1
|
Naceur A, Bienvenue C, Romano P, Chilian C, Carrier JF. Extending deterministic transport capabilities for very-high and ultra-high energy electron beams. Sci Rep 2024; 14:2796. [PMID: 38307920 PMCID: PMC11226718 DOI: 10.1038/s41598-023-51143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/31/2023] [Indexed: 02/04/2024] Open
Abstract
Focused Very-High Energy Electron (VHEE, 50-300 MeV) and Ultra-High Energy Electron (UHEE, > 300 MeV) beams can accurately target both large and deeply seated human tumors with high sparing properties, while avoiding the spatial requirements and cost of proton and heavy ion facilities. Advanced testing phases are underway at the CLEAR facilities at CERN (Switzerland), NLCTA at Stanford (USA), and SPARC at INFN (Italy), aiming to accelerate the transition to clinical application. Currently, Monte Carlo (MC) transport is the sole paradigm supporting preclinical trials and imminent clinical deployment. In this paper, we propose an alternative: the first extension of the nuclear-reactor deterministic chain NJOY-DRAGON for VHEE and UHEE applications. We have extended the Boltzmann-Fokker-Planck (BFP) multigroup formalism and validated it using standard radio-oncology benchmarks, complex assemblies with a wide range of atomic numbers, and comprehensive irradiation of the entire periodic table. We report that [Formula: see text] of water voxels exhibit a BFP-MC deviation below [Formula: see text] for electron energies under [Formula: see text]. Additionally, we demonstrate that at least [Formula: see text] of voxels of bone, lung, adipose tissue, muscle, soft tissue, tumor, steel, and aluminum meet the same criterion between [Formula: see text] and [Formula: see text]. For water, the thorax, and the breast intra-operative benchmark, typical average BFP-MC deviations of [Formula: see text] and [Formula: see text] were observed at [Formula: see text] and [Formula: see text], respectively. By irradiating the entire periodic table, we observed similar performance between lithium ([Formula: see text]) and cerium ([Formula: see text]). Deficiencies observed between praseodymium ([Formula: see text]) and einsteinium ([Formula: see text]) have been reported, analyzed, and quantified, offering critical insights for the ongoing development of the Evaluated Nuclear Data File mode in NJOY.
Collapse
Affiliation(s)
- Ahmed Naceur
- École Polytechnique, SLOWPOKE Nuclear Reactor Laboratory, Nuclear Engineering Institute, Montréal, H3T1J4, Canada.
- CRCHUM, Centre hospitalier de l'Université de Montréal, Montréal, H2L4M1, Canada.
| | - Charles Bienvenue
- École Polytechnique, Engineering Physics Department, Biomedical Engineering Institute, Montréal, H3T1J4, Canada
| | - Paul Romano
- Computational Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Cornelia Chilian
- École Polytechnique, SLOWPOKE Nuclear Reactor Laboratory, Nuclear Engineering Institute, Montréal, H3T1J4, Canada
| | - Jean-François Carrier
- Department of Physics, Université de Montréal, Montréal, H3T1J4, Canada
- CRCHUM, Centre hospitalier de l'Université de Montréal, Montréal, H2L4M1, Canada
| |
Collapse
|
2
|
Guyer G, Mueller S, Mackeprang PH, Frei D, Volken W, Aebersold DM, Loessl K, Manser P, Fix MK. Delivery time reduction for mixed photon-electron radiotherapy by using photon MLC collimated electron arcs. Phys Med Biol 2023; 68:215009. [PMID: 37816376 DOI: 10.1088/1361-6560/ad021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Objective. Electron arcs in mixed-beam radiotherapy (Arc-MBRT) consisting of intensity-modulated electron arcs with dynamic gantry rotation potentially reduce the delivery time compared to mixed-beam radiotherapy containing electron beams with static gantry angle (Static-MBRT). This study aims to develop and investigate a treatment planning process (TPP) for photon multileaf collimator (pMLC) based Arc-MBRT.Approach. An existing TPP for Static-MBRT plans is extended to integrate electron arcs with a dynamic gantry rotation and intensity modulation using a sliding window technique. The TPP consists of a manual setup of electron arcs, and either static photon beams or photon arcs, shortening of the source-to-surface distance for the electron arcs, initial intensity modulation optimization, selection of a user-defined number of electron beam energies based on dose contribution to the target volume and finally, simultaneous photon and electron intensity modulation optimization followed by full Monte Carlo dose calculation. Arc-MBRT plans, Static-MBRT plans, and photon-only plans were created and compared for four breast cases. Dosimetric validation of two Arc-MBRT plans was performed using film measurements.Main results. The generated Arc-MBRT plans are dosimetrically similar to the Static-MBRT plans while outperforming the photon-only plans. The mean heart dose is reduced by 32% on average in the MBRT plans compared to the photon-only plans. The estimated delivery times of the Arc-MBRT plans are similar to the photon-only plans but less than half the time of the Static-MBRT plans. Measured and calculated dose distributions agree with a gamma passing rate of over 98% (3% global, 2 mm) for both delivered Arc-MBRT plans.Significance. A TPP for Arc-MBRT is successfully developed and Arc-MBRT plans showed the potential to improve the dosimetric plan quality similar as Static-MBRT while maintaining short delivery times of photon-only treatments. This further facilitates integration of pMLC-based MBRT into clinical practice.
