1
|
Dosimetric accuracy of Acuros ® XB and AAA algorithms for stereotactic body radiotherapy (SBRT) lung treatments: evaluation with PRIMO Monte Carlo code. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396922000346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Abstract
Purpose:
The study aimed to compare the dosimetric performance of Acuros® XB (AXB) and anisotropic analytical algorithm (AAA) for lung SBRT plans using Monte Carlo (MC) simulations.
Methods:
We compared the dose calculation algorithms AAA and either of the dose reporting modes of AXB (dose to medium (AXB-Dm) or dose to water (AXB-Dw)) algorithms implemented in Eclipse® (Varian Medical Systems, Palo Alto, CA) Treatment planning system (TPS) with MC. PRIMO code was used for the MC simulations. The TPS-calculated dose profiles obtained with a multi-slab heterogeneity phantom were compared to MC. A lung phantom with a tumour was used to validate TPS algorithms using different beam delivery techniques. 2D gamma values obtained from Gafchromic film measurements in the tumour isocentre plane were compared with TPS algorithms and MC. Ten VMAT SBRT plans generated in TPS with each algorithm were recalculated with a PRIMO MC system for identical beam parameters for the clinical plan validation. A dose–volume histogram (DVH) based plan comparison and a 3D global gamma analysis were performed.
Results:
AXB demonstrated better agreement with MC and film measurements in the lung phantom validation, with good agreement in PDD, profiles and gamma analysis. AAA showed an overestimated PDD, a significant difference in dose profiles and a lower gamma pass rate near the field borders. With AAA, there was a dose overestimation at the periphery of the tumour. For clinical plan validation, AXB demonstrated higher agreement with MC than AAA.
Conclusions:
AXB provided better agreement with MC than AAA in the phantom and clinical plan evaluations.
Collapse
|
2
|
Sarkar V, Paxton A, Rassiah P, Kokeny KE, Hitchcock YJ, Salter BJ. Evaluation of dose distribution differences from five algorithms implemented in three commercial treatment planning systems for lung SBRT. JOURNAL OF RADIOSURGERY AND SBRT 2020; 7:57-66. [PMID: 32802579 PMCID: PMC7406340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Early stage lung cancer is increasingly being treated using stereotactic body radiation therapy (SBRT). Several advanced treatment planning algorithms are now available in various commercial treatment planning systems. This work compares the dose distributions calculated for the same treatment plan using, five algorithms, in three different treatment planning systems. All plans were normalized to ensure the prescription dose covers 95% of the planning target volume (PTV). Dose to the planning target volume (PTV) was compared using near-minimum dose (D98%), near-maximum dose (D2%) and dose homogeneity, while dose fall-off was compared using D2cm and R50. Dose to the lung was compared using V5Gy, V20Gy and mean lung dose. Statistical analysis shows that dose distributions calculated using Eclipse's Acuros XB and RayStation's Monte Carlo were significantly different from the other dose distributions for the PTV dose parameters investigated. For lung dosimetric parameters, this difference persisted for volumetric modulated arc therapy (VMAT) plans but not for conformal arc plans. While normal tissue complication probability (NTCP) differences were significant for some of the algorithms for VMAT delivery approaches, they were not significantly different for any algorithm for conformal arc plans. All parameters investigated here were within 5% between all algorithms. The results show that, while some small dosimetric differences can be expected around the PTV, the dose distribution to the rest of the treatment area, especially the lungs, should not be clinically-relevant when switching between one of the five algorithms investigated.
Collapse
Affiliation(s)
- Vikren Sarkar
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam Paxton
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT 84112, USA
| | - Prema Rassiah
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristine E Kokeny
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ying J Hitchcock
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT 84112, USA
| | - Bill J Salter
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Liang X, Penagaricano J, Zheng D, Morrill S, Zhang X, Corry P, Griffin RJ, Han EY, Hardee M, Ratanatharathom V. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans. Radiat Oncol 2016; 11:10. [PMID: 26800883 PMCID: PMC4724090 DOI: 10.1186/s13014-015-0578-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/22/2015] [Indexed: 12/25/2022] Open
Abstract
