1
|
Guyer G, Mueller S, Mackeprang PH, Frei D, Volken W, Aebersold DM, Loessl K, Manser P, Fix MK. Delivery time reduction for mixed photon-electron radiotherapy by using photon MLC collimated electron arcs. Phys Med Biol 2023; 68:215009. [PMID: 37816376 DOI: 10.1088/1361-6560/ad021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Objective. Electron arcs in mixed-beam radiotherapy (Arc-MBRT) consisting of intensity-modulated electron arcs with dynamic gantry rotation potentially reduce the delivery time compared to mixed-beam radiotherapy containing electron beams with static gantry angle (Static-MBRT). This study aims to develop and investigate a treatment planning process (TPP) for photon multileaf collimator (pMLC) based Arc-MBRT.Approach. An existing TPP for Static-MBRT plans is extended to integrate electron arcs with a dynamic gantry rotation and intensity modulation using a sliding window technique. The TPP consists of a manual setup of electron arcs, and either static photon beams or photon arcs, shortening of the source-to-surface distance for the electron arcs, initial intensity modulation optimization, selection of a user-defined number of electron beam energies based on dose contribution to the target volume and finally, simultaneous photon and electron intensity modulation optimization followed by full Monte Carlo dose calculation. Arc-MBRT plans, Static-MBRT plans, and photon-only plans were created and compared for four breast cases. Dosimetric validation of two Arc-MBRT plans was performed using film measurements.Main results. The generated Arc-MBRT plans are dosimetrically similar to the Static-MBRT plans while outperforming the photon-only plans. The mean heart dose is reduced by 32% on average in the MBRT plans compared to the photon-only plans. The estimated delivery times of the Arc-MBRT plans are similar to the photon-only plans but less than half the time of the Static-MBRT plans. Measured and calculated dose distributions agree with a gamma passing rate of over 98% (3% global, 2 mm) for both delivered Arc-MBRT plans.Significance. A TPP for Arc-MBRT is successfully developed and Arc-MBRT plans showed the potential to improve the dosimetric plan quality similar as Static-MBRT while maintaining short delivery times of photon-only treatments. This further facilitates integration of pMLC-based MBRT into clinical practice.
Collapse
Affiliation(s)
- Gian Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Silvan Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Paul-Henry Mackeprang
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Daniel Frei
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Werner Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Daniel M Aebersold
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Kristina Loessl
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Peter Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Michael K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Fix MK, Frei D, Mueller S, Guyer G, Loebner HA, Volken W, Manser P. Auto-commissioning of a Monte Carlo electron beam model with application to photon MLC shaped electron fields. Phys Med Biol 2023; 68. [PMID: 36716491 DOI: 10.1088/1361-6560/acb755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Objective.Presently electron beam treatments are delivered using dedicated applicators. An alternative is the usage of the already installed photon multileaf collimator (pMLC) enabling efficient electron treatments. Currently, the commissioning of beam models is a manual and time-consuming process. In this work an auto-commissioning procedure for the Monte Carlo (MC) beam model part representing the beam above the pMLC is developed for TrueBeam systems with electron energies from 6 to 22 MeV.Approach.The analytical part of the electron beam model includes a main source representing the primary beam and a jaw source representing the head scatter contribution each consisting of an electron and a photon component, while MC radiation transport is performed for the pMLC. The auto-commissioning of this analytical part relies on information pre-determined from MC simulations, in-air dose profiles and absolute dose measurements in water for different field sizes and source to surface distances (SSDs). For validation calculated and measured dose distributions in water were compared for different field sizes, SSDs and beam energies for eight TrueBeam systems. Furthermore, a sternum case in an anthropomorphic phantom was considered and calculated and measured dose distributions were compared at different SSDs.Main results.Instead of the manual commissioning taking up to several days of calculation time and several hours of user time, the auto-commissioning is carried out in a few minutes. Measured and calculated dose distributions agree generally within 3% of maximum dose or 2 mm. The gamma passing rates for the sternum case ranged from 96% to 99% (3% (global)/2 mm criteria, 10% threshold).Significance.The auto-commissioning procedure was successfully implemented and applied to eight TrueBeam systems. The newly developed user-friendly auto-commissioning procedure allows an efficient commissioning of an MC electron beam model and eases the usage of advanced electron radiotherapy utilizing the pMLC for beam shaping.
