1
|
Han M, Song W, Lei K, Cai B, Qin D. Ultrasonic Nakagami imaging for automatically positioning and identifying the treated lesion induced by histotripsy. ULTRASONICS SONOCHEMISTRY 2024; 109:107002. [PMID: 39084943 PMCID: PMC11384263 DOI: 10.1016/j.ultsonch.2024.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Histotripsy has been proposed as a non-invasive surgical procedure for clinical use that liquefies the tissue into acellular debris by utilizing the mechanical mechanism of bubbles. Accurate and reliable imaging guidance is essential for successful clinical histotripsy implementation. Nakagami imaging is a promising method to evaluate the microstructural change induced by high intensity focused ultrasound. However, practically, it is difficult for the Nakagami imaging to distinguish the treated lesion induced by histotripsy from the surrounding normal biological tissues. In this study, we introduce the use of noise-assisted correlation algorithm (NCA) in Nakagami images as a solution to suppress the background normal tissue and identify the treated lesion induced by histotripsy. Experiments are conducted on fresh porcine liver ex vivo by cavitation-cloud histotripsy. Results show that the contrast-to-noise ratio between the treated lesion and surrounding tissue corresponding to the Nakagami image after NCA and original Nakagami image is 3.434 and 0.505, respectively. The optimal artificial noise level is 1-fold of the background normal tissue amplitude, and the corresponding optimal threshold of correlation coefficient should be between 0.6 and 0.8 in the application of NCA. Therefore, the use of NCA in Nakagami image can suppress the background normal tissues without affecting the information of treated lesion for an appropriate artificial noise level and threshold used in the NCA. Moreover, the Nakagami images after the application of the NCA can also be used for automatically distinguishing and measuring the tissue fractionation accurately using binarization. The proposed Nakagami images overlaid on the B-mode images can provide a promising method for positioning and visualizing the treated lesion to achieve precise histotripsy treatment.
Collapse
Affiliation(s)
- Meng Han
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, People's Republic of China.
| | - Weidong Song
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Bianyun Cai
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Dui Qin
- Department of Biomedical Engineering, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
2
|
Cernat C, Das S, Hendriks GAGM, Noort FVD, Manzini C, van der Vaart CH, de Korte CL. Tissue Characterization of Puborectalis Muscle From 3-D Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:527-538. [PMID: 36376156 DOI: 10.1016/j.ultrasmedbio.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Pelvic floor (PF) muscles have the role of preventing pelvic organ descent. The puborectalis muscle (PRM), which is one of the female PF muscles, can be damaged during child delivery. This damage can potentially cause irreversible muscle trauma and even lead to an avulsion, which is disconnection of the muscle from its insertion point, the pubic bone. Ultrasound imaging allows diagnosis of such trauma based on comparison of geometric features of a damaged muscle with the geometric features of a healthy muscle. Although avulsion, which is considered severe damage, can be diagnosed, microdamage within the muscle itself leading to structural changes cannot be diagnosed by visual inspection through imaging only. Therefore, we developed a quantitative ultrasound tissue characterization method to obtain information on the state of the tissue of the PRM and the presence of microdamage in avulsed PRMs. The muscle was segmented as the region of interest (ROI) and further subdivided into six regions of interest (sub-ROIs). Mean echogenicity, entropy and shape parameter of the statistical distribution of gray values were analyzed on two of these sub-ROIs nearest to the bone. The regions nearest to the bones are also the most likely regions to exhibit damage in case of disconnection or avulsion. This analysis was performed for both the muscle at rest and the muscle in contraction. We found that, for PRMs with unilateral avulsion compared with undamaged PRMs, the mean echogenicity (p = 0.02) and shape parameter (p < 0.01) were higher, whereas the entropy was lower (p < 0.01). This method might be applicable to quantification of PRM damage within the muscle.
