1
|
Zhang J, Wiacek A, Feng Z, Ding K, Lediju Bell MA. Flexible array transducer for photoacoustic-guided interventions: phantom and ex vivo demonstrations. BIOMEDICAL OPTICS EXPRESS 2023; 14:4349-4368. [PMID: 37799699 PMCID: PMC10549736 DOI: 10.1364/boe.491406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 10/07/2023]
Abstract
Photoacoustic imaging has demonstrated recent promise for surgical guidance, enabling visualization of tool tips during surgical and non-surgical interventions. To receive photoacoustic signals, most conventional transducers are rigid, while a flexible array is able to deform and provide complete contact on surfaces with different geometries. In this work, we present photoacoustic images acquired with a flexible array transducer in multiple concave shapes in phantom and ex vivo bovine liver experiments targeted toward interventional photoacoustic applications. We validate our image reconstruction equations for known sensor geometries with simulated data, and we provide empirical elevation field-of-view, target position, and image quality measurements. The elevation field-of-view was 6.08 mm at a depth of 4 cm and greater than 13 mm at a depth of 5 cm. The target depth agreement with ground truth ranged 98.35-99.69%. The mean lateral and axial target sizes when imaging 600 μm-core-diameter optical fibers inserted within the phantoms ranged 0.98-2.14 mm and 1.61-2.24 mm, respectively. The mean ± one standard deviation of lateral and axial target sizes when surrounded by liver tissue were 1.80±0.48 mm and 2.17±0.24 mm, respectively. Contrast, signal-to-noise, and generalized contrast-to-noise ratios ranged 6.92-24.42 dB, 46.50-67.51 dB, and 0.76-1, respectively, within the elevational field-of-view. Results establish the feasibility of implementing photoacoustic-guided surgery with a flexible array transducer.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alycen Wiacek
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ziwei Feng
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD 21287, USA
| | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Barnat N, Grisey A, Gerold B, Yon S, Anquez J, Aubry JF. Vein wall shrinkage induced by thermal coagulation with high-intensity-focused ultrasound: numerical modeling and in vivo experiments in sheep. Int J Hyperthermia 2021; 37:1238-1247. [PMID: 33164625 DOI: 10.1080/02656736.2020.1834626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Varicose veins are a common disease that may significantly affect quality of life. Different approaches are currently used in clinical practice to treat this pathology. MATERIALS AND METHODS In thermal therapy (radiofrequency or laser therapy), the vein is directly heated to a high temperature to induce vein wall coagulation, and the heat induces denaturation of the intramural collagen, which results macroscopically in vein shrinkage. Thermal vein shrinkage is a physical indicator of the efficiency of endovenous treatment. High-intensity focused ultrasound (HIFU) is a noninvasive technique that can thermally coagulate vein walls and induce vein shrinkage. In this study, we evaluated the vein shrinkage induced in vivo by extracorporeal HIFU ablation of sheep veins: six lateral saphenous veins (3.4mm mean diameter) were sonicated for 8 s with 3MHz continuous waves. Ultrasound imaging was performed before and immediately post-HIFU to quantify the HIFU-induced shrinkage. RESULTS Luminal constriction was observed in 100% (6/6) of the treated veins. The immediate findings showed a mean diameter constriction of 53%. The experimental HIFU-induced shrinkage data were used to validate a numerical model developed to predict the thermally induced vein contraction during HIFU treatment. CONCLUSIONS This model is based on the use of the k-wave library and published contraction rates of vessels immersed in hot water baths. The simulation results agreed well with those of in vivo experiments, showing a mean percent difference of 5%. The numerical model could thus be a valuable tool for optimizing ultrasound parameters as functions of the vein diameter, and future clinical trials are anticipated.
Collapse
Affiliation(s)
- Nesrine Barnat
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris, France.,Theraclion, Malakoff, France
| | | | | | | | | | - Jean-François Aubry
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris, France
| |
Collapse
|
3
|
Panfilova A, van Sloun RJG, Wijkstra H, Sapozhnikov OA, Mischi M. A review on B/A measurement methods with a clinical perspective. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2200. [PMID: 33940890 DOI: 10.1121/10.0003627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The nonlinear parameter of ultrasound B/A has shown to be a useful diagnostic parameter, reflecting medium content, structure, and temperature. Despite its recognized values, B/A is not yet used as a diagnostic tool in the clinic due to the limitations of current measurement and imaging techniques. This review presents an extensive and comprehensive overview of the techniques developed for B/A measurement of liquid and liquid-like media (e.g., tissue), identifying the methods that are most promising from a clinical perspective. This work summarizes the progress made in the field and the typical challenges on the way to B/A estimation. Limitations and problems with the current techniques are identified, suggesting directions that may lead to further improvement. Since the basic theory of the physics behind the measurement strategies is presented, it is also suited for a reader who is new to nonlinear ultrasound.
