1
|
Elcadi ZA, El Moussaoui M, Aouadi S, Sukumaran R, Hammoud R, Al-Hammadi N, Toufique Y, Bouhali O. GATE Monte Carlo approach to heterogeneity dose distribution in small fields used in radiation therapy. Biomed Phys Eng Express 2024; 10:035021. [PMID: 38518360 DOI: 10.1088/2057-1976/ad36cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
The Accurate dosage prediction in Radiation Therapy is challenging, prompting a need for precision beyond conventional clinical Treatment Planning Systems (TPS). Monte Carlo-based methods are sought for their superior accuracy. The aim of this study is to compare dose distributions between the ACUROS algorithm and the GATE platform in various tissue densities and field sizes, focusing on smaller fields. This study was initiated with a homogeneous validation of the TrueBeam STX system, using measurements obtained from the Centre Hospitalier Interregional Edith Cavell (CHIREC) in Brussels. The validation compared dosimetric functions (Percentage Depth Dose (PDD), Dose profile (DP) and Collimator scatter fraction (CSF)) employing the GAMMA index with a 2% / 2 mm criterion tolerance. Following this, heterogeneous studies examined dose distributions between the ACUROS algorithm and the GATE platform in various tissue densities and field sizes, with a specific focus on smaller fields. Simulations were conducted using both platforms on chest phantoms with heterogeneous slabs representing bone, lung, and heart, each housing a central tumor. The impact of electronic equilibrium on tumors for different small field sizes was evaluated. Results showed a remarkable 99% agreement between measurements and GATE calculations in the homogeneous validation of the TrueBeam STX system. However, in heterogeneous studies, ACUROS consistently overestimated lung doses by up to 8% compared to GATE simulation, especially evident with a flattening filter and smaller beam sizes at density interfaces. This highlights significant dose estimation discrepancies between ACUROS and GATE, emphasizing the need for precise calculations. The findings support exploring Monte Carlo-based methods for enhanced accuracy in Radiation Therapy treatment planning.
Collapse
Affiliation(s)
- Z A Elcadi
- Electrical and Computer Engeneering, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar
| | - M El Moussaoui
- CHIREC Hospital Group, Department of Medical Physics, Brussels, Belgium
| | - S Aouadi
- National Center for Cancer Care and Research, NCCCR Hamad Medical Corporation, Doha, Qatar
| | - R Sukumaran
- National Center for Cancer Care and Research, NCCCR Hamad Medical Corporation, Doha, Qatar
| | - R Hammoud
- National Center for Cancer Care and Research, NCCCR Hamad Medical Corporation, Doha, Qatar
| | - N Al-Hammadi
- National Center for Cancer Care and Research, NCCCR Hamad Medical Corporation, Doha, Qatar
| | - Y Toufique
- Energy, Materials, Numerical Physics, Ecole Normale Supérieure (ENS), Abdelmalek Essaadi University, Tetouan, Morocco
| | - O Bouhali
- Electrical and Computer Engeneering, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar
- Qatar Center of Quantum Computing, College of Science and Engineering, Hamad Bin Khalifa University, Qatar
| |
Collapse
|
2
|
Chang SH, Kim TS, Jeon YH, Jung NH, Choi DH. Novel management of expected post-radiotherapy complications in hepatocellular carcinoma patients: a case report. JOURNAL OF LIVER CANCER 2022; 22:183-187. [PMID: 37383411 PMCID: PMC10035741 DOI: 10.17998/jlc.2022.08.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 08/03/2022] [Indexed: 06/30/2023]
Abstract
In recent years, radiotherapy (RT) has been used to treat hepatocellular carcinoma (HCC) at each stage. This clinical trend has developed with the increasing improvement of RT techniques, which show clinical results comparable to those of other treatment modalities. Intensity-modulated radiotherapy uses a high radiation dose to improve treatment effectiveness. However, the associated radiation toxicity can damage adjacent organs. Radiation-induced gastric damage with gastric ulcers is a complication of RT. This report presents a novel management strategy for preventing post-RT gastric ulcers. We present the case of a 53-year-old male patient diagnosed with HCC, who experienced gastric ulcer after RT. Before the second round of RT, the patient was administered a gas-foaming agent, which was effective in preventing RT complications.
