-center(ctc)) spaces with a very sharp penumbra. Peak entrance doses of several hundreds of Gy are extremely well tolerated by normal tissues and at the same time provide a higher therapeutic index for various tumor models in rodents. The hypothesis of a selective radio-vulnerability of the tumor vasculature versus normal blood vessels by MRT was recently more solidified. SSRT (Synchrotron Stereotactic Radiotherapy) is based on a local drug uptake of high-Z elements in tumors followed by stereotactic irradiation with 80 keV photons to enhance the dose deposition only within the tumor. With SSRT already in its clinical trial stage at the ESRF, most medical physics problems are already solved and the implemented solutions are briefly described, while the medical physics aspects in MRT will be discussed in more detail in this paper.
Collapse
Affiliation(s)
- Elke Bräuer-Krisch
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France.
| | | | - Enver Alagoz
- University of Bergen Department of Physics and Technology, PB 7803 5020, Norway
| | - Stefan Bartzsch
- The Institute of Cancer Research, 15 Cotswold Rd, Sutton SM2 5NG, United Kingdom
| | - Jeff Crosbie
- RMIT University, Melbourne, VIC, 3001, Australia
| | | | - Andrew Dipuglia
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - Mattia Donzelli
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France
| | - Simon Doran
- CRUK Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey, UK
| | - Pauline Fournier
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France; Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - John Kalef-Ezra
- Medical Physics Laboratory, University of Ioannina, 451.10, Ioannina, Greece
| | - Angela Kock
- Sintef Minalab, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - Ciara McErlean
- CRUK Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey, UK
| | - Uwe Oelfke
- The Institute of Cancer Research, 15 Cotswold Rd, Sutton SM2 5NG, United Kingdom
| | - Pawel Olko
- Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342, Krawkow, Poland
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - Marco Povoli
- University of Oslo, Department of Physics, 0316, Oslo, Norway
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - Erik A Siegbahn
- Department of Oncolgy-Pathology, Karolinska Institutet, S-177176, Stockholm, Sweden
| | - Dan Sporea
- National Institute for Laser, Plasma and Radiation Physics, Magurele, RO-077125, Romania
| | - Bjarne Stugu
- University of Bergen, Department of Physics and Technology, PB 7803, 5020, Bergen, Norway
| |
Collapse
|
16
|
Fontanella AN, Boss MK, Hadsell M, Zhang J, Schroeder T, Berman KG, Dewhirst MW, Chang S, Palmer GM. Effects of high-dose microbeam irradiation on tumor microvascular function and angiogenesis. Radiat Res 2015; 183:147-58. [PMID: 25574586 DOI: 10.1667/rr13712.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbeam radiation therapy (MRT) is a form of cancer treatment in which a single large dose of radiation is spatially fractionated in-line or grid-like patterns. Preclinical studies have demonstrated that MRT is capable of eliciting high levels of tumor response while sparing normal tissue that is exposed to the same radiation field. Since a large fraction of the MRT-treated tumor is in the dose valley region that is not directly irradiated, tumor response may be driven by radiation bystander effects, which in turn elicit a microvascular response. Differential alterations in hemodynamics between the tumor and normal tissue may explain the therapeutic advantages of MRT. Direct observation of these dynamic responses presents a challenge for conventional ex vivo analysis. Furthermore, knowledge gleaned from in vitro studies of radiation bystander response has not been widely incorporated into in vivo models of tumor radiotherapy, and the biological contribution of the bystander effect within the tumor microenvironment is unknown. In this study, we employed noninvasive, serial observations of the tumor microenvironment to address the question of how tumor vasculature and HIF-1 expression are affected by microbeam radiotherapy. Tumors (approximately 4 mm in diameter) grown in a dorsal window chamber were irradiated in a single fraction using either a single, microplanar beam (300 micron wide swath) or a wide-field setup (whole-window chamber) to a total dose of 50 Gy. The tumors were optically observed daily for seven days postirradiation. Microvascular changes in the tumor and surrounding normal tissue differed greatly between the wide-field and microbeam treatments. We present evidence that these changes may be due to dissimilar spatial and temporal patterns of HIF-1 expression induced through radiation bystander effects.
