1
|
Yu YH, Yen TY, Hung SK, Chen SH, Wang KY. A 3D-printed phantom for stereotactic body radiation therapy simulation. Biomed Phys Eng Express 2024; 10:025034. [PMID: 38350115 DOI: 10.1088/2057-1976/ad28cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
In modern radiation therapy for lung cancer, examining the uncertainty between tumor motion and beam delivery is vitally important. To lower the radiation dose delivery to the patient's normal tissue, narrowing the irradiation field margin to hit the tumor accurately is critical. Thus we proposed a phantom that simulates the thorax and lung tumor's motions by employing a 3D printing technique. The lung tumor is controlled by a linear miniature Delta robot arm, with a maximum displacement of 20 mm in each direction. When we simulated the thoracic breathing movements at 12 mm in A-P (Anterior-Posterior), the control errors were within 10%. The average tracking errors of the prosthetic tumor were within 1.1 mm. Therefore, the 3D-printed phantom with a robot arm can provide a reliable simulation for training and dosimetry measurement before lung radiotherapy, especially SBRT.
Collapse
Affiliation(s)
- Ying-Hao Yu
- Department of Electrical Engineering and AIM-HI, National Chung Cheng University, Taiwan
| | - Tsung-Yu Yen
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shi-He Chen
- Department of Electrical Engineering and AIM-HI, National Chung Cheng University, Taiwan
| | - Kuei-Ying Wang
- Department of Nursing, Chang-Jung Christian University, Taiwan
| |
Collapse
|
2
|
Ekinci F, Asuroglu T, Acici K. Monte Carlo Simulation of TRIM Algorithm in Ceramic Biomaterial in Proton Therapy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4833. [PMID: 37445147 DOI: 10.3390/ma16134833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Biomaterials play a crucial role in enhancing human health and quality of life. They are employed in applications such as tissue substitution, diagnostic tools, medical supplies, therapeutic treatments, regenerative medicine, and radiation dosimetric studies. However, their predisposition to proton therapy, which is a trending treatment in the world, has not been adequately studied. Ceramic biomaterials, known for their hardness and durability, offer versatile uses, especially in bone tissue replacements. The wide range of physical, mechanical, and chemical properties exhibited by ceramics has spurred extensive research, development, and application in this field. This study focuses on investigating and analyzing the ionization, recoils, phonon release, collision events, and lateral scattering properties of ceramic biomaterials that closely resemble bone tissue in proton therapy applications. Monte Carlo (MC) Transport of Ions in Matter (TRIM) simulation tools were utilized for this analysis. The results showed that Silicon dioxide exhibited the Bragg peak position closest to bone tissue, with a deviation of 10.6%. The average recoils differed by 1.7%, and the lateral scattering differed by 3.6%. The main innovation of this study lies in considering interactions such as recoil, collision events, phonon production, and lateral scattering when selecting biomaterials, despite their limited digitization and understanding. By evaluating all these interactions, the study aimed to identify the most suitable ceramic biomaterial to replace bone tissue in proton therapy.
Collapse
Affiliation(s)
- Fatih Ekinci
- Institute of Nuclear Sciences, Ankara University, 06830 Ankara, Turkey
| | - Tunc Asuroglu
- Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Koray Acici
- Artifical Intelligence and Data Engineerig, Ankara University, 06830 Ankara, Turkey
| |
Collapse
|
3
|
Al-Hallaq HA, Cerviño L, Gutierrez AN, Havnen-Smith A, Higgins SA, Kügele M, Padilla L, Pawlicki T, Remmes N, Smith K, Tang X, Tomé WA. AAPM task group report 302: Surface guided radiotherapy. Med Phys 2022; 49:e82-e112. [PMID: 35179229 PMCID: PMC9314008 DOI: 10.1002/mp.15532] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/26/2021] [Accepted: 02/05/2022] [Indexed: 11/06/2022] Open
Abstract
The clinical use of surface imaging has increased dramatically with demonstrated utility for initial patient positioning, real-time motion monitoring, and beam gating in a variety of anatomical sites. The Therapy Physics Subcommittee and the Imaging for Treatment Verification Working Group of the American Association of Physicists in Medicine commissioned Task Group 302 to review the current clinical uses of surface imaging and emerging clinical applications. The specific charge of this task group was to provide technical guidelines for clinical indications of use for general positioning, breast deep-inspiration breath-hold (DIBH) treatment, and frameless stereotactic radiosurgery (SRS). Additionally, the task group was charged with providing commissioning and on-going quality assurance (QA) requirements for surface guided radiation therapy (SGRT) as part of a comprehensive QA program including risk assessment. Workflow considerations for other anatomic sites and for computed tomography (CT) simulation, including motion management are also discussed. Finally, developing clinical applications such as stereotactic body radiotherapy (SBRT) or proton