1
|
Chen ZJ, Li XA, Brenner DJ, Hellebust TP, Hoskin P, Joiner MC, Kirisits C, Nath R, Rivard MJ, Thomadsen BR, Zaider M. AAPM Task Group Report 267: A joint AAPM GEC-ESTRO report on biophysical models and tools for the planning and evaluation of brachytherapy. Med Phys 2024; 51:3850-3923. [PMID: 38721942 DOI: 10.1002/mp.17062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 06/05/2024] Open
Abstract
Brachytherapy utilizes a multitude of radioactive sources and treatment techniques that often exhibit widely different spatial and temporal dose delivery patterns. Biophysical models, capable of modeling the key interacting effects of dose delivery patterns with the underlying cellular processes of the irradiated tissues, can be a potentially useful tool for elucidating the radiobiological effects of complex brachytherapy dose delivery patterns and for comparing their relative clinical effectiveness. While the biophysical models have been used largely in research settings by experts, it has also been used increasingly by clinical medical physicists over the last two decades. A good understanding of the potentials and limitations of the biophysical models and their intended use is critically important in the widespread use of these models. To facilitate meaningful and consistent use of biophysical models in brachytherapy, Task Group 267 (TG-267) was formed jointly with the American Association of Physics in Medicine (AAPM) and The Groupe Européen de Curiethérapie and the European Society for Radiotherapy & Oncology (GEC-ESTRO) to review the existing biophysical models, model parameters, and their use in selected brachytherapy modalities and to develop practice guidelines for clinical medical physicists regarding the selection, use, and interpretation of biophysical models. The report provides an overview of the clinical background and the rationale for the development of biophysical models in radiation oncology and, particularly, in brachytherapy; a summary of the results of literature review of the existing biophysical models that have been used in brachytherapy; a focused discussion of the applications of relevant biophysical models for five selected brachytherapy modalities; and the task group recommendations on the use, reporting, and implementation of biophysical models for brachytherapy treatment planning and evaluation. The report concludes with discussions on the challenges and opportunities in using biophysical models for brachytherapy and with an outlook for future developments.
Collapse
Affiliation(s)
- Zhe Jay Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York, New York, USA
| | - Taran P Hellebust
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Peter Hoskin
- Mount Vernon Cancer Center, Mount Vernon Hospital, Northwood, UK
- University of Manchester, Manchester, UK
| | - Michael C Joiner
- Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Christian Kirisits
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Ravinder Nath
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mark J Rivard
- Department of Radiation Oncology, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Bruce R Thomadsen
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Marco Zaider
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Struik GM, Godart J, Klem TM, Monajemi TT, Robar J, Pignol JP. Radiochromic film in vivo dosimetry predicts early the risk of acute skin toxicity for brachytherapy partial breast irradiation. Phys Med Biol 2020; 65:085001. [PMID: 32126542 DOI: 10.1088/1361-6560/ab7c2f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Brachytherapy accelerated partial breast irradiation (APBI) is well tolerated, but reported acute toxicities including moist desquamation rates range from 7% to 39%. Moist desquamation is correlated to long-term skin toxicity and high skin dose is the main risk factor. This study uses radiochromic films for in vivo skin dosimetry of low dose rate (LDR) APBI brachytherapy and prediction of skin toxicity. Patients participating in a clinical trial assessing skin toxicity of LDR seed brachytherapy were included in this study. Following the seed implantation procedure, patients were asked to wear a customized oval shaped radiochromic film on the skin projection of the planned target volume (PTV) for 24 h. Exposed films were collected, and maximum point doses were measured. In addition, maximum doses to a small skin volume (D0.2cc) were calculated on the pre- and post-implant CT-scan. Acute skin toxicities (redness, pigmentation, induration and dermatitis) were scored by the treating physician for 2 months during follow-up visits. Skin dose measurements and acute toxicity were available for 18 consecutive patients. The post-implant calculated maximum skin doses (D0.2cc), 60.8 Gy (SD ± 41.0), were on average 30% higher than those measured in vivo (Dmax-film), 46.6 Gy (SD ± 19.3), but those values were highly significantly correlated (Spearman's rho 0.827, p < 0.001). Also, dermatitis and induration were significantly correlated with higher in vivo measured and post-implant calculated skin dose. Pre-implant dosimetry was not correlated with measured or post-implant skin dose or side effects. Radiochromic films can reliably diagnose excess dose to the skin during the first 24 h and predict skin toxicity, which enables preventative measures. Trial registration: Nederlands Trial Register (www.trialregister.nl), NTR6549, the trial was registered prospectively on 27 June 2017. ABR number: NL56210.078.16.