Collapse
Affiliation(s)
- Catalin Cernat
- Medical Ultrasound Imaging Center (MUSIC), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Shreya Das
- Medical Ultrasound Imaging Center (MUSIC), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs A G M Hendriks
- Medical Ultrasound Imaging Center (MUSIC), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frieda van den Noort
- Robotics and Mechatronics, Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - Claudia Manzini
- Department of Reproductive Medicine and Gynecology, University Medical Center, Utrecht, The Netherlands
| | - C Huub van der Vaart
- Department of Reproductive Medicine and Gynecology, University Medical Center, Utrecht, The Netherlands
| | - Chris L de Korte
- Medical Ultrasound Imaging Center (MUSIC), Radboud University Medical Center, Nijmegen, The Netherlands; Physics of Fluids, Technical Medical Centre, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
3
|
Destrempes F, Cloutier G. Review of Envelope Statistics Models for Quantitative Ultrasound Imaging and Tissue Characterization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1403:107-152. [PMID: 37495917 DOI: 10.1007/978-3-031-21987-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The homodyned K-distribution and the K-distribution, viewed as a special case, as well as the Rayleigh and the Rice distributions, viewed as limit cases, are discussed in the context of quantitative ultrasound (QUS) imaging. The Nakagami distribution is presented as an approximation of the homodyned K-distribution. The main assumptions made are (1) the absence of log-compression or application of nonlinear filtering on the echo envelope of the radiofrequency signal and (2) the randomness and independence of the diffuse scatterers. We explain why other available models are less amenable to a physical interpretation of their parameters. We also present the main methods for the estimation of the statistical parameters of these distributions. We explain why we advocate the methods based on the X-statistics for the Rice and the Nakagami distributions and the K-distribution. The limitations of the proposed models are presented. Several new results are included in the discussion sections, with proofs in the appendix.
Collapse
Affiliation(s)
- François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada.
- The Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, QC, Canada.
- The Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada.
| |
Collapse
|
4
|
Alpar O, Krejcar O, Dolezal R. Distribution-based imaging for multiple sclerosis lesion segmentation using specialized fuzzy 2-means powered by Nakagami transmutations. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Alpar O. Nakagami imaging with related distributions for advanced thermogram pseudocolorization. J Therm Biol 2020; 93:102704. [PMID: 33077125 DOI: 10.1016/j.jtherbio.2020.102704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 11/25/2022]
Abstract
Pseudocoloring algorithms embedded in the software of thermal cameras gradually colorize original intensity thermograms generated by detecting temperatures and contrast. Maximum and minimum based algorithms, however, executed by thresholding, applied to intensity thermograms for revealing and coloring the outliers instead. Although the common pseudocoloring protocols employed for general purposes may provide crucial information on the superficial contrast between radiation emitted by various sources; their common kernel is not sufficient for detecting and differentiating high radiated regions from surrounding areas, which is mandatory for recognition of abnormalities. Therefore, we propose novel imaging methodology based on Nakagami and related distributions, including gamma, Rayleigh, Weibull, chi-square and exponential, for enhancing thermal images and also for creating adequate discrimination. We initially define the boundaries of tumor and surrounding area in a synthetically generated breast thermogram already diagnosed as retroareolar tumor. Using Nakagami and transformations supported by mathematical foundations, we conducted several experiments to find the discrimination factor of the pseudocoloring techniques by calculating difference of average contrast between the tumor and the surrounding area. The performance is greatly encouraging that we achieved considerably better discrimination factor, designated for this study, up to 106.80 compared to the results of existing built-in pseudocolorization methods computed as 11.56.
Collapse
Affiliation(s)
- Orcan Alpar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, Hradec, Kralove, 50003, Czech Republic.