radiotherapy are presented. The recommendations made in this report, which are summarized at the end of the report, are applicable to all video-based SGRT systems available at the time of writing. Review current use of non-ionizing surface imaging functionality and commercially available systems. Summarize commissioning and on-going quality assurance (QA) requirements of surface image-guided systems, including implementation of risk or hazard assessment of surface guided radiotherapy as a part of a total quality management program (e.g., TG-100). Provide clinically relevant technical guidelines that include recommendations for the use of SGRT for general patient positioning, breast DIBH, and frameless brain SRS, including potential pitfalls to avoid when implementing this technology. Discuss emerging clinical applications of SGRT and associated QA implications based on evaluation of technology and risk assessment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hania A Al-Hallaq
- Department of Radiation & Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Laura Cerviño
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, 33173, USA
| | | | - Susan A Higgins
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Malin Kügele
- Department of Hematology, Oncology and Radiation Physics, Skåne University, Lund, 221 00, Sweden.,Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, 221 00, Sweden
| | - Laura Padilla
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Todd Pawlicki
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicholas Remmes
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Koren Smith
- IROC Rhode Island, University of Massachusetts Chan Medical School, Lincoln, RI, 02865, USA
| | | | - Wolfgang A Tomé
- Department of Radiation Oncology and Department of Neurology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
4
|
Shan J, Yang Y, Schild SE, Daniels TB, Wong WW, Fatyga M, Bues M, Sio TT, Liu W. Intensity-modulated proton therapy (IMPT) interplay effect evaluation of asymmetric breathing with simultaneous uncertainty considerations in patients with non-small cell lung cancer. Med Phys 2020; 47:5428-5440. [PMID: 32964474 DOI: 10.1002/mp.14491] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Intensity-modulated proton therapy (IMPT) is sensitive to uncertainties from patient setup and proton beam range, as well as interplay effect. In addition, respiratory motion may vary from cycle to cycle, and also from day to day. These uncertainties can severely degrade the original plan quality and potentially affect patient's outcome. In this work, we developed a new tool to comprehensively consider the impact of all these uncertainties and provide plan robustness evaluation under them. METHODS We developed a comprehensive plan robustness evaluation tool that considered both uncertainties from patient setup and proton beam range, as well as respiratory motion simultaneously. To mimic patients' respiratory motion, the time spent in each phase was randomly sampled based on patient-specific breathing pattern parameters as acquired during the four-dimensional (4D)-computed tomography (CT) simulation. Spots were then assigned to one specific phase according to the temporal relationship between spot delivery sequence and patients' respiratory motion. Dose in each phase was calculated by summing contributions from all the spots delivered in that phase. The final 4D dynamic dose was obtained by deforming all doses in each phase to the maximum exhalation phase. Three hundred (300) scenarios (10 different breathing patterns with 30 different setup and range uncertainty scenario combinations) were calculated for each plan. The dose-volume histograms (DVHs) band method was used to assess plan robustness. Benchmarking the tool as an application's example, we compared plan robustness under both three-dimensional (3D) and 4D robustly optimized IMPT plans for 10 nonrandomly selected patients with non-small cell lung cancer. RESULTS The developed comprehensive plan robustness tool had been successfully applied to compare the plan robustness between 3D and 4D robustly optimized IMPT plans for 10 lung cancer patients. In the presence of interplay effect with uncertainties considered simultaneously, 4D robustly optimized plans provided significantly better CTV coverage (D95% , P = 0.002), CTV homogeneity (D5% -D95% , P = 0.002) with less target hot spots (D5% , P = 0.002), and target coverage robustness (CTV D95% bandwidth, P = 0.004) compared to 3D robustly optimized plans. Superior dose sparing of normal lung (lung Dmean , P = 0.020) favoring 4D plans and comparable normal tissue sparing including esophagus, heart, and spinal cord for both 3D and 4D plans were observed. The calculation time for all patients included in this study was 11.4 ± 2.6 min. CONCLUSION A comprehensive plan robustness evaluation tool was successfully developed and benchmarked for plan robustness evaluation in the presence of interplay effect, setup and range uncertainties. The very high efficiency of this tool marks its clinical adaptation, highly practical and versatile nature, including possible real-time intra-fractional interplay effect evaluation as a potential application for future use.