Collapse
Affiliation(s)
- Sung Hoon Chang
- Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Tae Suk Kim
- Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Yong Hwan Jeon
- Department of Radiology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Nuri Hyun Jung
- Department of Radiation Oncology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Dae Hee Choi
- Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
3
|
Xie T, He B, Shi Q, Qian J, Hao W, Li S, Lewis E, Sun W. Measurement of scattered rays from different materials using an inorganic scintillator based optical fiber sensor and its application in radiotherapy. Biomed Phys Eng Express 2022; 8. [PMID: 34991079 DOI: 10.1088/2057-1976/ac48e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/06/2022] [Indexed: 11/12/2022]
Abstract
Measurements using an Optical Fiber OFS including an inorganic scintillator placed on the surface of a phantom show that the particle energy distribution inside the phantom remains unchanged. The backscattered intensity measured using an Optical Fiber Sensor (OFS) exhibits a linear relationship with the total radiation dose delivered to the phantom, and this relationship shows that the OFS can be used for indirect dose measurement when located on the surface of the phantom i.e. that arising from the energetic backscattered electrons and photons. Such a device can therefore be used as a clinicalin-vivodosimeter, being located on the patient's body surface. In addition, the measurement results for the same OFS located inside and outside the radiation field of a compound water based phantom are analyzed. The differences in measurement of the fluorescence signal in response to various tissue materials representing bone or tumor tissue in the irradiation field are strongly related to the material's ability to block the scattered rays from the water phantom, as well as the scattered x-rays generated by the material located within the phantom.
Collapse
Affiliation(s)
- Tianci Xie
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Bo He
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Qieming Shi
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Jinqian Qian
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Wenjing Hao
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Song Li
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Elfed Lewis
- Optical Fiber Sensors Research Centre, University of Limerick, Castletroy, Limerick, Ireland
| | - Weimin Sun
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| |
Collapse
|
4
|
Charles PH, Crowe SB, Kairn T. Technical Note: Small field dose correction factors for radiochromic film in lung phantoms. Med Phys 2021; 48:2667-2672. [PMID: 33619729 DOI: 10.1002/mp.14799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Radiochromic film has been established as a detector that can be used without the need for perturbation correction factors for small field dosimetry in water. However, perturbation factors in low density media such as lung have yet to be published. This study calculated the factors required to account for the perturbation of radiochromic film when used for small field dosimetry in lung equivalent material. METHOD Monte Carlo simulations were used to calculate dose to Gafchromic EBT3 film when placed inside a lung phantom. The beam simulated had a nominal energy of 6 MV and the field sizes simulated ranged from 10 × 10 mm2 to 30 × 30 mm2 . The lung density simulated was varied between 0.2 and 0.3 g/cm3 . Each simulation was repeated with the film replaced by lung material (the same as the surrounding medium), and the required correction factors for film dosimetry in lung ( D M e d , Q D D e t , Q ) were calculated by dividing the dose in lung by the dose in film. RESULTS For field sizes 30 × 30 mm2 and larger, no correction factors were required. At a 20 × 20 mm2 field size, small corrections were required, but were within the approximate accuracy of film dosimetry (~2%). For a 10 × 10 mm2 field size, significant correction factors need to be applied (0.935 for lung density of 0.20 g/cm3 to 0.963 for lung density of 0.30 g/cm3 ). The values lower than one mean that the film is over-responding. At the "upstream" lung-water interface the correction factors were close to unity; while at the downstream interface the corrections required were marginally smaller to those at the center of lung. One centimeter or more away from the interfaces, the correction factor did not vary as a function distance from the interface (in the beam direction). Away from the central axis (perpendicular to the beam direction), the correction factors increased slightly (away from unity) as a function of off-axis distance, before abruptly changing direction at the penumbra, with the film actually under-responding by ~10% outside the field edges. CONCLUSION Accurate dosimetry of very small fields (15 × 15 mm2 or smaller) using radiochromic film requires correction factors for the perturbation of the film on the surrounding lung material. This correction factor was as high as 6.5% for a 10 × 10 mm2 field size and a density of 0.2 g/cm3 . This will increase if either the density or the field size decrease further. This correction factor does not vary as a function of depth in lung once charged particle equilibrium is established.