Background The aim of this study is to evaluate the radiobiological impact of Acuros XB (AXB) vs. Anisotropic Analytic Algorithm (AAA) dose calculation algorithms in combined dose-volume and biological optimized IMRT plans of SBRT treatments for non-small-cell lung cancer (NSCLC) patients. Methods Twenty eight patients with NSCLC previously treated SBRT were re-planned using Varian Eclipse (V11) with combined dose-volume and biological optimization IMRT sliding window technique. The total dose prescribed to the PTV was 60 Gy with 12 Gy per fraction. The plans were initially optimized using AAA algorithm, and then were recomputed using AXB using the same MUs and MLC files to compare with the dose distribution of the original plans and assess the radiobiological as well as dosimetric impact of the two different dose algorithms. The Poisson Linear-Quadatric (PLQ) and Lyman-Kutcher-Burman (LKB) models were used for estimating the tumor control probability (TCP) and normal tissue complication probability (NTCP), respectively. The influence of the model parameter uncertainties on the TCP differences and the NTCP differences between AAA and AXB plans were studied by applying different sets of published model parameters. Patients were grouped into peripheral and centrally-located tumors to evaluate the impact of tumor location. Results PTV dose was lower in the re-calculated AXB plans, as compared to AAA plans. The median differences of PTV(D95%) were 1.7 Gy (range: 0.3, 6.5 Gy) and 1.0 Gy (range: 0.6, 4.4 Gy) for peripheral tumors and centrally-located tumors, respectively. The median differences of PTV(mean) were 0.4 Gy (range: 0.0, 1.9 Gy) and 0.9 Gy (range: 0.0, 4.3 Gy) for peripheral tumors and centrally-located tumors, respectively. TCP was also found lower in AXB-recalculated plans compared with the AAA plans. The median (range) of the TCP differences for 30 month local control were 1.6 % (0.3 %, 5.8 %) for peripheral tumors and 1.3 % (0.5 %, 3.4 %) for centrally located tumors. The lower TCP is associated with the lower PTV coverage in AXB-recalculated plans. No obvious trend was observed between the calculation-resulted TCP differences and tumor size or location. AAA and AXB yield very similar NTCP on lung pneumonitis according to the LKB model estimation in the present study. Conclusion AAA apparently overestimates the PTV dose; the magnitude of resulting difference in calculated TCP was up to 5.8 % in our study. AAA and AXB yield very similar NTCP on lung pneumonitis based on the LKB model parameter sets we used in the present study.
Collapse
Affiliation(s)
- X Liang
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - J Penagaricano
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - D Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, 42nd and Emile, Omaha, NE, USA.
| | - S Morrill
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - X Zhang
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - P Corry
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - R J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - E Y Han
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - M Hardee
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| | - V Ratanatharathom
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., #771, Little Rock, AR, USA.
| |
Collapse
|
4
|
Ojala JJ, Kapanen MK, Hyödynmaa SJ, Wigren TK, Pitkänen MA. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions. J Appl Clin Med Phys 2014; 15:4662. [PMID: 24710454 PMCID: PMC5875463 DOI: 10.1120/jacmp.v15i2.4662] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/04/2013] [Accepted: 09/25/2013] [Indexed: 12/31/2022] Open
Abstract
The accuracy of dose calculation is a key challenge in stereotactic body radiotherapy (SBRT) of the lung. We have benchmarked three photon beam dose calculation algorithms — pencil beam convolution (PBC), anisotropic analytical algorithm (AAA), and Acuros XB (AXB) — implemented in a commercial treatment planning system (TPS), Varian Eclipse. Dose distributions from full Monte Carlo (MC) simulations were regarded as a reference. In the first stage, for four patients with central lung tumors, treatment plans using 3D conformal radiotherapy (CRT) technique applying 6 MV photon beams were made using the AXB algorithm, with planning criteria according to the Nordic SBRT study group. The plans were recalculated (with same number of monitor units (MUs) and identical field settings) using BEAMnrc and DOSXYZnrc MC codes. The MC‐calculated dose distributions were compared to corresponding AXB‐calculated dose distributions to assess the accuracy of the AXB algorithm, to which then other TPS algorithms were compared. In the second stage, treatment plans were made for ten patients with 3D CRT technique using both the PBC algorithm and the AAA. The plans were recalculated (with same number of MUs and identical field settings) with the AXB algorithm, then compared to original plans. Throughout the study, the comparisons were made as a function of the size of the planning target volume (PTV), using various dose‐volume histogram (DVH) and other parameters to quantitatively assess the plan quality. In the first stage also, 3D gamma analyses with threshold criteria 3%/3 mm and 2%/2 mm were applied. The AXB‐calculated dose distributions showed relatively high level of agreement in the light of 3D gamma analysis and DVH comparison against the full MC simulation, especially with large PTVs, but, with smaller PTVs, larger discrepancies were found. Gamma agreement index (GAI) values between 95.5% and 99.6% for all the plans with the threshold criteria 3%/3 mm were achieved, but 2%/2 mm threshold criteria showed larger discrepancies. The TPS algorithm comparison results showed large dose discrepancies in the PTV mean dose (D50%), nearly 60%, for the PBC algorithm, and differences of nearly 20% for the AAA, occurring also in the small PTV size range. This work suggests the application of independent plan verification, when the AAA or the AXB algorithm are utilized in lung SBRT having PTVs smaller than 20‐25 cc. The calculated data from this study can be used in converting the SBRT protocols based on type ‘a’ and/or type ‘b’ algorithms for the most recent generation type ‘c’ algorithms, such as the AXB algorithm. PACS numbers: 87.55.‐x, 87.55.D‐, 87.55.K‐, 87.55.kd, 87.55.Qr