Collapse
Affiliation(s)
- Jie Shan
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Yunze Yang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Thomas B Daniels
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| |
Collapse
|
5
|
Miyamae Y, Akimoto M, Sasaki M, Fujimoto T, Yano S, Nakamura M. Variation in target volume and centroid position due to breath holding during four-dimensional computed tomography scanning: A phantom study. J Appl Clin Med Phys 2019; 21:11-17. [PMID: 31385421 PMCID: PMC6964747 DOI: 10.1002/acm2.12692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 11/08/2022] Open
Abstract
This study investigated the effects of respiratory motion, including unwanted breath holding, on the target volume and centroid position on four‐dimensional computed tomography (4DCT) imaging. Cine 4DCT images were reconstructed based on a time‐based sorting algorithm, and helical 4DCT images were reconstructed based on both the time‐based sorting algorithm and an amplitude‐based sorting algorithm. A spherical object 20 mm in diameter was moved according to several simulated respiratory motions, with a motion period of 4.0 s and maximum amplitude of 5 mm. The object was extracted automatically, and the target volume and centroid position in the craniocaudal direction were measured using a treatment planning system. When the respiratory motion included unwanted breath‐holding times shorter than the breathing cycle, the root mean square errors (RSME) between the reference and imaged target volumes were 18.8%, 14.0%, and 5.5% in time‐based images in cine mode, time‐based images in helical mode, and amplitude‐based images in helical mode, respectively. In helical mode, the RSME between the reference and imaged centroid position was reduced from 1.42 to 0.50 mm by changing the reconstruction method from time‐ to amplitude‐based sorting. When the respiratory motion included unwanted breath‐holding times equal to the breathing cycle, the RSME between the reference and imaged target volumes were 19.1%, 24.3%, and 15.6% in time‐based images in cine mode, time‐based images in helical mode, and amplitude‐based images in helical mode, respectively. In helical mode, the RSME between the reference and imaged centroid position was reduced from 1.61 to 0.83 mm by changing the reconstruction method from time‐ to amplitude‐based sorting. With respiratory motion including breath holding of shorter duration than the breathing cycle, the accuracies of the target volume and centroid position were improved by amplitude‐based sorting, particularly in helical 4DCT.
Collapse
Affiliation(s)
- Yuta Miyamae
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan.,Department of Radiological Technology, Radiological Diagnosis, National Cancer Center Hospital, Tokyo, Japan
| | - Mami Akimoto
- Department of Radiation Oncology, Kurashiki Central Hospital, Okayama, Japan
| | - Makoto Sasaki
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Takahiro Fujimoto
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Shinsuke Yano
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Liu J, Lin T, Fan J, Chen L, Price R, Ma CMC. Evaluation of the combined use of two different respiratory monitoring systems for 4D CT simulation and gated treatment. J Appl Clin Med Phys 2018; 19:666-675. [PMID: 30105770 PMCID: PMC6123155 DOI: 10.1002/acm2.12434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/14/2018] [Accepted: 07/21/2018] [Indexed: 12/25/2022] Open
Abstract
Purpose Two different respiratory monitoring systems (Varian's Real‐Time Position Management (RPM) System and Siemens’ ANZAI belt Respiratory Gating System) are compared in the context of respiratory signals and 4D CT images that are accordingly reconstructed. This study aims to evaluate the feasibility of combined use of RPM and ANZAI systems for 4DCT simulation and gated radiotherapy treatment, respectively. Methods The RPM infrared reflecting marker and the ANZAI belt pressure sensor were both placed on the patient's abdomen during 4DCT scans. The respiratory signal collected by the two systems was synchronized. Fifteen patients were enrolled for respiratory signal collection and analysis. The discrepancies between the RPM and ANZAI traces can be characterized by phase shift and shape distortion. To reveal the impact of the changes in respiratory signals on 4D images, two sets of 4D images based on the same patient's raw data were reconstructed using the RPM and ANZAI data for phase sorting, respectively. The volume of whole lung and the position of diaphragm apex were measured and compared for each respiratory phase. Results The mean phase shift was measured as 0.2 ± 0.1 s averaged over 15 patients. The shape of the breathing trace was found to be in disagreement. For all the patients, the ANZAI trace had a steeper falloff in exhalation than RPM. The inhalation curve, however, was matched for nine patients, steeper in ANZAI for five patients and steeper in RPM for one patient. For 4D image comparison, the difference in whole‐lung volume was about −4% to +4% and the difference in diaphragm position was about −5 mm to +4 mm, compared in each individual phase and averaged over seven patients. Conclusions Combined use of one system for 4D CT simulation and the other for gated treatment should be avoided as the resultant gating window would not fully match with each other due to the remarkable discrepancy in breathing traces acquired by the two different surrogate systems.