Collapse
Affiliation(s)
- Andrew N Fontanella
- a Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Martínez-Rovira I, Prezado Y. Minibeam radiation therapy for the management of osteosarcomas: A Monte Carlo study. Med Phys 2014; 41:061706. [DOI: 10.1118/1.4873693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
18
|
Double-strand breaks on F98 glioma rat cells induced by minibeam and broad-beam synchrotron radiation therapy. Clin Transl Oncol 2013; 16:696-701. [PMID: 24271740 DOI: 10.1007/s12094-013-1134-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/03/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE To assess the DNA damage induced by MBRT and BB radiations on glioma cells. METHODS The analysis of fluorescent intensity emitted per nucleus was plotted versus DNA content 2 and 17 h after irradiations. At around cell-doubling time (17 h) after exposures, the remaining DNA radiation damage could be correlated with cellular death. RESULTS A higher γH2AX IF intensity per cell could be detected 2 and 17 h after MBRT when compared with BB. 17 h after MBRT, misrepaired damaged cells remained arrested in both G1 and G2 phases. CONCLUSIONS A pronounced G2 phase arrest was detected at 17 h after MBRT and BB. However, only after MBRT, a dose-dependent increasing number of damaged cells appeared arrested also in the G1 phase, and a higher amount of cells more prone to undergo apoptosis were detected. The threshold dose required to enhance the effectiveness of both synchrotron radiation techniques was 12 Gy.
Collapse
|
19
|
Abstract
PURPOSE This Monte Carlo simulation work aims at studying a new radiotherapy approach called proton-minibeam radiation therapy (pMBRT). The main objective of this proof of concept was the evaluation of the possible gain in tissue sparing, thanks to the spatial fractionation of the dose, which could be used to deposit higher and potentially curative doses in clinical cases where tissue tolerances are a limit for conventional methods. METHODS Monte Carlo simulations (GATE v.6) have been used as a method to calculate the ratio of the peak-to-valley doses (PVDR) for arrays of proton minibeams of 0.7 mm width and several center-to-center distances, at different depths in a water phantom. The beam penumbras were also evaluated as an important parameter for tissue sparing, for example, in the treatment of non-cancer diseases like epilepsy. Two proton energies were considered in this study: a clinically relevant energy (105 MeV) and a very high energy (1 GeV), to benefit from a reduced lateral scattering. For the latter case, an interlaced geometry was also evaluated. RESULTS Higher or similar PVDR than the ones obtained in x-rays minibeam radiation therapy were achieved in several pMBRT configurations. In addition, for the two energies studied, the beam penumbras are smaller than in the case of Gamma Knife radiosurgery. CONCLUSIONS The high PVDR obtained for some configurations and the small penumbras in comparison with existing radiosurgery techniques, suggest a potential gain in healthy tissue sparing in this new technique. Biological studies are warranted to assess the effects of pMBRT on both normal and tumoral tissues.
Collapse
Affiliation(s)
- Y Prezado
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, Orsay, France.
| | | |
Collapse
|
20
|
Martínez-Rovira I, Sempau J, Prezado Y. Monte Carlo-based dose calculation engine for minibeam radiation therapy. Phys Med 2013; 30:57-62. [PMID: 23597423 DOI: 10.1016/j.ejmp.2013.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022] Open
Abstract
Minibeam radiation therapy (MBRT) is an innovative radiotherapy approach based on the well-established tissue sparing effect of arrays of quasi-parallel micrometre-sized beams. In order to guide the preclinical trials in progress at the European Synchrotron Radiation Facility (ESRF), a Monte Carlo-based dose calculation engine has been developed and successfully benchmarked with experimental data in anthropomorphic phantoms. Additionally, a realistic example of treatment plan is presented. Despite the micron scale of the voxels used to tally dose distributions in MBRT, the combination of several efficiency optimisation methods allowed to achieve acceptable computation times for clinical settings (approximately 2 h). The calculation engine can be easily adapted with little or no programming effort to other synchrotron sources or for dose calculations in presence of contrast agents.
