1
|
Génolini Y, Maurin D, Moskalenko IV, Unger M. Current status and desired precision of the isotopic production cross sections relevant to astrophysics of cosmic rays: Li, Be, B, C, and N. PHYSICAL REVIEW. C 2018; 98:034611. [PMID: 34646970 PMCID: PMC8506905 DOI: 10.1103/physrevc.98.034611] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The precision of the current generation of cosmic-ray (CR) experiments, such as AMS-02, PAMELA, CALET, and ISS-CREAM, is now reaching ≈1-3% in a wide range in energy per nucleon from GeV/nucleon to multi-TeV/nucleon. Their correct interpretation could potentially lead to discoveries of new physics and subtle effects that were unthinkable just a decade ago. However, a major obstacle in doing so is the current uncertainty in the isotopic production cross sections that can be as high as 20-50% or even larger in some cases. While there is a recently reached consensus in the astrophysics community that new measurements of cross sections are desirable, no attempt to evaluate the importance of particular reaction channels and their required precision has been made yet. It is, however, clear that it is a huge work that requires an incremental approach. The goal of this study is to provide the ranking of the isotopic cross sections contributing to the production of the most astrophysically important CR Li, Be, B, C, and N species. In this paper, we (i) rank the reaction channels by their importance for a production of a particular isotope, (ii) provide comparisons plots between the models and data used, and (iii) evaluate a generic beam time necessary to reach a 3% precision in the production cross sections pertinent to the AMS-02 experiment. This first road map may become a starting point in the planning of new measurement campaigns that could be carried out in several nuclear and/or particle physics facilities around the world. A comprehensive evaluation of other isotopes Z ⩽ 30 will be a subject of follow-up studies.
Collapse
Affiliation(s)
- Yoann Génolini
- Service de Physique Théorique, Université Libre de Bruxelles, Boulevard du Triomphe, CP225, 1050 Brussels, Belgium
| | - David Maurin
- LPSC, Université Grenoble-Alpes, CNRS/IN2P3, 53 avenue des Martyrs, 38026 Grenoble, France
| | - Igor V. Moskalenko
- W. W. Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, California 94305, USA
| | - Michael Unger
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
2
|
Ou H, Zhang B, Zhao S. Monte Carlo simulation of the relative biological effectiveness and DNA damage from a 400 MeV/u carbon ion beam in water. Appl Radiat Isot 2018; 136:1-9. [DOI: 10.1016/j.apradiso.2018.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 11/25/2022]
|
3
|
Lourenço A, Thomas R, Homer M, Bouchard H, Rossomme S, Renaud J, Kanai T, Royle G, Palmans H. Fluence correction factor for graphite calorimetry in a clinical high-energy carbon-ion beam. Phys Med Biol 2017; 62:N134-N146. [PMID: 28211796 DOI: 10.1088/1361-6560/aa6147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this work is to develop and adapt a formalism to determine absorbed dose to water from graphite calorimetry measurements in carbon-ion beams. Fluence correction factors, [Formula: see text], needed when using a graphite calorimeter to derive dose to water, were determined in a clinical high-energy carbon-ion beam. Measurements were performed in a 290 MeV/n carbon-ion beam with a field size of 11 × 11 cm2, without modulation. In order to sample the beam, a plane-parallel Roos ionization chamber was chosen for its small collecting volume in comparison with the field size. Experimental information on fluence corrections was obtained from depth-dose measurements in water. This procedure was repeated with graphite plates in front of the water phantom. Fluence corrections were also obtained with Monte Carlo simulations through the implementation of three methods based on (i) the fluence distributions differential in energy, (ii) a ratio of calculated doses in water and graphite at equivalent depths and (iii) simulations of the experimental setup. The [Formula: see text] term increased in depth from 1.00 at the entrance toward 1.02 at a depth near the Bragg peak, and the average difference between experimental and numerical simulations was about 0.13%. Compared to proton beams, there was no reduction of the [Formula: see text] due to alpha particles because the secondary particle spectrum is dominated by projectile fragmentation. By developing a practical dose conversion technique, this work contributes to improving the determination of absolute dose to water from graphite calorimetry in carbon-ion beams.