| |
Collapse
|
6
|
Zhou Z, Wu S, Lin MY, Fang J, Liu HL, Tsui PH. Three-dimensional Visualization of Ultrasound Backscatter Statistics by Window-modulated Compounding Nakagami Imaging. ULTRASONIC IMAGING 2018; 40:171-189. [PMID: 29506441 DOI: 10.1177/0161734618756101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, the window-modulated compounding (WMC) technique was integrated into three-dimensional (3D) ultrasound Nakagami imaging for improving the spatial visualization of backscatter statistics. A 3D WMC Nakagami image was produced by summing and averaging a number of 3D Nakagami images (number of frames denoted as N) formed using sliding cubes with varying side lengths ranging from 1 to N times the transducer pulse. To evaluate the performance of the proposed 3D WMC Nakagami imaging method, agar phantoms with scatterer concentrations ranging from 2 to 64 scatterers/mm3 were made, and six stages of fatty liver (zero, one, two, four, six, and eight weeks) were induced in rats by methionine-choline-deficient diets (three rats for each stage, total n = 18). A mechanical scanning system with a 5-MHz focused single-element transducer was used for ultrasound radiofrequency data acquisition. The experimental results showed that 3D WMC Nakagami imaging was able to characterize different scatterer concentrations. Backscatter statistics were visualized with various numbers of frames; N = 5 reduced the estimation error of 3D WMC Nakagami imaging in visualizing the backscatter statistics. Compared with conventional 3D Nakagami imaging, 3D WMC Nakagami imaging improved the image smoothness without significant image resolution degradation, and it can thus be used for describing different stages of fatty liver in rats.
Collapse
Affiliation(s)
- Zhuhuang Zhou
- 1 College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
- 2 Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Shuicai Wu
- 1 College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Man-Yen Lin
- 3 Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Jui Fang
- 4 PhD Program in Biomedical Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Li Liu
- 3 Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsiang Tsui
- 5 Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- 6 Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- 7 Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
7
|
Statistical Characterization of the Medical Ultrasound Echo Signals. Sci Rep 2016; 6:39379. [PMID: 27991564 PMCID: PMC5171708 DOI: 10.1038/srep39379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/23/2016] [Indexed: 11/09/2022] Open
Abstract
Medical ultrasound echo signals provide the basic information for obtaining the ultrasonic image in medical ultrasound technology. The statistics of the ultrasound echo signals reveals the systematic structure of the medical ultrasonic image via analyzing the corresponding statistical distributions. A novel statistical distribution, the ascending order K distribution, was proposed here to model the medical ultrasound echo signals. The ascending order K distribution was developed in light of the statistical analysis of the sequential waveforms in the echo signals. Comparison with the previous statistical distributions was made to verify the superiority of the ascending order K distribution. Further discussion showed the determination of the statistical principles for the ultrasound signals can enhance our understanding of the statistical principles of the ultrasound imaging, and thus, facilitate the optimization of the ultrasound image and the tissue identification in the ultrasound diagnosis.
Collapse
|
8
|
Role of Excessive Autophagy Induced by Mechanical Overload in Vein Graft Neointima Formation: Prediction and Prevention. Sci Rep 2016; 6:22147. [PMID: 26915560 PMCID: PMC4768319 DOI: 10.1038/srep22147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/08/2016] [Indexed: 12/26/2022] Open
Abstract
Little is known regarding the interplays between the mechanical and molecular bases for vein graft restenosis. We elucidated the stenosis initiation using a high-frequency ultrasonic (HFU) echogenicity platform and estimated the endothelium yield stress from von-Mises stress computation to predict the damage locations in living rats over time. The venous-arterial transition induced the molecular cascades for autophagy and apoptosis in venous endothelial cells (ECs) to cause neointimal hyperplasia, which correlated with the high echogenicity in HFU images and the large mechanical stress that exceeded the yield strength. The ex vivo perfusion of arterial laminar shear stress to isolated veins further confirmed the correlation. EC damage can be rescued by inhibiting autophagy formation using 3-methyladenine (3-MA). Pretreatment of veins with 3-MA prior to grafting reduced the pathological increases of echogenicity and neointima formation in rats. Therefore, this platform provides non-invasive temporal spatial measurement and prediction of restenosis after venous-arterial transition as well as monitoring the progression of the treatments.