Collapse
Affiliation(s)
- Anastasiia Panfilova
- Electrical Engineering Department, Faculty of Electrical Engineering, Eindhoven University of Technology, Groene Loper 35612 AE, Eindhoven, The Netherlands
| | - Ruud J G van Sloun
- Electrical Engineering Department, Faculty of Electrical Engineering, Eindhoven University of Technology, Groene Loper 35612 AE, Eindhoven, The Netherlands
| | - Hessel Wijkstra
- Electrical Engineering Department, Faculty of Electrical Engineering, Eindhoven University of Technology, Groene Loper 35612 AE, Eindhoven, The Netherlands
| | - Oleg A Sapozhnikov
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Massimo Mischi
- Electrical Engineering Department, Faculty of Electrical Engineering, Eindhoven University of Technology, Groene Loper 35612 AE, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Lyon PC, Suomi V, Jakeman P, Campo L, Coussios C, Carlisle R. Quantifying cell death induced by doxorubicin, hyperthermia or HIFU ablation with flow cytometry. Sci Rep 2021; 11:4404. [PMID: 33623089 PMCID: PMC7902827 DOI: 10.1038/s41598-021-83845-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
Triggered release and targeted drug delivery of potent anti-cancer agents using hyperthermia-mediated focused-ultrasound (FUS) is gaining momentum in the clinical setting. In early phase studies, tissue biopsy samples may be harvested to assess drug delivery efficacy and demonstrate lack of instantaneous cell death due to FUS exposure. We present an optimised tissue cell recovery method and a cell viability assay, compatible with intra-cellular doxorubicin. Flow cytometry was used to determine levels of cell death with suspensions comprised of: (i) HT29 cell line exposed to hyperthermia (30 min at 47 °C) and/or doxorubicin, or ex-vivo bovine liver tissue exposed to (ii) hyperthermia (up to 2 h at 45 °C), or (iii) ablative high intensity FUS (HIFU). Flow cytometric analysis revealed maximal cell death in HT29 receiving both heat and doxorubicin insults and increases in both cell granularity (p < 0.01) and cell death (p < 0.01) in cells recovered from ex-vivo liver tissue exposed to hyperthermia and high pressures of HIFU (8.2 MPa peak-to-peak free-field at 1 MHz) relative to controls. Ex-vivo results were validated with microscopy using pan-cytokeratin stain. This rapid, sensitive and highly quantitative cell-viability method is applicable to the small masses of liver tissue typically recovered from a standard core biopsy (5-20 mg) and may be applied to tissues of other histological origins including immunostaining.
Collapse
Affiliation(s)
- Paul Christopher Lyon
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| | - Visa Suomi
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Philip Jakeman
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Leticia Campo
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Constantin Coussios
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| |
Collapse
|
5
|
Dong H, Liu G, Tong X. Influence of temperature-dependent acoustic and thermal parameters and nonlinear harmonics on the prediction of thermal lesion under HIFU ablation. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1340-1351. [PMID: 33757188 DOI: 10.3934/mbe.2021070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
According to the traditional method of high intensity focused ultrasound (HIFU) treatment, the acoustic and thermal characteristic parameters of constant temperature (room temperature or body temperature) are used to predict thermal lesion. Based on the nonlinear spherical beam equation (SBE) and Pennes bio-heat transfer equation, and a new acoustic-thermal coupled model is proposed. The constant and temperature-dependent acoustic and thermal characteristic parameters are used to predict thermal lesion, and the predicted lesion area are compared with each other. Moreover, the relationship between harmonic amplitude ratio (P2/P1) and thermal lesion is studied. Combined with the known experimental data of acoustic and thermal characteristic parameters of biological tissue and data fitting method, the relationship between acoustic and thermal characteristic parameters and temperature is obtained; and the thermal lesion simulation calculation is carried out by using the acoustic and thermal characteristic parameters under constant temperature and temperature- dependent acoustic and thermal characteristic parameters, respectively. The simulation results show that under the same irradiation condition, the thermal lesion predicted by temperature-dependent acoustic and thermal characteristic parameters is larger than that predicted by traditional method, and the thermal lesion increases with the decrease of harmonic amplitude ratio.
