1
|
Kimura A, Matsufuji N, Hiroki A, Seito H, Taguchi M. Development of high-sensitivity intra-corporeal catheter-type liquid dosimeter for radiotherapy. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aad395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
2
|
Blake SJ, Cheng Z, McNamara A, Lu M, Vial P, Kuncic Z. A high
DQE
water‐equivalent
EPID
employing an array of plastic‐scintillating fibers for simultaneous imaging and dosimetry in radiotherapy. Med Phys 2018; 45:2154-2168. [DOI: 10.1002/mp.12882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Samuel J. Blake
- Institute of Medical Physics School of Physics University of Sydney Sydney NSW 2006Australia
- Ingham Institute for Applied Medical Research Sydney NSW 2170Australia
| | - Zhangkai Cheng
- Institute of Medical Physics School of Physics University of Sydney Sydney NSW 2006Australia
- Ingham Institute for Applied Medical Research Sydney NSW 2170Australia
| | - Aimee McNamara
- Department of Radiation Oncology Massachusetts General Hospital Harvard Medical School 30 Fruit St Boston MA 02114USA
| | - Minghui Lu
- Varex Imaging Corporation Santa Clara CA 95054USA
| | - Philip Vial
- Institute of Medical Physics School of Physics University of Sydney Sydney NSW 2006Australia
- Ingham Institute for Applied Medical Research Sydney NSW 2170Australia
- Department of Medical Physics Liverpool and Macarthur Cancer Therapy Centers NSW 2170 Australia
| | - Zdenka Kuncic
- Institute of Medical Physics School of Physics University of Sydney Sydney NSW 2006Australia
| |
Collapse
|
3
|
Deshpande S, Blake SJ, Xing A, Metcalfe PE, Holloway LC, Vial P. A simple model for transit dosimetry based on a water equivalent EPID. Med Phys 2018; 45:1266-1275. [DOI: 10.1002/mp.12742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/10/2017] [Accepted: 12/18/2017] [Indexed: 01/20/2023] Open
Affiliation(s)
- S. Deshpande
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute; Liverpool NSW 2170 Australia
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
| | - S. J. Blake
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute; Liverpool NSW 2170 Australia
- School of Physics; Institute of Medical Physics; University of Sydney; Sydney NSW 2006 Australia
| | - A. Xing
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute; Liverpool NSW 2170 Australia
| | - P. E. Metcalfe
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute; Liverpool NSW 2170 Australia
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
| | - L. C. Holloway
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute; Liverpool NSW 2170 Australia
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
- School of Physics; Institute of Medical Physics; University of Sydney; Sydney NSW 2006 Australia
- School of Medicine; South West Sydney Clinical School; University of NSW; Liverpool NSW 2052 Australia
| | - P. Vial
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute; Liverpool NSW 2170 Australia
- School of Physics; Institute of Medical Physics; University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
4
|
Huq MS, Fraass BA, Dunscombe PB, Gibbons JP, Ibbott GS, Mundt AJ, Mutic S, Palta JR, Rath F, Thomadsen BR, Williamson JF, Yorke ED. The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management. Med Phys 2016; 43:4209. [PMID: 27370140 PMCID: PMC4985013 DOI: 10.1118/1.4947547] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact of possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for "intensity modulated radiation therapy (IMRT)" as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and QM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation of risk-assessment techniques will make radiation therapy safer and more efficient.
Collapse
Affiliation(s)
- M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute and UPMC CancerCenter, Pittsburgh, Pennsylvania 15232
| | - Benedick A Fraass
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Peter B Dunscombe
- Department of Oncology, University of Calgary, Calgary T2N 1N4, Canada
| | | | - Geoffrey S Ibbott
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas 77030
| | - Arno J Mundt
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California 92093-0843
| | - Sasa Mutic
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jatinder R Palta
- Department of Radiation Oncology, Virginia Commonwealth University, P.O. Box 980058, Richmond, Virginia 23298
| | - Frank Rath
- Department of Engineering Professional Development, University of Wisconsin, Madison, Wisconsin 53706
| | - Bruce R Thomadsen
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705-2275
| | - Jeffrey F Williamson
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298-0058
| | - Ellen D Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Center, New York, New York 10065
| |
Collapse
|
5
|
Deshpande S, McNamara AL, Holloway L, Metcalfe P, Vial P. Feasibility study of a dual detector configuration concept for simultaneous megavoltage imaging and dose verification in radiotherapy. Med Phys 2015; 42:1753-64. [DOI: 10.1118/1.4907966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
6
|
Baek TS, Chung EJ, Koh EK, Seo J, Yoon M. Evaluation of the accuracy of dose delivery for IMRT based on transit dosimetry. HEALTH PHYSICS 2014; 107:200-205. [PMID: 25068957 DOI: 10.1097/hp.0000000000000098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The authors have developed and evaluated a new method that uses transit dose in the treatment room in verification of dose delivery to patients. Five intensity modulated radiotherapy (IMRT) plans were selected from actual cancer patients, and transit dose was measured using MapCHECK 2 and an anthropomorphic phantom. The criteria used as a verification tool for the dose delivery to the patient were gamma-index-based dose comparison between the computed dose and measured dose. When the doses were delivered to an anthropomorphic phantom normally, the average passing rate was 95.2% based on a gamma index analysis. This feasibility study suggested that transit dose-based quality assurance can provide information about the accuracy of an inhomogeneity correction algorithm and patient positioning during treatment, allowing its use as a verification tool for actual dose delivery to patients in the treatment room.