Collapse
|
9
|
Yu X, Guo Y, Huang SM, Li ML, Lee WN. Beamforming effects on generalized Nakagami imaging. Phys Med Biol 2015; 60:7513-31. [DOI: 10.1088/0031-9155/60/19/7513] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Tsui PH, Wan YL, Tai DI, Shu YC. Effects of Estimators on Ultrasound Nakagami Imaging in Visualizing the Change in the Backscattered Statistics from a Rayleigh Distribution to a Pre-Rayleigh Distribution. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2240-51. [PMID: 25959057 DOI: 10.1016/j.ultrasmedbio.2015.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 02/07/2023]
Abstract
Ultrasound Nakagami imaging has recently attracted interest as an imaging technique for analyzing envelope statistics. Because the presence of structures has a strong effect on estimation of the Nakagami parameter, previous studies have indicated that Nakagami imaging should be used specifically for characterization of soft tissues with fewer structures, such as liver tissues. Typically, changes in the properties of the liver parenchyma cause the backscattered statistics to transform from a Rayleigh distribution to a pre-Rayleigh distribution, and this transformation can be visualized using a Nakagami imaging technique. However, different estimators result in different estimated values; thus, the performance of a Nakagami image may depend on the type of estimator used. This study explored the effects of various estimators on ultrasound Nakagami imaging to describe the backscattered statistics as they change from a Rayleigh distribution to a pre-Rayleigh distribution. Simulations and clinical measurements involving patients with liver fibrosis (n = 85) yielded image data that were used to construct B-mode and conventional Nakagami images based on the moment estimator (denoted as mINV images) and maximum-likelihood estimator (denoted as mML images). In addition, novel window-modulated compounding Nakagami images based on the moment estimator (denoted as mWMC images) were also obtained. The means and standard deviations of the Nakagami parameters were examined as a function of the backscattered statistics. The experimental results indicate that the mINV, mML and mWMC images enabled quantitative visualization of the change in backscattered statistics from a Rayleigh distribution to a pre-Rayleigh distribution. Importantly, the mWMC image is superior to both mINV and mML images because it simultaneously realizes sensitive detection of the backscattered statistics and a reduction of estimation variance for image smoothness improvement. We therefore recommend using mWMC image as a novel strategy in Nakagami imaging technique for liver tissue characterization.
Collapse
Affiliation(s)
- Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Yung-Liang Wan
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Dar-In Tai
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chen Shu
- Department of Mathematics, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Dahdouh S, Angelini ED, Grangé G, Bloch I. Segmentation of embryonic and fetal 3D ultrasound images based on pixel intensity distributions and shape priors. Med Image Anal 2015; 24:255-268. [DOI: 10.1016/j.media.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 12/26/2022]
|
12
|
Abstract
In this review we present the current status of ultrasound thermometry and ablation monitoring, with emphasis on the diverse approaches published in the literature and with an eye on which methods are closest to clinical reality. It is hoped that this review will serve as a guide to the expansion of sonographic methods for treatment monitoring and thermometry since the last brief review in 2007.
Collapse
Affiliation(s)
- Matthew A. Lewis
- Department of Radiology, UT Southwestern Medical Center at Dallas
| | - Robert M. Staruch
- Department of Radiology, UT Southwestern Medical Center at Dallas
- Ultrasound Imaging & Interventions, Philips Research North America
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center at Dallas
- Advanced Imaging Research Center, UT Southwestern Medical Center at Dallas
| |
Collapse
|
13
|
Ho MC, Tsui PH, Lee YH, Chen YS, Chen CN, Lin JJ, Chang CC. Early detection of liver fibrosis in rats using 3-D ultrasound Nakagami imaging: a feasibility evaluation. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2272-2284. [PMID: 25023115 DOI: 10.1016/j.ultrasmedbio.2014.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 04/21/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
We investigated the feasibility of using 3-D ultrasound Nakagami imaging to detect the early stages of liver fibrosis in rats. Fibrosis was induced in livers of rats (n = 60) by intraperitoneal injection of 0.5% dimethylnitrosamine (DMN). Group 1 was the control group, and rats in groups 2-6 received DMN injections for 1-5 weeks, respectively. Each rat was sacrificed to perform 3-D ultrasound scanning of the liver in vitro using a single-element transducer of 6.5 MHz. The 3-D raw data acquired at a sampling rate of 50 MHz were used to construct 3-D Nakagami images. The liver specimen was further used for histologic analysis with hematoxylin and eosin and Masson staining to score the degree of liver fibrosis. The results indicate that the Metavir scores of the hematoxylin and eosin-stained sections in Groups 1-4 were 0 (defined as early liver fibrosis in this study), and those in groups 5 and 6 ranged from 1 to 2 and 2 to 3, respectively. To quantify the degree of early liver fibrosis, the histologic sections with Masson stain were analyzed to calculate the number of fiber-related blue pixels. The number of blue pixels increased from (2.36 ± 0.79) × 10(4) (group 1) to (7.68 ± 2.62) × 10(4) (group 4) after DMN injections for 3 weeks, indicating that early stages of liver fibrosis were successfully induced in rats. The Nakagami parameter increased from 0.36 ± 0.02 (group 1) to 0.55 ± 0.03 (group 4), with increasing numbers of blue pixels in the Masson-stained sections (p-value < 0.05, t-test). We concluded that 3-D Nakagami imaging has potential in the early detection of liver fibrosis in rats and may serve as an image-based pathologic model to visually track fibrosis formation and growth.