Collapse
Affiliation(s)
- Hu Dong
- School of Information Science and Engineering, Changsha Normal University, Changsha 410100, China
| | - Gang Liu
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Xin Tong
- School of Information Science and Engineering, Changsha Normal University, Changsha 410100, China
| |
Collapse
|
6
|
Li H, Yu C, Zhang J, Li Q, Qiao H, Wang Z, Zeng D. pH-sensitive pullulan-doxorubicin nanoparticles loaded with 1,1,2-trichlorotrifluoroethane as a novel synergist for high intensity focused ultrasound mediated tumor ablation. Int J Pharm 2019; 556:226-235. [DOI: 10.1016/j.ijpharm.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 10/27/2022]
|
7
|
Barnat N, Grisey A, Lecuelle B, Anquez J, Gerold B, Yon S, Aubry JF. Noninvasive vascular occlusion with HIFU for venous insufficiency treatment: preclinical feasibility experience in rabbits. ACTA ACUST UNITED AC 2019; 64:025003. [DOI: 10.1088/1361-6560/aaf58d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Suomi V, Han Y, Konofagou E, Cleveland RO. The effect of temperature dependent tissue parameters on acoustic radiation force induced displacements. Phys Med Biol 2016; 61:7427-7447. [PMID: 27694703 DOI: 10.1088/0031-9155/61/20/7427] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Multiple ultrasound elastography techniques rely on acoustic radiation force (ARF) in monitoring high-intensity focused ultrasound (HIFU) therapy. However, ARF is dependent on tissue attenuation and sound speed, both of which are also known to change with temperature making the therapy monitoring more challenging. Furthermore, the viscoelastic properties of tissue are also temperature dependent, which affects the displacements induced by ARF. The aim of this study is to quantify the temperature dependent changes in the acoustic and viscoelastic properties of liver and investigate their effect on ARF induced displacements by using both experimental methods and simulations. Furthermore, the temperature dependent viscoelastic properties of liver are experimentally measured over a frequency range of 0.1-200 Hz at temperatures reaching 80 °C, and both conventional and fractional Zener models are used to fit the data. The fractional Zener model was found to fit better with the experimental viscoelasticity data with respect to the conventional model with up to two orders of magnitude lower sum of squared errors (SSE). The characteristics of experimental displacement data were also seen in the simulations due to the changes in attenuation coefficient and lesion development. At low temperatures before thermal ablation, attenuation was found to affect the displacement amplitude. At higher temperature, the decrease in displacement amplitude occurs approximately at 60-70 °C due to the combined effect of viscoelasticity changes and lesion growth overpowering the effect of attenuation. The results suggest that it is necessary to monitor displacement continuously during HIFU therapy in order to ascertain when ablation occurs.
Collapse
Affiliation(s)
- Visa Suomi
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | | | | | | |
Collapse
|
9
|
Maraghechi B, Hasani MH, Kolios MC, Tavakkoli J. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:2475. [PMID: 27250143 DOI: 10.1121/1.4946898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz.
Collapse
Affiliation(s)
- Borna Maraghechi
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Mojtaba H Hasani
- Department of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Avenue, Tehran, Iran
| | - Michael C Kolios
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Jahan Tavakkoli
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
10
|
Suomi V, Edwards D, Cleveland R. Optical Quantification of Harmonic Acoustic Radiation Force Excitation in a Tissue-Mimicking Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:3216-3232. [PMID: 26330365 DOI: 10.1016/j.ultrasmedbio.2015.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/18/2015] [Accepted: 07/16/2015] [Indexed: 06/05/2023]
Abstract
Optical tracking was used to characterize acoustic radiation force-induced displacements in a tissue-mimicking phantom. Amplitude-modulated 3.3-MHz ultrasound was used to induce acoustic radiation force in the phantom, which was embedded with 10-μm microspheres that were tracked using a microscope objective and high-speed camera. For sine and square amplitude modulation, the harmonic components of the fundamental and second and third harmonic frequencies were measured. The displacement amplitudes were found to increase linearly with acoustic radiation force up to 10 μm, with sine modulation having 19.5% lower peak-to-peak amplitude values than square modulation. Square modulation produced almost no second harmonic, but energy was present in the third harmonic. For the sine modulation, energy was present in the second harmonic and low energy in the third harmonic. A finite-element model was used to simulate the deformation and was both qualitatively and quantitatively in agreement with the measurements.
Collapse
Affiliation(s)
- Visa Suomi
- University of Oxford, Parks Road, Oxford, UK.
| | | | | |
Collapse
|
11
|
Zhou Z, Wu W, Wu S, Xia J, Wang CY, Yang C, Lin CC, Tsui PH. A survey of ultrasound elastography approaches to percutaneous ablation monitoring. Proc Inst Mech Eng H 2014; 228:1069-82. [DOI: 10.1177/0954411914554438] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Percutaneous thermal ablation has been widely used as a minimally invasive treatment for tumors. Treatment monitoring is essential for preventing complications while ensuring treatment efficacy. Mechanical testing measurements on tissue reveal that tissue stiffness increases with temperature and ablation duration. Different types of imaging methods can be used to monitor ablation procedures, including temperature or thermal strain imaging, strain imaging, modulus imaging, and shear modulus imaging. Ultrasound elastography demonstrates the potential to become the primary imaging modality for monitoring percutaneous ablation. This review briefly presented the state-of-the-art ultrasound elastography approaches for monitoring radiofrequency ablation and microwave ablation. These techniques were divided into four groups: quasi-static elastography, acoustic radiation force elastography, sonoelastography, and applicator motion elastography. Their advantages and limitations were compared and discussed. Future developments were proposed with respect to heat-induced bubbles, tissue inhomogeneities, respiratory motion, three-dimensional monitoring, multi-parametric monitoring, real-time monitoring, experimental data center for percutaneous ablation, and microwave ablation monitoring.
Collapse
Affiliation(s)
- Zhuhuang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Weiwei Wu
- College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, China
| | - Shuicai Wu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jingjing Xia
- School of Electronic Information Engineering, Tianjin University, Tianjin, China
| | - Chiao-Yin Wang
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chunlan Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Chung-Chih Lin
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Medical Image Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|