Collapse
Affiliation(s)
- Gerson M Struik
- Department of Surgery, Franciscus Gasthuis and Vlietland, PO Box 10900, Rotterdam 3004 BA, The Netherlands. Department of Radiation Oncology, Erasmus MC Cancer Institute, PO Box 5201, Rotterdam 3008 AE, The Netherlands
| | | | | | | | | | | |
Collapse
|
3
|
Dosimetric comparison of CT-guided iodine-125 seed stereotactic brachytherapy and stereotactic body radiation therapy in the treatment of NSCLC. PLoS One 2017; 12:e0187390. [PMID: 29121047 PMCID: PMC5679513 DOI: 10.1371/journal.pone.0187390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
This study aimed to assess the dosimetric differences between iodine-125 seed stereotactic brachytherapy (SBT) and stereotactic body radiation therapy (SBRT) in the treatment of non-small cell lung cancer (NSCLC). An SBT plan and an SBRT plan were generated for eleven patients with T1-2 NSCLC. Prescription of the dose and fractionation (fr) for SBRT was 48Gy/4fr. The planning aim for SBT was D90 (dose delivered to 90% of the target volume)≥120Gy. Student’s paired t test was used to compare the dosimetric parameters. The SBT and SBRT plans had comparable PTV D90 (104.73±2.10Gyvs.107.64±2.29Gy), and similar mean volume receiving 100% of the prescription dose (V100%) (91.65% vs.92.44%, p = 0.410). The mean volume receiving 150% of the prescribed dose (V150%) for SBT was 64.71%, whereas it was 0% for SBRT. Mean heterogeneity index (HI) deviation for SBT vs. SBRT was 0.73 vs. 0.19 (p<0.0001), and the mean conformity index (CI) for SBT vs. SBRT was 0.77 vs. 0.81 (p = 0.031). The mean lung doses (MLD) in SBT were significantly lower than those in SBRT (1.952±0.713 vs. 5.618±2.009, p<0.0001). In conclusion, compared with SBRT, SBT can generate a comparable dose within PTV, while the organs at risk (OARs) only receive a very low dose. But the HI and CI in SBT were lower than in SBRT.
Collapse
|
4
|
Miksys N, Cygler JE, Caudrelier JM, Thomson RM. Patient-specific Monte Carlo dose calculations for (103)Pd breast brachytherapy. Phys Med Biol 2016; 61:2705-29. [PMID: 26976478 DOI: 10.1088/0031-9155/61/7/2705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work retrospectively investigates patient-specific Monte Carlo (MC) dose calculations for (103)Pd permanent implant breast brachytherapy, exploring various necessary assumptions for deriving virtual patient models: post-implant CT image metallic artifact reduction (MAR), tissue assignment schemes (TAS), and elemental tissue compositions. Three MAR methods (thresholding, 3D median filter, virtual sinogram) are applied to CT images; resulting images are compared to each other and to uncorrected images. Virtual patient models are then derived by application of different TAS ranging from TG-186 basic recommendations (mixed adipose and gland tissue at uniform literature-derived density) to detailed schemes (segmented adipose and gland with CT-derived densities). For detailed schemes, alternate mass density segmentation thresholds between adipose and gland are considered. Several literature-derived elemental compositions for adipose, gland and skin are compared. MC models derived from uncorrected CT images can yield large errors in dose calculations especially when used with detailed TAS. Differences in MAR method result in large differences in local doses when variations in CT number cause differences in tissue assignment. Between different MAR models (same TAS), PTV [Formula: see text] and skin [Formula: see text] each vary by up to 6%. Basic TAS (mixed adipose/gland tissue) generally yield higher dose metrics than detailed segmented schemes: PTV [Formula: see text] and skin [Formula: see text] are higher by up to 13% and 9% respectively. Employing alternate adipose, gland and skin elemental compositions can cause variations in PTV [Formula: see text] of up to 11% and skin [Formula: see text] of up to 30%. Overall, AAPM TG-43 overestimates dose to the PTV ([Formula: see text] on average 10% and up to 27%) and underestimates dose to the skin ([Formula: see text] on average 29% and up to 48%) compared to the various MC models derived using the post-MAR CT images studied herein. The considerable differences between TG-43 and MC models underline the importance of patient-specific MC dose calculations for permanent implant breast brachytherapy. Further, the sensitivity of these MC dose calculations due to necessary assumptions illustrates the importance of developing a consensus modelling approach.