Collapse
Affiliation(s)
- Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Yu-Hsin Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Sheng Chen
- Department of Electrical Engineering, Yuan Ze University, Chung Li, Taiwan
| | - Chiung-Nien Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jen-Jen Lin
- Department of Applied Statistics and Information Science, Ming-Chuan University, Taoyuan, Taiwan.
| | - Chien-Cheng Chang
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Zhang S, Li C, Zhou F, Wan M, Wang S. Enhanced lesion-to-bubble ratio on ultrasonic Nakagami imaging for monitoring of high-intensity focused ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2014; 33:959-970. [PMID: 24866603 DOI: 10.7863/ultra.33.6.959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVES This work explored the feasibility of using ultrasonic Nakagami imaging to enhance the contrast between thermal lesions and bubbles induced by high-intensity focused ultrasound (US) in a transparent tissue-mimicking phantom at different acoustic power levels. METHODS The term "lesion-to-bubble ratio" was proposed and defined as the ratio of the scattered power from the thermal lesion to the scattered power from the bubbles calculated in the various monitoring of images for high-intensity focused US. Two-dimensional radiofrequency data backscattered from the exposed region were captured by a modified diagnostic US scanner to estimate the Nakagami statistical parameter, m, and reconstruct the ultrasonic B-mode images and Nakagami parameter images. The dynamic changes in the lesion-to-bubble ratio over the US exposure procedure were calculated simultaneously and compared among video photos, B-mode images, and Nakagami images for monitoring of high-intensity focused US. RESULTS After a small thermal lesion was induced by high-intensity focused US in the phantom, the lesion-to-bubble ratio values corresponding to the video photo, B-mode image, and Nakagami image were 5.3, 1, and 9.8 dB, respectively. When a large thermal lesion appeared in the phantom, the ratio values increased to 7.2, 3, and 14 dB. During US exposure, the ratio values calculated for the video photo, B-mode image, and Nakagami image began to increase gradually and rose to peak values of 8.3, 2.9, and 14.8 dB at the end of the US exposure. CONCLUSIONS This preliminary study on a tissue-mimicking phantom suggests that Nakagami imaging may have a potential use in enhancing the lesion-to-bubble ratio for monitoring high-intensity focused US. Further studies in vivo and in vitro will be needed to evaluate the potential applications for high-intensity focused US.
Collapse
Affiliation(s)
- Siyuan Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chong Li
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fanyu Zhou
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Supin Wang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Larrue A, Noble JA. Modeling of errors in Nakagami imaging: illustration on breast mass characterization. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:917-930. [PMID: 24462151 DOI: 10.1016/j.ultrasmedbio.2013.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 07/31/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
Nakagami imaging is an attractive tissue characterization method, as the parameter estimated at each location is related to properties of the tissues. The application to clinical ultrasound images is problematic, as the estimation of the parameters is disturbed by the presence of complex structures. We propose to consider separately the different aspects potentially affecting the value of the Nakagami parameters and quantify their effects on the estimation. This framework is applied to the classification of breast masses. Quantitative parameters are computed on two groups of ultrasound images of benign and malignant tumors. A statistical analysis of the result indicated that the previously observed difference between average values of the Nakagami parameters is explained mostly by estimation errors. In the future, new methods for reliable computation of Nakagami parameters need to be developed, and factors of error should be considered in studies using Nakagami parameters.