Collapse
Affiliation(s)
- M K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - D Frei
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - S Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - G Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - H A Loebner
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - W Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - P Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Ma P, Tian Y, Li M, Niu C, Song Y, Dai J. Delivery of intensity-modulated electron therapy by mechanical scanning: An algorithm study. Front Oncol 2022; 12:1063577. [PMID: 36505866 PMCID: PMC9730234 DOI: 10.3389/fonc.2022.1063577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose In principle, intensity-modulated electron therapy (IMET) can be delivered through mechanical scanning, with a robotic arm mounting a linac. Materials and methods Here is a scanning algorithm to identify the back-and-forth, top-to-bottom (zigzag) pattern scan sequence. The algorithm includes generating beam positions with a uniform resolution according to the applicator size; adopting discrete energies to achieve the depth of 90% dose by compositing energies; selecting energy by locating the target's distal edge; and employing the energy-by-energy scan strategy for step-and-shoot discrete scanning. After a zigzag scan sequence is obtained, the delivery order of the scan spots is optimized by fast simulated annealing (FSA) to minimize the path length. For algorithm evaluation, scan sequences were generated using the computed tomography data of 10 patients with pancreatic cancer undergoing intraoperative radiotherapy, and the results were compared between the zigzag path and an optimized path. A simple calculation of the treatment delivery time, which comprises the irradiation time, the total robotic arm moving time, the time for energy switch, and the time to stop and restart the beam, was also made. Results In these clinical cases, FSA optimization shortened the path lengths by 12%-43%. Assuming the prescribed dose was 15 Gy, machine dose rate was 15 Gy/s, energy switch time was 2 s, stop and restart beam time was 20 ms, and robotic arm move speed was 50 mm/s, the average delivery time was 124±38 s. The largest reduction in path length yielded an approximately 10% reduction in the delivery time, which can be further reduced by increasing the machine dose rate and the robotic arm speed, decreasing the time for energy switch, and/or developing more efficient algorithms. Conclusion Mechanically scanning IMET is potentially feasible and worthy of further exploration.
Collapse
|
4
|
Mutsakanyi S, du Plessis F. Characterization and dosimetry of photon multileaf collimated electron beams using Gafchromic film measurements. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Validation of a Lévy electron energy straggling model for an Elekta Synergy® linear accelerator. Appl Radiat Isot 2020; 164:109244. [DOI: 10.1016/j.apradiso.2020.109244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/09/2020] [Accepted: 05/21/2020] [Indexed: 11/23/2022]
|
6
|
Kaluarachchi MM, Saleh ZH, Schwer ML, Klein EE. Validation of a Monte Carlo model for multi leaf collimator based electron delivery. Med Phys 2020; 47:3586-3599. [PMID: 32324289 DOI: 10.1002/mp.14194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/12/2020] [Accepted: 03/31/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To develop and validate a Monte Carlo model of the Varian TrueBeam to study electron collimation using the existing photon multi-leaf collimators (pMLC), instead of conventional electron applicators and apertures. MATERIALS AND METHODS A complete Monte Carlo model of the Varian TrueBeam was developed using Tool for particle simulation (TOPAS) (version 3.1.p3). Vendor-supplied information was used to model the treatment head components and the source parameters. A phase space plane was setup above the collimating jaws and captured particles were reused until a statistical uncertainty of 1% was achieved in the central axis. Electron energies 6, 9, 12, 16, and 20 MeV with a jaw-defined field of 20 × 20 cm2 at iso-center, pMLC-defined fields of 6.8 × 6.8 cm2 and 11.4 × 11.4 cm2 at 80 cm source-to-surface distance (SSD) and an applicator-defined field of 10 × 10 cm2 at iso-center were evaluated. All the measurements except the applicator-defined fields were measured using an ionization chamber in a water tank using 80 cm SSD. The dose difference, distance-to-agreement and gamma index were used to evaluate the agreement between the Monte Carlo calculations and measurements. Contributions of electron scattering off pMLC leaves and inter-leaf leakage on dose profiles were evaluated and compared with Monte Carlo calculations. Electron transport through a heterogeneous phantom was simulated and the resulting dose distributions were compared with film measurements. The validated Monte Carlo model was used to simulate several clinically motivated cases to demonstrate the benefit of pMLC-based electron delivery compared to applicator-based electron delivery. RESULTS Calculated and measured percentage depth-dose (PDD) curves agree within 2% after normalization. The agreement between normalized percentage depth dose curves were evaluated using one-dimensional gamma analysis with a local tolerance of 2%/1 mm and the %points passing gamma criteria was 100% for all energies. For jaw-defined fields, calculated profiles agree with measurements with pass rates of >97% for 2%/2 mm gamma criteria. Calculated FWHM and penumbra width agree with measurements within 0.4 cm. For fields with tertiary collimation using an pMLC or applicator, the average gamma pass rate of compared profiles was 98% with 2%/2 mm gamma criteria. The profiles measured to evaluate the pMLC leaf scattering agreed with Monte Carlo calculations with an average gamma pass rate of 96.5% with 3%/2 mm gamma criteria. Measured dose profiles below the heterogenous phantom agreed well with calculated profiles and matched within 2.5% for most points. The calculated clinically applicable cases using TOPAS MC and Eclipse TPS for single enface electron beam, electron-photon mixed beam and a matched electron-electron beam exhibited a reasonable agreement in PDDs, profiles and dose volume histograms. CONCLUSION We present a validation of a Monte Carlo model of Varian TrueBeam for pMLC-based electron delivery. Monte Carlo calculations agreed with measurements satisfying gamma criterion of 1%/1 mm for depth dose curves and 2%/1 mm for dose profiles. The simulation of clinically applicable cases demonstrated the clinical utility of pMLC-based electrons and the use of MC simulations for development of advanced radiation therapy techniques.
