1
|
Colombo MC, Giverso C, Faggiano E, Boffano C, Acerbi F, Ciarletta P. Towards the Personalized Treatment of Glioblastoma: Integrating Patient-Specific Clinical Data in a Continuous Mechanical Model. PLoS One 2015; 10:e0132887. [PMID: 26186462 PMCID: PMC4505854 DOI: 10.1371/journal.pone.0132887] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/22/2015] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and malignant among brain tumors. In addition to uncontrolled proliferation and genetic instability, GBM is characterized by a diffuse infiltration, developing long protrusions that penetrate deeply along the fibers of the white matter. These features, combined with the underestimation of the invading GBM area by available imaging techniques, make a definitive treatment of GBM particularly difficult. A multidisciplinary approach combining mathematical, clinical and radiological data has the potential to foster our understanding of GBM evolution in every single patient throughout his/her oncological history, in order to target therapeutic weapons in a patient-specific manner. In this work, we propose a continuous mechanical model and we perform numerical simulations of GBM invasion combining the main mechano-biological characteristics of GBM with the micro-structural information extracted from radiological images, i.e. by elaborating patient-specific Diffusion Tensor Imaging (DTI) data. The numerical simulations highlight the influence of the different biological parameters on tumor progression and they demonstrate the fundamental importance of including anisotropic and heterogeneous patient-specific DTI data in order to obtain a more accurate prediction of GBM evolution. The results of the proposed mathematical model have the potential to provide a relevant benefit for clinicians involved in the treatment of this particularly aggressive disease and, more importantly, they might drive progress towards improving tumor control and patient’s prognosis.
Collapse
Affiliation(s)
- Maria Cristina Colombo
- MOX-Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; Fondazione CEN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Chiara Giverso
- MOX-Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; Fondazione CEN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Elena Faggiano
- MOX-Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; Labs-Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Carlo Boffano
- Neuroradiology-Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy
| | - Francesco Acerbi
- Department of Neurosurgery-Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy
| | - Pasquale Ciarletta
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France
| |
Collapse
|
2
|
A novel method for simulating the extracellular matrix in models of tumour growth. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:109019. [PMID: 22919426 PMCID: PMC3420324 DOI: 10.1155/2012/109019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/01/2012] [Accepted: 06/11/2012] [Indexed: 02/06/2023]
Abstract
A novel hybrid continuum-discrete model to simulate tumour growth on a cellular scale is proposed. The lattice-based spatiotemporal model consists of reaction-diffusion equations that describe interactions between cancer cells and their microenvironment. The fundamental ingredients that are typically considered are the nutrient concentration, the extracellular matrix (ECM), and matrix degrading enzymes (MDEs). The in vivo processes are very complex and occur on different levels. This in turn leads to huge computational costs. The main contribution of the present work is therefore to describe the processes on the basis of simplified mathematical approaches, which, at the same time, depict realistic results to understand the biological processes. In this work, we discuss if we have to simulate the MDE or if the degraded matrix can be estimated directly with respect to the cancer cell distribution. Additionally, we compare the results for modelling tumour growth using the common and our simplified approach, thereby demonstrating the advantages of the proposed method. Therefore, we introduce variations of the positioning of the nutrient delivering blood vessels and use different initializations of the ECM. We conclude that the novel method, which does not explicitly model the matrix degrading
enzymes, provides means for a straightforward and fast implementation for modelling tumour growth.
Collapse
|