Collapse
Affiliation(s)
- Aymeric Larrue
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | - J Alison Noble
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Yang X, Rossi P, Shelton J, Bruner D, Tridandapani S, Liu T. 3D Ultrasound Nakagami Imaging for Radiation-Induced Vaginal Fibrosis. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2014; 9040. [PMID: 31456602 DOI: 10.1117/12.2043862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Peter Rossi
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Joseph Shelton
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Deborah Bruner
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Srini Tridandapani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| |
Collapse
|
17
|
Gu X, Wei M, Zong Y, Jiang H, Wan M. Flow quantification with nakagami parametric imaging for suppressing contrast microbubbles attenuation. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:660-669. [PMID: 23384469 DOI: 10.1016/j.ultrasmedbio.2012.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 10/15/2012] [Accepted: 10/28/2012] [Indexed: 06/01/2023]
Abstract
Flow quantification with contrast-enhanced ultrasound is still limited by the effects of contrast microbubble attenuation. Nakagami parametric imaging (NPI) based on the m parameter, which is related to the statistical property of echo envelope, is implemented to suppress contrast attenuation. Flow velocity (FV) and volumetric flow rate (VFR) are estimated through the least square fitting of burst depletion kinetic model to time m parameter curves (TMCs). A non-recirculating flow phantom is imaged as contrast microbubbles are infused at 10, 15, 20, 25, and 30 mL/min. Contrast microbubbles with two different concentrations are used to generate variations of contrast microbubble attenuation. The results suggest that 4 × 4 mm(2) is the optimal size of a sliding window of NPI for flow quantification under current experiment condition. At a lower microbubble concentration, the FV calculated from TMCs correlates strongly with actual FV in both unattenuated (R(2) = 0.97; p < 0.01) and attenuated regions (R(2) = 0.92; p < 0.01) within phantom. And there is a strong correlation (R(2) = 0.98; p < 0.01; slope = 0.96; intercept = 0.68) between VFR calculated from TMCs and actual VFR within the whole phantom. Similar results are obtained at higher microbubble concentrations. Compared with conventional ultrasound imaging that is intensity dependent, NPI achieves better performance on flow quantification in the presence of contrast microbubble attenuation.
Collapse
Affiliation(s)
- Xiaolin Gu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | | | | | | | | |
Collapse
|
18
|
Zhang S, Zhou F, Wan M, Wei M, Fu Q, Wang X, Wang S. Feasibility of using Nakagami distribution in evaluating the formation of ultrasound-induced thermal lesions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:4836-4844. [PMID: 22712954 DOI: 10.1121/1.4711005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The acoustic posterior shadowing effects of bubbles influence the accuracy for defining the location and range of ablated thermal lesions during focused ultrasound surgery when using ultrasonic monitoring imaging. This paper explored the feasibility of using Nakagami distribution to evaluate the ablated region induced by focused ultrasound exposures at different acoustic power levels in transparent tissue-mimicking phantoms. The mean value of the Nakagami parameter m was about 0.5 in the cavitation region and increased to around 1 in the ablated region. Nakagami images were not subject to significant shadowing effects of bubbles. Ultrasound-induced thermal lesions observed in the photos and Nakagami images were overshadowed by bubbles in the B-mode images. The lesion size predicted in the Nakagami images was smaller than that predicted in the photos due to the sub resolvable effect of Nakagami imaging at the interface. This preliminary study on tissue-mimicking phantom suggested that the Nakagami parameter m may have the potential use in evaluating the formation of ultrasound-induced thermal lesion when the shadowing effect of bubbles is strong while the thermal lesion was small. Further studies in vivo and in vitro will be needed to evaluate the potential application.
Collapse
Affiliation(s)
- Siyuan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|