Collapse
|
5
|
Moiseenko V, Liu M, Loewen S, Kosztyla R, Vollans E, Lucido J, Fong M, Vellani R, Popescu IA. Monte Carlo calculation of dose distributions in oligometastatic patients planned for spine stereotactic ablative radiotherapy. Phys Med Biol 2013; 58:7107-16. [DOI: 10.1088/0031-9155/58/20/7107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Kry SF, Alvarez P, Molineu A, Amador C, Galvin J, Followill DS. Algorithms used in heterogeneous dose calculations show systematic differences as measured with the Radiological Physics Center's anthropomorphic thorax phantom used for RTOG credentialing. Int J Radiat Oncol Biol Phys 2013; 85:e95-100. [PMID: 23237006 DOI: 10.1016/j.ijrobp.2012.08.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 12/01/2022]
Abstract
PURPOSE To determine the impact of treatment planning algorithm on the accuracy of heterogeneous dose calculations in the Radiological Physics Center (RPC) thorax phantom. METHODS AND MATERIALS We retrospectively analyzed the results of 304 irradiations of the RPC thorax phantom at 221 different institutions as part of credentialing for Radiation Therapy Oncology Group clinical trials; the irradiations were all done using 6-MV beams. Treatment plans included those for intensity-modulated radiation therapy (IMRT) as well as 3-dimensional conformal therapy (3D-CRT). Heterogeneous plans were developed using Monte Carlo (MC), convolution/superposition (CS), and the anisotropic analytic algorithm (AAA), as well as pencil beam (PB) algorithms. For each plan and delivery, the absolute dose measured in the center of a lung target was compared to the calculated dose, as was the planar dose in 3 orthogonal planes. The difference between measured and calculated dose was examined as a function of planning algorithm as well as use of IMRT. RESULTS PB algorithms overestimated the dose delivered to the center of the target by 4.9% on average. Surprisingly, CS algorithms and AAA also showed a systematic overestimation of the dose to the center of the target, by 3.7% on average. In contrast, the MC algorithm dose calculations agreed with measurement within 0.6% on average. There was no difference observed between IMRT and 3D CRT calculation accuracy. CONCLUSION Unexpectedly, advanced treatment planning systems (those using CS and AAA algorithms) overestimated the dose that was delivered to the lung target. This issue requires attention in terms of heterogeneity calculations and potentially in terms of clinical practice.
Collapse
Affiliation(s)
- Stephen F Kry
- Radiological Physics Center, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Gete E, Teke T, Kwa W. Evaluation of the AAA Treatment Planning Algorithm for SBRT Lung Treatment: Comparison with Monte Carlo and Homogeneous Pencil Beam Dose Calculations. J Med Imaging Radiat Sci 2012; 43:26-33. [DOI: 10.1016/j.jmir.2011.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 12/25/2022]
|
8
|
Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int J Radiat Oncol Biol Phys 2012; 83:1587-95. [PMID: 22300575 DOI: 10.1016/j.ijrobp.2011.10.078] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/29/2011] [Accepted: 10/30/2011] [Indexed: 12/14/2022]
Abstract
PURPOSE To assess the clinical impact of the Acuros XB algorithm (implemented in the Varian Eclipse treatment-planning system) in non-small-cell lung cancer (NSCLC) cases. METHODS AND MATERIALS A CT dataset of 10 patients presenting with advanced NSCLC was selected and contoured for planning target volume, lungs, heart, and spinal cord. Plans were created for 6-MV and 15-MV beams using three-dimensional conformal therapy, intensity-modulated therapy, and volumetric modulated arc therapy with RapidArc. Calculations were performed with Acuros XB and the Anisotropic Analytical Algorithm. To distinguish between differences coming from the different heterogeneity management and those coming from the algorithm and its implementation, all the plans were recalculated assigning Hounsfield Unit (HU) = 0 (Water) to the CT dataset. RESULTS Differences in dose distributions between the two algorithms calculated in Water were <0.5%. This suggests that the differences in the real CT dataset can be ascribed mainly to the different heterogeneity management, which is proven to be more accurate in the Acuros XB calculations. The planning target dose difference was stratified between the target in soft tissue, where the mean dose was found to be lower for Acuros XB, with a range of 0.4% ± 0.6% (intensity-modulated therapy, 6 MV) to 1.7% ± 0.2% (three-dimensional conformal therapy, 6 MV), and the target in lung tissue, where the mean dose was higher for 6 MV (from 0.2% ± 0.2% to 1.2% ± 0.5%) and lower for 15 MV (from 0.5% ± 0.5% to 2.0% ± 0.9%). Mean doses to organs at risk presented differences up to 3% of the mean structure dose in the worst case. No particular or systematic differences were found related to the various modalities. Calculation time ratios between calculation time for Acuros XB and the Anisotropic Analytical Algorithm were 7 for three-dimensional conformal therapy, 5 for intensity-modulated therapy, and 0.2 for volumetric modulated arc therapy with RapidArc. CONCLUSION The availability of Acuros XB could improve patient dose estimation, increasing the data consistency of clinical trials.
Collapse
Affiliation(s)
- Antonella Fogliata
- Medical Physics Unit, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| | | | | | | | | |
Collapse
|