Collapse
Affiliation(s)
- Maduka M Kaluarachchi
- Department of Radiation Oncology, Rhode Island Hospital/Brown University, Providence, RI, 02905, USA
| | - Ziad H Saleh
- Department of Radiation Oncology, Rhode Island Hospital/Brown University, Providence, RI, 02905, USA
| | - Michelle L Schwer
- Department of Radiation Oncology, Rhode Island Hospital/Brown University, Providence, RI, 02905, USA
| | - Eric E Klein
- Department of Radiation Oncology, Rhode Island Hospital/Brown University, Providence, RI, 02905, USA
| |
Collapse
|
7
|
Ma C, Parsons D, Chen M, Jiang S, Hou Q, Gu X, Lu W. Electron modulated arc therapy (EMAT) using photon MLC for postmastectomy chest wall treatment I: Monte Carlo-based dosimetric characterizations. Phys Med 2019; 67:1-8. [PMID: 31606657 PMCID: PMC6925626 DOI: 10.1016/j.ejmp.2019.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To study the dosimetric properties of electron arc beams delivered by photon-beam multi-leaf collimators (pMLC) in electron modulated arc therapy (EMAT) for postmastectomy chest wall treatments. METHODS Using the Monte Carlo method, we simulated a 2100EX Varian linear accelerator and verified the beam models in a water tank. Dosimetric characterizations were performed on cylindrical water phantoms of elliptical bases with various field sizes, arc ranges and source-to-surface distances (SSDs) for 6, 9 and 12 MeV beam energy. RESULTS The arc beam has a higher bremsstrahlung dose than the static beam at the isocenter due to crossfire, but choosing a field size greater than 5 cm effectively reduces the bremsstrahlung dose. The depths of the 90% maximum dose located at 1.7, 2.8 and 4.1 cm for 6, 9 and 12 MeV, respectively, are similar to those of the static beams and independent of the field size and arc range. CONCLUSION Based on the study, we recommend using the 5 cm field width for electron arc beams considering both bremsstrahlung dose at the isocenter and the arc profile penumbra. To ensure sufficient PTV edge coverage, we recommend a field length extension of at least 4 cm from PTV's edge for all beam energies and an arc extension of around 7°, 5°, and 5° for beam energies 6, 9, and 12 MeV, respectively. These dosimetric characterizations are the basis of pMLC-delivered EMAT treatment planning for postmastectomy chest wall patients.
Collapse
Affiliation(s)
- Chaoqiong Ma
- Key Lab for Radiation Physics and Technology of Education Ministry of China, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, Sichuan 610064, China; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - David Parsons
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Mingli Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Steve Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Qing Hou
- Key Lab for Radiation Physics and Technology of Education Ministry of China, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xuejun Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
8
|
Improved Monte Carlo clinical electron beam modelling. Phys Med 2019; 66:36-44. [DOI: 10.1016/j.ejmp.2019.09.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/30/2019] [Accepted: 09/07/2019] [Indexed: 11/22/2022] Open
|
9
|
Sung W, Park JI, Kim JI, Carlson J, Ye SJ, Park JM. Monte Carlo simulation for scanning technique with scattering foil free electron beam: A proof of concept study. PLoS One 2017; 12:e0177380. [PMID: 28493940 PMCID: PMC5426680 DOI: 10.1371/journal.pone.0177380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.