Collapse
Affiliation(s)
- I Martínez-Rovira
- Service Hospitalier Frédéric Joliot (DSV/I2BM/SHFJ), Commissariat à l'Énergie Atomique et aux énergies alternatives (CEA), 4, Place du Général Leclerc, F-91401 Orsay, France; Institut de Tècniques Energètiques (INTE), Universitat Politècnica de Catalunya (UPC), Diagonal 647, E-08028 Barcelona, Spain; ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), B.P. 220, 6 rue Jules Horowitz, F-38043 Grenoble Cedex, France.
| | - J Sempau
- Institut de Tècniques Energètiques (INTE), Universitat Politècnica de Catalunya (UPC), Diagonal 647, E-08028 Barcelona, Spain; Networking Research Centre, CIBER-BBN, Barcelona, Spain
| | - Y Prezado
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie, Centre National de la Recherche Scientifique (CNRS), 15 rue Georges Clemenceau, Bât. 440F-91406 Orsay Cedex, France
| |
Collapse
|
21
|
Synchrotron-generated microbeam sensorimotor cortex transections induce seizure control without disruption of neurological functions. PLoS One 2013; 8:e53549. [PMID: 23341950 PMCID: PMC3544911 DOI: 10.1371/journal.pone.0053549] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
Synchrotron-generated X-ray microplanar beams (microbeams) are characterized by the ability to deliver extremely high doses of radiation to spatially restricted volumes of tissue. Minimal dose spreading outside the beam path provides an exceptional degree of protection from radio-induced damage to the neurons and glia adjacent to the microscopic slices of tissue irradiated. The preservation of cortical architecture following high-dose microbeam irradiation and the ability to induce non-invasively the equivalent of a surgical cut over the cortex is of great interest for the development of novel experimental models in neurobiology and new treatment avenues for a variety of brain disorders. Microbeams (size 100 µm/600 µm, center-to-center distance of 400 µm/1200 µm, peak entrance doses of 360-240 Gy/150-100 Gy) delivered to the sensorimotor cortex of six 2-month-old naïve rats generated histologically evident cortical transections, without modifying motor behavior and weight gain up to 7 months. Microbeam transections of the sensorimotor cortex dramatically reduced convulsive seizure duration in a further group of 12 rats receiving local infusion of kainic acid. No subsequent neurological deficit was associated with the treatment. These data provide a novel tool to study the functions of the cortex and pave the way for the development of new therapeutic strategies for epilepsy and other neurological diseases.
Collapse
|
22
|
Anderson D, Siegbahn EA, Fallone BG, Serduc R, Warkentin B. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations. Phys Med Biol 2012; 57:3223-48. [PMID: 22546732 DOI: 10.1088/0031-9155/57/10/3223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm² microbeam array in each phantom, as well as a 16 × 16 mm² array in the 8 cm cat head, and a 32 × 32 mm² array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study illustrate that different dose-volume metrics exhibit different functional dependences on MRT geometry parameters, and suggest that reliance on the PVDR as a predictor of therapeutic outcome may be insufficient.