Collapse
Affiliation(s)
- Tae Seong Baek
- *Department of Radiation Oncology, National Health Insurance Co., Ilsan Hospital, Ilsan, Korea; †Seoul Center, Korea Basic Science Institute, Seoul, Korea; ‡Department of Radiological Science, Korea University, Seoul, Korea
| | | | | | | | | |
Collapse
|
7
|
Peca S, Brown DW. Two-dimensional in vivo dose verification using portal imaging and correlation ratios. J Appl Clin Med Phys 2014; 15:4752. [PMID: 25207402 PMCID: PMC5875516 DOI: 10.1120/jacmp.v15i4.4752] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/06/2014] [Accepted: 03/05/2014] [Indexed: 12/03/2022] Open
Abstract
The electronic portal imaging device (EPID) has the potential to be used for in vivo dosimetry during radiation therapy as an additional dose delivery check. In this study we have extended a method developed by A. Piermattei and colleagues in 2006 that made use of EPID transit images (acquired during treatment) to calculate dose in the isocenter point. The extension allows calculation of two-dimensional dose maps of the entire radiation field at the depth of isocenter. We quantified the variability of the ratio of EPID signal to dose in the isocenter plane in Solid Water phantoms of various thicknesses and with various field sizes, and designed a field edge dose calculation correction. To validate the method, we designed three realistic conventional radiation therapy treatment plans on a thorax and head anthropomorphic phantom (whole brain, brain primary, lung tumor). Using CT data, EPID transit images, EPID signal-to-dose correlation, and our edge correction, we calculated dose in the isocenter plane and compared it with the treatment planning system's prediction. Gamma evaluation (3%, 3 mm) showed good agreement (Pγ<1 ≥ 96.5%) for all fields of the whole brain and brain primary plans. In the presence of lung, however, our algorithm overestimated dose by 7%-9%. This 2D EPID-based in vivo dosimetry method can be used for posttreatment dose verification, thereby improving the safety and quality of patient treatments. With future work, it may be extended to measure dose in real time and to prevent harmful delivery errors.
Collapse
|
8
|
Transit dosimetry in dynamic IMRT with an a-Si EPID. Med Biol Eng Comput 2014; 52:579-88. [PMID: 24878699 DOI: 10.1007/s11517-014-1161-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
Using an amorphous silicon (a-Si) EPID for transit dosimetry requires detailed characterization of its dosimetric response in a variety of conditions. In this study, a measurement-based model was developed to calibrate an a-Si EPID response to dose for transit dosimetry by comparison with a reference ionization chamber. The ionization chamber reference depth and the required additional buildup thickness for electronic portal imaging devices (EPID) transit dosimetry were determined. The combined effects of changes in radiation field size, phantom thickness, and the off-axis distance on EPID transit dosimetry were characterized. The effect of scattered radiation on out-of-field response was investigated for different field sizes and phantom thicknesses by evaluation of the differences in image profiles and in-water measured profiles. An algorithm was developed to automatically apply these corrections to EPID images based on the user-specified field size and phantom thickness. The average phantom thickness and an effective field size were used for IMRT fields, and images were acquired in cine mode in the presence of an anthropomorphic phantom. The effective field size was defined as the percentage of the jaw-defined field that was involved during the delivery. Nine head and neck dynamic IMRT fields were tested by comparison with a MatriXX two-dimensional array dosimeter using the Gamma (3%, 3 mm) evaluation. A depth of 1.5 cm was selected as the ionization chamber reference depth. An additional 2.2 mm of copper buildup was added to the EPID. Comparison of EPID and MatriXX dose images for the tested fields showed that using a 10% threshold, the average number of points with Gamma index <1 was 96.5%. The agreement in the out-of field area was shown by selection of a 2% threshold which on average resulted in 94.8% of points with a Gamma index <1. The suggested method is less complicated than previously reported techniques and can be used for all a-Si EPIDs regardless of the manufacturer.
Collapse
|
9
|
Blake SJ, McNamara AL, Deshpande S, Holloway L, Greer PB, Kuncic Z, Vial P. Characterization of a novel EPID designed for simultaneous imaging and dose verification in radiotherapy. Med Phys 2013; 40:091902. [DOI: 10.1118/1.4816657] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|