Collapse
Affiliation(s)
- Jie Liu
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Teh Lin
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jiajin Fan
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lili Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Robert Price
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - C-M Charlie Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
7
|
Werner R, Hofmann C, Mücke E, Gauer T. Reduction of breathing irregularity-related motion artifacts in low-pitch spiral 4D CT by optimized projection binning. Radiat Oncol 2017. [PMID: 28629434 PMCID: PMC5477247 DOI: 10.1186/s13014-017-0835-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Respiration-correlated CT (4D CT) is the basis of radiotherapy treatment planning of thoracic and abdominal tumors. Current clinical 4D CT images suffer, however, from artifacts due to unfulfilled assumptions concerning breathing pattern regularity. We propose and evaluate modifications to existing low-pitch spiral 4D CT reconstruction protocols to counteract respective artifacts. Methods The proposed advanced reconstruction (AR) approach consists of two steps that build on each other: (1) statistical analysis of the breathing signal recorded during CT data acquisition and extraction of a patient-specific reference breathing cycle for projection binning; (2) incorporation of an artifact measure into the reconstruction. 4D CT data of 30 patients were reconstructed by standard phase- and local amplitude-based reconstruction (PB, LAB) and compared with images obtained by AR. The number of artifacts was evaluated and artifact statistics correlated to breathing curve characteristics. Results AR reduced the number of 4D CT artifacts by 31% and 27% compared to PB and LAB; the reduction was most pronounced for irregular breathing curves. Conclusions We described a two-step optimization of low-pitch spiral 4D CT reconstruction to reduce artifacts in the presence of breathing irregularity and illustrated that the modifications to existing reconstruction solutions are effective in terms of artifact reduction. Electronic supplementary material The online version of this article (doi:10.1186/s13014-017-0835-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- René Werner
- University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany.
| | | | - Eike Mücke
- University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Tobias Gauer
- University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| |
Collapse
|
8
|
Fattori G, Safai S, Carmona PF, Peroni M, Perrin R, Weber DC, Lomax AJ. Monitoring of breathing motion in image-guided PBS proton therapy: comparative analysis of optical and electromagnetic technologies. Radiat Oncol 2017; 12:63. [PMID: 28359341 PMCID: PMC5374699 DOI: 10.1186/s13014-017-0797-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Background Motion monitoring is essential when treating non-static tumours with pencil beam scanned protons. 4D medical imaging typically relies on the detected body surface displacement, considered as a surrogate of the patient's anatomical changes, a concept similarly applied by most motion mitigation techniques. In this study, we investigate benefits and pitfalls of optical and electromagnetic tracking, key technologies for non-invasive surface motion monitoring, in the specific environment of image-guided, gantry-based proton therapy. Methods Polaris SPECTRA optical tracking system and the Aurora V3 electromagnetic tracking system from Northern Digital Inc. (NDI, Waterloo, CA) have been compared both technically, by measuring tracking errors and system latencies under laboratory conditions, and clinically, by assessing their practicalities and sensitivities when used with imaging devices and PBS treatment gantries. Additionally, we investigated the impact of using different surrogate signals, from different systems, on the reconstructed 4D CT images. Results Even though in controlled laboratory conditions both technologies allow for the localization of static fiducials with sub-millimetre jitter and low latency (31.6 ± 1 msec worst case), significant dynamic and environmental distortions limit the potential of the electromagnetic approach in a clinical setting. The measurement error in case of close proximity to a CT scanner is up to 10.5 mm and precludes its use for the monitoring of respiratory motion during 4DCT acquisitions. Similarly, the motion of the treatment gantry distorts up to 22 mm the tracking result. Conclusions Despite the line of sight requirement, the optical solution offers the best potential, being the most robust against environmental factors and providing the highest spatial accuracy. The significant difference in the temporal location of the reconstructed phase points is used to speculate on the need to apply the same monitoring system for imaging and treatment to ensure the consistency of detected phases.
Collapse
Affiliation(s)
- Giovanni Fattori
- Center for Proton Therapy, Paul Scherrer Institut, 5232, Villigen, PSI, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institut, 5232, Villigen, PSI, Switzerland
| | | | - Marta Peroni
- Center for Proton Therapy, Paul Scherrer Institut, 5232, Villigen, PSI, Switzerland
| | - Rosalind Perrin
- Center for Proton Therapy, Paul Scherrer Institut, 5232, Villigen, PSI, Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institut, 5232, Villigen, PSI, Switzerland.,Radiation Oncology Department, Inselspital Universitätsspital Bern, 3010, Bern, Switzerland
| | - Antony John Lomax
- Center for Proton Therapy, Paul Scherrer Institut, 5232, Villigen, PSI, Switzerland. .,Department of Physics, ETH-Hönggerberg, 8093, Zurich, Switzerland.