Collapse
Affiliation(s)
- Wonmo Sung
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Seoul, Republic of Korea
| | - Jong In Park
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Seoul, Republic of Korea
| | - Jung-in Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joel Carlson
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Seoul, Republic of Korea
| | - Sung-Joon Ye
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute for Smart System, Robotics Research Laboratory for Extreme Environments, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Rodrigues A, Sawkey D, Yin FF, Wu Q. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs. Med Phys 2015; 42:2389-403. [DOI: 10.1118/1.4916896] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Connell T, Alexander A, Papaconstadopoulos P, Serban M, Devic S, Seuntjens J. Delivery validation of an automated modulated electron radiotherapy plan. Med Phys 2014; 41:061715. [DOI: 10.1118/1.4876297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Eldib A, Jin L, Li J, Charlie Ma CM. Investigation of the clinical potential of scattering foil free electron beams. Phys Med Biol 2014; 59:819-36. [DOI: 10.1088/0031-9155/59/4/819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Jin L, Eldib A, Li J, Emam I, Fan J, Wang L, Ma CM. Measurement and Monte Carlo simulation for energy- and intensity-modulated electron radiotherapy delivered by a computer-controlled electron multileaf collimator. J Appl Clin Med Phys 2014; 15:4506. [PMID: 24423848 PMCID: PMC5711222 DOI: 10.1120/jacmp.v15i1.4506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/25/2013] [Accepted: 09/15/2013] [Indexed: 11/23/2022] Open
Abstract
The dosimetric advantage of modulated electron radiotherapy (MERT) has been explored by many investigators and is considered to be an advanced radiation therapy technique in the utilization of electrons. A computer‐controlled electron multileaf collimator (MLC) prototype, newly designed to be added onto a Varian linac to deliver MERT, was investigated both experimentally and by Monte Carlo simulations. Four different electron energies, 6, 9, 12, and 15 MeV, were employed for this investigation. To ensure that this device was capable of delivering the electron beams properly, measurements were performed to examine the electron MLC (eMLC) leaf leakage and to determine the appropriate jaw positioning for an eMLC‐shaped field in order to eliminate a secondary radiation peak that could otherwise appear outside of an intended radiation field in the case of inappropriate jaw positioning due to insufficient radiation blockage from the jaws. Phase space data were obtained by Monte Carlo (MC) simulation and recorded at the plane just above the jaws for each of the energies (6, 9, 12, and 15 MeV). As an input source, phase space data were used in MC dose calculations for various sizes of the eMLC shaped field (10×10 cm2, 3.4×3.4 cm2, and 2×2 cm2) with respect to a water phantom at source‐to‐surface distance (SSD)=94cm, while the jaws, eMLC leaves, and some accessories associated with the eMLC assembly as well were modeled as modifiers in the calculations. The calculated results were then compared with measurements from a water scanning system. The results showed that jaw settings with 5 mm margins beyond the field shaped by the eMLC were appropriate to eliminate the secondary radiation peak while not widening the beam penumbra; the eMLC leaf leakage measurements ranged from 0.3% to 1.8% for different energies based on in‐phantom measurements, which should be quite acceptable for MERT. Comparisons between MC dose calculations and measurements showed agreement within 1%/1mm based on percentage depth doses (PDDs) and off‐axis dose profiles for a range of field sizes for each of the electron energies. Our current work has demonstrated that the eMLC and other relevant components in the linac were correctly modeled and simulated via our in‐house MC codes, and the eMLC is capable of accurately delivering electron beams for various eMLC‐shaped field sizes with appropriate jaw settings. In the next stage, patient‐specific verification with a full MERT plan should be performed. PACS number: 87.55.ne
Collapse
|
14
|
Alexander A, Soisson E, Renaud MA, Seuntjens J. Direct aperture optimization for FLEC-based MERT and its application in mixed beam radiotherapy. Med Phys 2012; 39:4820-31. [DOI: 10.1118/1.4736423] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Connell T, Alexander A, Evans M, Seuntjens J. An experimental feasibility study on the use of scattering foil free beams for modulated electron radiotherapy. Phys Med Biol 2012; 57:3259-72. [PMID: 22572043 DOI: 10.1088/0031-9155/57/11/3259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The potential benefit of using scattering foil free beams for delivery of modulated electron radiotherapy is investigated in this work. Removal of the scattering foil from the beamline showed a measured bremsstrahlung tail dose reduction just beyond R(p) by a factor of 12.2, 6.9, 7.4, 7.4 and 8.3 for 6, 9, 12, 16 and 20 MeV beams respectively for 2 × 2 cm(2) fields defined on-axis when compared to the clinical beamline. Monte Carlo simulations were matched to measured data through careful tuning of source parameters and the modification of certain accelerator components beyond the manufacturer's specifications. An accelerator model based on the clinical beamline and one with the scattering foil removed were imported into a Monte Carlo-based treatment planning system (McGill Monte Carlo Treatment Planning). A treatment planning study was conducted on a test phantom consisting of a PTV and two distal organs at risk (OAR) by comparing a plan using the clinical beamline to a plan using a scattering foil free beamline. A DVH comparison revealed that for quasi-identical target coverage, the volume of each OAR receiving a given dose was reduced, thus reducing the dose deposited in healthy tissue.
Collapse
Affiliation(s)
- T Connell
- Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|