Collapse
Affiliation(s)
- A Lourenço
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom. Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Francis Z, Seif E, Incerti S, Champion C, Karamitros M, Bernal MA, Ivanchenko VN, Mantero A, Tran HN, El Bitar Z. Carbon ion fragmentation effects on the nanometric level behind the Bragg peak depth. Phys Med Biol 2016; 59:7691-702. [PMID: 25415376 DOI: 10.1088/0031-9155/59/24/7691] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, fragmentation yields of carbon therapy beams are estimated using the Geant4 simulation toolkit version 9.5. Simulations are carried out in a step-by-step mode using the Geant4-DNA processes for each of the major contributing fragments. The energy of the initial beam is taken 400 MeV amu(-1) as this is the highest energy, which is used for medical accelerators and this would show the integral role of secondary contributions in radiotherapy irradiations. The obtained results showed that 64% of the global dose deposition is initiated by carbon ions, while up to 36% is initiated by the produced fragments including all their isotopes. The energy deposition clustering yields of each of the simulated fragments are then estimated using the DBSCAN clustering algorithm and they are compared to the yields of the incident primary beam.
Collapse
Affiliation(s)
- Z Francis
- Faculty of Sciences, Department of Physics, Université Saint Joseph, Beirut, Lebanon
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Alloni D, Baiocco G, Babini G, Friedland W, Kundrát P, Mariotti L, Ottolenghi A. Energy dependence of the complexity of DNA damage induced by carbon ions. RADIATION PROTECTION DOSIMETRY 2015; 166:86-90. [PMID: 25958411 DOI: 10.1093/rpd/ncv292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To assess the complexity of DNA damage induced by carbon ions as a function of their energy and LET, 2-Gy irradiations by 100 keV u(-1)-400 MeV u(-1) carbon ions were investigated using the PARTRAC code. The total number of fragments and the yield of fragments of <30 bp were calculated. The authors found a particularly important contribution of DNA fragmentation in the range of <1 kbp for specific energies of <6 MeV u(-1). They also considered the effect of different specific energies with the same LET, i.e. before and after the Bragg peak. As a first step towards a full characterisation of secondary particle production from carbon ions interacting with tissue, a comparison between DNA-damage induction by primary carbon ions and alpha particles resulting from carbon break-up is presented, for specific energies of >1 MeV u(-1).
Collapse
Affiliation(s)
- D Alloni
- Department of Physics, University of Pavia, Via Bassi 6, Pavia, Italy LENA, Laboratory of Applied Nuclear Energy, University of Pavia, Via Aselli 41, Pavia, Italy INFN National Institute of Nuclear Physics, Sezione di Pavia, Via Bassi 6, Pavia, Italy
| | - G Baiocco
- Department of Physics, University of Pavia, Via Bassi 6, Pavia, Italy INFN National Institute of Nuclear Physics, Sezione di Pavia, Via Bassi 6, Pavia, Italy
| | - G Babini
- Department of Physics, University of Pavia, Via Bassi 6, Pavia, Italy INFN National Institute of Nuclear Physics, Sezione di Pavia, Via Bassi 6, Pavia, Italy
| | - W Friedland
- Institute of Radiation Protection, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - P Kundrát
- Institute of Radiation Protection, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - L Mariotti
- Department of Physics, University of Pavia, Via Bassi 6, Pavia, Italy INFN National Institute of Nuclear Physics, Sezione di Pavia, Via Bassi 6, Pavia, Italy Department of Oncology, Gray Institute for Radiation Oncology and Biology, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX3 7DQ, UK
| | - A Ottolenghi
- Department of Physics, University of Pavia, Via Bassi 6, Pavia, Italy INFN National Institute of Nuclear Physics, Sezione di Pavia, Via Bassi 6, Pavia, Italy
| |
Collapse
|
6
|
Liamsuwan T, Hultqvist M, Lindborg L, Uehara S, Nikjoo H. Microdosimetry of proton and carbon ions. Med Phys 2014; 41:081721. [DOI: 10.1118/1.4888338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|