Collapse
Affiliation(s)
- Danielle Anderson
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada.
| | | | | | | | | |
Collapse
|
23
|
Annabell N, Yagi N, Umetani K, Wong C, Geso M. Evaluating the peak-to-valley dose ratio of synchrotron microbeams using PRESAGE fluorescence. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:332-339. [PMID: 22514166 PMCID: PMC3621279 DOI: 10.1107/s0909049512005237] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 02/06/2012] [Indexed: 05/31/2023]
Abstract
Synchrotron-generated microbeam radiotherapy holds great promise for future treatment, but the high dose gradients present conventional dosimetry with a challenge. Measuring the important peak-to-valley dose ratio (PVDR) of a microbeam-collimated synchrotron source requires both a dosimeter and an analysis method capable of exceptional spatial resolution. The PVDR is of great interest since it is the limiting factor for potential application of the microbeam radiation therapy technique clinically for its tissue-sparing properties (i.e. the valley dose should be below the tolerance of normal tissue). In this work a new method of measuring the dose response of PRESAGE dosimeters is introduced using the fluorescence from a 638 nm laser on a confocal laser-scanning microscope. This fluorescent microscopy method produces dosimetry data at a pixel size as low as 78 nm, giving a much better spatial resolution than optical computed tomography, which is normally used for scanning PRESAGE dosimeters. Using this technique the PVDR of the BL28B2 microbeam at the SPring-8 synchrotron in Japan is estimated to be approximately 52:1 at a depth of 2.5 mm. The PVDR was also estimated with EBT2 GAFchromic films as 30.5:1 at the surface in order to compare the PRESAGE fluorescent results with a more established dosimetry system. This estimation is in good agreement with previously measured ratios using other dosimeters and Monte Carlo simulations. This means that it is possible to use PRESAGE dosimeters with confocal microscopy for the determination of PVDR.
Collapse
Affiliation(s)
| | - N. Yagi
- JASRI/SPring-8, Hyogo 679-5198, Japan
| | | | - C. Wong
- William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Australia
| | - M. Geso
- School of Medical Science, RMIT University, Plenty Road, Melbourne, Victoria 3083, Australia
| |
Collapse
|
24
|
Martínez-Rovira I, Sempau J, Prezado Y. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy. Med Phys 2012; 39:2829-38. [DOI: 10.1118/1.4705351] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Prezado Y, Martínez-Rovira I, Sánchez M. Scatter factors assessment in microbeam radiation therapy. Med Phys 2012; 39:1234-8. [DOI: 10.1118/1.3681274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Fauquette W, Amourette C, Dehouck MP, Diserbo M. Radiation-induced blood–brain barrier damages: An in vitro study. Brain Res 2012; 1433:114-26. [DOI: 10.1016/j.brainres.2011.11.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 10/13/2011] [Accepted: 11/08/2011] [Indexed: 11/29/2022]
|
27
|
Martínez-Rovira I, Sempau J, Prezado Y. Development and commissioning of a Monte Carlo photon beam model for the forthcoming clinical trials in microbeam radiation therapy. Med Phys 2011; 39:119-31. [DOI: 10.1118/1.3665768] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
Prezado Y, Martínez-Rovira I, Thengumpallil S, Deman P. Dosimetry protocol for the preclinical trials in white-beam minibeam radiation therapy. Med Phys 2011; 38:5012-5020. [DOI: 10.1118/1.3608908] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
29
|
Deman P, Vautrin M, Stupar V, Barbier EL, Elleaume H, Esteve F, Adam JF. Monochromatic minibeam radiotherapy: theoretical and experimental dosimetry for preclinical treatment plans. Phys Med Biol 2011; 56:4465-80. [DOI: 10.1088/0031-9155/56/14/015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Martínez-Rovira I, Prezado Y. Monte Carlo dose enhancement studies in microbeam radiation therapy. Med Phys 2011; 38:4430-9. [DOI: 10.1118/1.3603189] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
31
|
Gokeri G, Kocar C, Tombakoglu M. Monte Carlo simulation of microbeam radiation therapy with an interlaced irradiation geometry and an Au contrast agent in a realistic head phantom. Phys Med Biol 2010; 55:7469-87. [DOI: 10.1088/0031-9155/55/24/006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|