Collapse
Affiliation(s)
- Paul H Charles
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Herston, Queensland, 4029, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Queensland, 4072, Australia.,School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Scott B Crowe
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Herston, Queensland, 4029, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Queensland, 4072, Australia.,School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia.,Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, Queensland, 4029, Australia
| | - Tanya Kairn
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Herston, Queensland, 4029, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Queensland, 4072, Australia.,School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia.,Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, Queensland, 4029, Australia
| |
Collapse
|
5
|
Charles PH, Crowe S, Kairn T. Recommendations for simulating and measuring with biofabricated lung equivalent materials based on atomic composition analysis. Phys Eng Sci Med 2021; 44:331-335. [PMID: 33591538 DOI: 10.1007/s13246-021-00979-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 11/25/2022]
Abstract
Monte Carlo simulations of lung equivalent materials often involve the density being artificially lowered rather than a true lung tissue (or equivalent plastic) and air composition being simulated. This study used atomic composition analysis to test the suitability of this method. Atomic composition analysis was also used to test the suitability of 3D printing PLA or ABS with air to simulate lung tissue. It was found that there was minimal atomic composition difference when using an artificially lowered density, with a 0.8 % difference in Nitrogen the largest observed. Therefore, excluding infill pattern effects, lowering the density of the lung tissue (or plastic) in simulations should be sufficiently accurate to simulate an inhaled lung, without the need to explicitly include the air component. The average electron density of 3D printed PLA and air, and ABS and air were just 0.3 % and 1.3 % different to inhaled lung, confirming their adequacy for MV photon dosimetry. However large average atomic number differences (5.6 % and 20.4 % respectively) mean that they are unlikely to be suitable for kV photon dosimetry.
Collapse
Affiliation(s)
- Paul H Charles
- Herston Biofabrication Institute, Brisbane, QLD, Australia. .,School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia. .,Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Scott Crowe
- Herston Biofabrication Institute, Brisbane, QLD, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia.,Cancer Care Services, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Tanya Kairn
- Herston Biofabrication Institute, Brisbane, QLD, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia.,Cancer Care Services, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Kumar S, Nahum AE, Chetty IJ. Monte-Carlo-computed dose, kerma and fluence distributions in heterogeneous slab geometries irradiated by small megavoltage photon fields. ACTA ACUST UNITED AC 2020; 65:175012. [DOI: 10.1088/1361-6560/ab98d1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Najafzadeh M, Nickfarjam A, Jabbari K, Markel D, Chow JCL, Takabi FS. Dosimetric verification of lung phantom calculated by collapsed cone convolution: A Monte Carlo and experimental evaluation. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:161-175. [PMID: 30614811 DOI: 10.3233/xst-180425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To evaluate the dose calculation accuracy in the Prowess Panther treatment planning system (TPS) using the collapsed cone convolution (CCC) algorithm. METHODS The BEAMnrc Monte Carlo (MC) package was used to predict the dose distribution of photon beams produced by the Oncor® linear accelerator (linac). The MC model of an 18 MV photon beam was verified by measurement using a p-type diode dosimeter. Percent depth dose (PDD) and dose profiles were used for comparison based on three field sizes: 5×5, 10×10, and 20×20cm2. The accuracy of the CCC dosimetry was also evaluated using a plan composed of a simple parallel-opposed field (11×16cm2) in a lung phantom comprised of four tissue simulating media namely, lung, soft tissue, bone and spinal cord. The CCC dose calculation accuracy was evaluated by MC simulation and measurements according to the dose difference and 3D gamma analysis. Gamma analysis was carried out through comparison of the Monte Carlo simulation and the TPS calculated dose. RESULTS Compared to the dosimetric results measured by the Farmer chamber, the CCC algorithm underestimated dose in the planning target volume (PTV), right lung and lung-tissue interface regions by about -0.11%, -1.6 %, and -2.9%, respectively. Moreover, the CCC algorithm underestimated the dose at the PTV, right lung and lung-tissue interface regions in the order of -0.34%, -0.4% and -3.5%, respectively, when compared to the MC simulation. Gamma analysis results showed that the passing rates within the PTV and heterogeneous region were above 59% and 76%. For the right lung and spinal cord, the passing rates were above 80% for all gamma criteria. CONCLUSIONS This study demonstrates that the CCC algorithm has potential to calculate dose with sufficient accuracy for 3D conformal radiotherapy within the thorax where a significant amount of tissue heterogeneity exists.