| |
Collapse
|
9
|
Perrin RL, Zakova M, Peroni M, Bernatowicz K, Bikis C, Knopf AK, Safai S, Fernandez-Carmona P, Tscharner N, Weber DC, Parkel TC, Lomax AJ. An anthropomorphic breathing phantom of the thorax for testing new motion mitigation techniques for pencil beam scanning proton therapy. Phys Med Biol 2017; 62:2486-2504. [DOI: 10.1088/1361-6560/62/6/2486] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Mann P, Witte M, Moser T, Lang C, Runz A, Johnen W, Berger M, Biederer J, Karger CP. 3D dosimetric validation of motion compensation concepts in radiotherapy using an anthropomorphic dynamic lung phantom. Phys Med Biol 2016; 62:573-595. [DOI: 10.1088/1361-6560/aa51b1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Usui K, Hara N, Isobe A, Inoue T, Kurokawa C, Sugimoto S, Sasai K, Ogawa K. [Impact of the Infrared Monitor Signal Pattern on Accuracy of Target Imaging in 4-dimensional Cone-beam Computed Tomography]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2016; 72:469-79. [PMID: 27320150 DOI: 10.6009/jjrt.2016_jsrt_72.6.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To realize the high precision radiotherapy, localized radiation field of the moving target is very important, and visualization of a temporal location of the target can help to improve the accuracy of the target localization. However, conditions of the breathing and the patient's own motion differ from the situation of the treatment planning. Therefore, positions of the tumor are affected by these changes. In this study, we implemented a method to reconstruct target motions obtained with the 4D CBCT using the sorted projection data according to the phase and displacement of the extracorporeal infrared monitor signal, and evaluated the proposed method with a moving phantom. In this method, motion cycles and positions of the marker were sorted to reconstruct the image, and evaluated the image quality affected by changes in the cycle, phase, and positions of the marker. As a result, we realized the visualization of the moving target using the sorted projection data according to the infrared monitor signal. This method was based on the projection binning, in which the signal of the infrared monitor was surrogate of the tumor motion. Thus, further major efforts are needed to ensure the accuracy of the infrared monitor signal.
Collapse
Affiliation(s)
- Keisuke Usui
- Department of Radiation Oncology, Faculty of Medicine, Juntendo University
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Jönsson M, Ceberg S, Nordström F, Thornberg C, Bäck SÅJ. Technical evaluation of a laser-based optical surface scanning system for prospective and retrospective breathing adapted computed tomography. Acta Oncol 2015; 54:261-5. [PMID: 25383452 DOI: 10.3109/0284186x.2014.948059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND For breathing adapted radiotherapy, the same motion monitoring system can be used for imaging and triggering of the accelerator. PURPOSE To evaluate a new technique for prospective gated computed tomography (CT) and four-dimensional CT (4DCT) using a laser based surface scanning system (Sentinel(™), C-RAD, Uppsala, Sweden). The system was compared to the AZ-733V respiratory gating system (Anzai Medical, Tokyo, Japan) and the Real-Time Position Management System (RPM(™)) (Varian Medical Systems, Palo Alto, CA, USA). MATERIAL AND METHODS Temporal accuracy was evaluated using a moving phantom programmed to move a platform along trajectories following a sin(6)(ωt) function with amplitudes from 6 to 20 mm and periods from 2 to 5 s during 120 s while the motion was recorded. The recorded data was Fourier transformed and the peak area at the fundamental and harmonic frequencies compared to data generated using the same sinusoidal function. For verification of the 4DCT reconstruction process, the phantom was programmed to move along a sinusoidal trajectory. Ten phase series were reconstructed. The distance from the couch to the platform was measured in each image. By fitting the function sin(ωt-ϕ) to the values measured in the images corresponding to each slice, the phase of each image was verified. RESULTS AND CONCLUSION In the recorded data, the peak area at the fundamental frequency covered on average 104 ± 4%, 102 ± 4% and 91 ± 27% of the peak area in the generated data for the Sentinel(™), RPM(™) and AZ-733V systems, respectively. All systems managed to resolve both harmonic frequencies. The second experiment showed that all images were sorted into the correct series using breathing data recorded by each system. The systems generated very similar results, however, it is preferable to use the same system both for imaging and treatment.
Collapse
Affiliation(s)
- Mattias Jönsson
- Department of Medical Radiation Physics, Department of Clinical Sciences Malmö, Lund University , Malmö , Sweden
| | | | | | | | | |
Collapse
|
13
|
|