Collapse
Affiliation(s)
- N Miksys
- Department of Physics, Carleton Laboratory for Radiotherapy Physics, Carleton University, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
5
|
Afsharpour H, Walsh S, Collins Fekete CA, Vigneault E, Verhaegen F, Beaulieu L. On the sensitivity of α/β prediction to dose calculation methodology in prostate brachytherapy. Int J Radiat Oncol Biol Phys 2014; 88:345-50. [PMID: 24411607 DOI: 10.1016/j.ijrobp.2013.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/16/2013] [Accepted: 11/01/2013] [Indexed: 01/13/2023]
Abstract
PURPOSE To study the relationship between the accuracy of the dose calculation in brachytherapy and the estimations of the radiosensitivity parameter, α/β, for prostate cancer. METHODS AND MATERIALS In this study, Monte Carlo methods and more specifically the code ALGEBRA was used to produce accurate dose calculations in the case of prostate brachytherapy. Equivalent uniform biologically effective dose was calculated for these dose distributions and was used in an iso-effectiveness relationship with external beam radiation therapy. RESULTS By considering different levels of detail in the calculations, the estimation for the α/β parameter varied from 1.9 to 6.3 Gy, compared with a value of 3.0 Gy suggested by the American Association of Physicists in Medicine Task Group 137. CONCLUSIONS Large variations of the α/β show the sensitivity of this parameter to dose calculation modality. The use of accurate dose calculation engines is critical for better evaluating the biological outcomes of treatments.
Collapse
Affiliation(s)
- Hossein Afsharpour
- Centre de Recherche sur le Cancer, Université Laval and Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, QC, Canada; Centre Intégré de Cancérologie de la Montérégie, Hôpital Charles-LeMoyne, Greenfield Park, QC, Canada
| | - Sean Walsh
- Department of Radiation Oncology Maastricht Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, Maastricht, The Netherlands; Gray Institute for Radiation Oncology and Biology, The University of Oxford, The United Kingdom
| | - Charles-Antoine Collins Fekete
- Centre de Recherche sur le Cancer, Université Laval and Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Eric Vigneault
- Centre de Recherche sur le Cancer, Université Laval and Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Frank Verhaegen
- Department of Radiation Oncology Maastricht Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, Maastricht, The Netherlands; Medical Physics Unit, Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Luc Beaulieu
- Centre de Recherche sur le Cancer, Université Laval and Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, QC, Canada.
| |
Collapse
|
6
|
Tanderup K, Beddar S, Andersen CE, Kertzscher G, Cygler JE. In vivo
dosimetry in brachytherapy. Med Phys 2013; 40:070902. [DOI: 10.1118/1.4810943] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
7
|
Moser EC, Vrieling C. Accelerated partial breast irradiation: the need for well-defined patient selection criteria, improved volume definitions, close follow-up and discussion of salvage treatment. Breast 2012; 21:707-15. [PMID: 23127279 DOI: 10.1016/j.breast.2012.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 08/17/2012] [Accepted: 09/23/2012] [Indexed: 12/24/2022] Open
Abstract
Breast-conserving therapy, including whole breast irradiation, has become a well-established alternative to mastectomy in early-stage breast cancer patients, with similar survival rates and better cosmetic outcome. However, many women are still treated with mastectomy, due to logistical issues related to the long course of radiotherapy (RT). To reduce mastectomy rates and/or omission of RT after breast-conserving surgery, shorter, hypofractionated RT treatments have been introduced. More recently, the necessity of routinely treating the entire breast in all patients has been questioned, leading to the development of partial breast radiotherapy. With accelerated partial breast irradiation (APBI) these two approaches have been combined: the tumor bed with a 1-2 cm margin is irradiated either intra-operatively (single fraction) or postoperatively over 5-15 days. Different techniques have been developed, including interstitial brachytherapy, intra-cavity brachytherapy, intra-operative radiotherapy and external beam radiotherapy. These techniques are being evaluated in several ongoing phase III studies. Since its introduction, APBI has been the subject of continuous debate. ASTRO and GEC-ESTRO have published guidelines for patient selection for APBI, and strongly recommend that APBI be carried out within ongoing clinical trials. Recently, the patient selection criteria for APBI have also been up for debate, following the publication of results from different groups that do/do not confirm a difference in recurrence risk among the ASTRO defined risk groups. This paper reviews the different APBI techniques, current recommendations for patient selection, available clinical data and ongoing clinical trials. A case report is included to illustrate the need for careful follow-up of patients treated with APBI.
Collapse
Affiliation(s)
- Elizabeth C Moser
- Breast Unit/Department of Radiotherapy, Champalimaud Cancer Centre, Lisbon, Portugal.
| | | |
Collapse
|