Collapse
Affiliation(s)
- Milad Najafzadeh
- Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandare-Abbas, Iran
| | - Abolfzal Nickfarjam
- Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Radiotherapy Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Keyvan Jabbari
- Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daniel Markel
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - James C L Chow
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Fatemeh Shirani Takabi
- Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Elcim Y, Dirican B, Yavas O. Dosimetric comparison of pencil beam and Monte Carlo algorithms in conformal lung radiotherapy. J Appl Clin Med Phys 2018; 19:616-624. [PMID: 30079474 PMCID: PMC6123106 DOI: 10.1002/acm2.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In this study, lung radiotherapy target volumes as well as critical organs such as the lungs, spinal cord, esophagus, and heart doses calculated using pencil beam (PB) and Monte Carlo (MC) algorithm-based treatment planning systems (TPSs) were compared. The main aim was the evaluation of calculated dose differences between the PB and MC algorithms in a highly heterogeneous medium. METHODS A total of 6 MV photon energy conformal treatment plans were created for a RANDO lung phantom using one PB algorithm-based Precise Plan Release 2.16 TPS and one MC algorithm-based Monaco TPS. Thermoluminescence dosimeters (TLDs) were placed into appropriate slices within the RANDO phantom and then irradiated with an Elekta-Synergy® Linear Accelerator for dose verification. Doses were calculated for the V5, V10, V20, and mean lung doses (MLDs) in bilateral lungs and D50, D98, D2, and mean doses in the target volume (planning target volume, PTV). RESULTS The minimum, maximum, and mean doses of the target volumes and critical organs in two treatment plans were compared using dose volume histograms (DVHs). The mean dose difference between the PB and MC algorithms for the PTV was 0.3%, whereas the differences in V5, V10, V20, and MLD were 12.5%, 15.8%, 14.4%, and 9.1%, respectively. The differences in PTV coverage between the two algorithms were 0.9%, 2.7% and 0.7% for D50, D98 and D2, respectively. CONCLUSIONS A comparison of the dose data acquired in this study reveals that the MC algorithm calculations are closer to the 60 Gy prescribed dose for PTV, while the difference between the PB and MC algorithms was found to be non-significant. Because of the major difference arising from the dose calculation techniques by TPS that was observed in the MLD with significant medium heterogeneity, we recommend the use of the MC algorithm in such heterogeneous sites.
Collapse
Affiliation(s)
- Yelda Elcim
- Department of Radiation OncologyGulhane Training and Research HospitalAnkaraTurkey
| | - Bahar Dirican
- Department of Radiation OncologyGulhane Training and Research HospitalAnkaraTurkey
| | - Omer Yavas
- Department of Engineering PhysicsAnkara UniversityAnkaraTurkey
| |
Collapse
|
9
|
Schwarz M, Cattaneo GM, Marrazzo L. Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: A review. Phys Med 2017; 36:126-139. [DOI: 10.1016/j.ejmp.2017.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 02/14/2017] [Indexed: 12/25/2022] Open
|
10
|
de Smet M, Schuring D, Nijsten S, Verhaegen F. Accuracy of dose calculations on kV cone beam CT images of lung cancer patients. Med Phys 2016; 43:5934. [DOI: 10.1118/1.4964455] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
11
|
Li Y, Tian Z, Shi F, Song T, Wu Z, Liu Y, Jiang S, Jia X. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy. Phys Med Biol 2015; 60:2903-19. [DOI: 10.1088/0031-9155/60/7/2903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Disher B, Hajdok G, Gaede S, Mulligan M, Battista JJ. Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer. Phys Med Biol 2013; 58:6641-62. [PMID: 24018569 DOI: 10.1088/0031-9155/58/19/6641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons (<10 MV) and larger fields (>5 × 5 cm(2)) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ∼1 cm). For the phantom, square fields of 1 × 1 cm(2), 3 × 3 cm(2), or 5 × 5 cm(2) were applied. However, in the patient, 3 × 1 cm(2), 3 × 2 cm(2), 3 × 2.5 cm(2), or 3 × 3 cm(2) field sizes were used in simulations to assure target coverage in the superior-inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour centre. A planning target volume (PTV) was generated by considering the extent of tumour motion over the patient's breathing cycle and set-up uncertainties. All patient dose results were normalized such that at least 95% of the PTV received at least 54 Gy (i.e. D95 = 54 Gy). Further, we introduce 'LED maps' as a novel clinical tool to compare the magnitude of LED resulting from the various SBRT arc plans. Results from the phantom simulation suggest that the best lung sparing occurred for RT parameters that cause severe LED. For equal tumour dose coverage, normal lung dose (2 cm outside the target region) was reduced from 92% to 23%, comparing results between the 18 MV (5 × 5 cm(2)) and 18 MV (1 × 1 cm(2)) arc simulations. In addition to reduced lung dose for the 18 MV (1 × 1 cm(2)) arc, maximal tumour dose increased beyond 125%. Thus, LED can create steep dose gradients to spare normal lung, while increasing tumour dose levels (if desired). In the patient simulation, a LED-optimized arc plan was designed using either 18 MV (3 × 1 cm(2)) or 6 MV (3 × 3cm(2)) beams. Both plans met the D95 dose coverage requirement for the target. However, the LED-optimized plan increased the maximum, mean, and minimum dose within the PTV by as much as 80 Gy, 11 Gy, and 3 Gy, respectively. Despite increased tumour dose levels, the 18 MV (3 × 1 cm(2)) arc plan improved or maintained the V20, V5, and mean lung dose metrics compared to the 6 MV (3 × 3 cm(2)) simulation. We conclude that LED-SBRT has the potential to increase dose gradients, and dose levels within a small lung tumour. The magnitude of tumour dose increase or lung sparing can be optimized through manipulation of RT parameters (e.g. beam energy and field size).
Collapse
Affiliation(s)
- Brandon Disher
- Department of Physics and Engineering, London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, Ontario, N6A 4L6, Canada. Department of Medical Biophysics, Western University, Schulich School of Medicine and Dentistry, London, Ontario, N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
13
|
Disher B, Hajdok G, Wang A, Craig J, Gaede S, Battista JJ. Correction for ‘artificial’ electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung. Phys Med Biol 2013; 58:4157-74. [DOI: 10.1088/0031-9155/58/12/4157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Charles PH, Crowe SB, Kairn T, Kenny J, Lehmann J, Lye J, Dunn L, Hill B, Knight RT, Langton CM, Trapp JV. The effect of very small air gaps on small field dosimetry. Phys Med Biol 2012; 57:6947-60. [DOI: 10.1088/0031-9155/57/21/6947] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|