Collapse
Affiliation(s)
- Gian Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Silvan Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Paul-Henry Mackeprang
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Daniel Frei
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Werner Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Daniel M Aebersold
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Kristina Loessl
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Peter Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Michael K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Church C, MacDonald RL, Parsons D, Syme A. Evaluation of plan quality and treatment efficiency in cranial stereotactic radiosurgery treatment plans with a variable source-to-axis distance. Med Phys 2023; 50:3039-3054. [PMID: 36774531 DOI: 10.1002/mp.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/03/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
INTRODUCTION Radiotherapy deliveries with dynamic couch motions that shorten the source-to-axis distance (SAD) on a C-arm linac have the potential to increase treatment efficiency through the increase of the effective dose rate. In this investigation, we convert clinically deliverable volumetric modulated arc therapy (VMAT) and dynamic conformal arc (DCA) plans for cranial radiosurgery into virtual isocenter plans through implementation of couch trajectories that maintain the target at a shortened but variable SAD throughout treatment. MATERIALS AND METHODS A randomly sampled population of patients treated with cranial radiosurgery from within the last three years were separated into groups with one, two, and three lesions. All plans had a single isocenter (regardless of number of targets), and a single prescription dose. Patient treatment plans were converted from their original delivery at a standard isocenter to a dynamic virtual isocenter in MATLAB. The virtual isocenter plan featured a variable isocenter position based upon the closest achievable source-to-target distance (referred to herein as a virtual source-to-axis distance [vSAD]) which avoided collision zones on a TrueBeam STx platform. Apertures were magnified according to the vSAD and monitor units at a given control point were scaled based on the inverse square law. Doses were calculated for the plans with a virtual isocenter in the Eclipse (v13.6.23) treatment planning system (TPS) and were compared with the clinical plans. Plan metrics (MU, Paddick conformity index, gradient index, and the volume receiving 12 Gy or more), normal brain dose-volume differences, as well as maximum doses received by organs at risk (OARs) were assessed. The values were compared between standard and virtual isocenter plans with Wilcoxon Sign Ranked tests to determine significance. A subset of the plans were mapped to the MAX-HD anthropomorphic phantom which contained an insert housing EBT3 GafChromic film and a PTW 31010 microion chamber for dose verification on a linac. RESULTS Delivering plans at a virtual isocenter resulted in an average reduction of 20.9% (p = 3×10-6 ) and 20.6% (p = 3.0×10-6 ) of MUs across all VMAT and all DCA plans, respectively. There was no significant change in OAR max doses received by plans delivered at a virtual isocenter. The low dose wash (1.0-2.0 Gy or 5-11% of the prescription dose) was increased (by approximately 20 cc) for plans with three lesions. This was equivalent to a 2.7%-3.8% volumetric increase in normal tissue receiving the respective dose level when comparing the plan with a virtual isocenter to a plan with a standard isocenter. Gamma pass rates with a 5%/1mm analysis criteria were 96.40% ± 2.90% and 95.07% ± 3.10% for deliveries at standard and virtual isocenter, respectively. Absolute point dose agreements were within -0.36% ± 3.45% and -0.55% ± 3.39% for deliveries at a standard and virtual isocenter, respectively. Potential time savings per arc were found to have linear relationship with the monitor units delivered per arc (savings of 0.009 s/MU with an r2 = 0.866 when fit to plans with a single lesion). CONCLUSIONS Converting clinical plans at standard isocenter to a virtual isocenter design did not show any losses to plan quality while simultaneously improving treatment efficiency through MU reductions.
Collapse
Affiliation(s)
- Cody Church
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - R Lee MacDonald
- Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David Parsons
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, Texas, USA
| | - Alasdair Syme
- Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Ronga MG, Cavallone M, Patriarca A, Leite AM, Loap P, Favaudon V, Créhange G, De Marzi L. Back to the Future: Very High-Energy Electrons (VHEEs) and Their Potential Application in Radiation Therapy. Cancers (Basel) 2021; 13:4942. [PMID: 34638424 PMCID: PMC8507836 DOI: 10.3390/cancers13194942] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The development of innovative approaches that would reduce the sensitivity of healthy tissues to irradiation while maintaining the efficacy of the treatment on the tumor is of crucial importance for the progress of the efficacy of radiotherapy. Recent methodological developments and innovations, such as scanned beams, ultra-high dose rates, and very high-energy electrons, which may be simultaneously available on new accelerators, would allow for possible radiobiological advantages of very short pulses of ultra-high dose rate (FLASH) therapy for radiation therapy to be considered. In particular, very high-energy electron (VHEE) radiotherapy, in the energy range of 100 to 250 MeV, first proposed in the 2000s, would be particularly interesting both from a ballistic and biological point of view for the establishment of this new type of irradiation technique. In this review, we examine and summarize the current knowledge on VHEE radiotherapy and provide a synthesis of the studies that have been published on various experimental and simulation works. We will also consider the potential for VHEE therapy to be translated into clinical contexts.
Collapse
Affiliation(s)
- Maria Grazia Ronga
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
- Thales AVS Microwave & Imaging Sub-Systems, 78141 Vélizy-Villacoublay, France
| | - Marco Cavallone
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
| | - Annalisa Patriarca
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
| | - Amelia Maia Leite
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
- INSERM LITO U1288, Campus Universitaire, Institut Curie, PSL Research University, University Paris Saclay, 91898 Orsay, France
| | - Pierre Loap
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
| | - Vincent Favaudon
- INSERM U 1021-CNRS UMR 3347, Campus Universitaire, Institut Curie, PSL Research University, University Paris Saclay, 91898 Orsay, France;
| | - Gilles Créhange
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
| | - Ludovic De Marzi
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
- INSERM LITO U1288, Campus Universitaire, Institut Curie, PSL Research University, University Paris Saclay, 91898 Orsay, France
| |
Collapse
|
5
|
Mullins J, Renaud MA, Heng V, Ruo R, DeBlois F, Seuntjens J. Trajectory-based VMAT for cranial targets with delivery at shortened SAD. Med Phys 2020; 47:3103-3112. [PMID: 32198933 DOI: 10.1002/mp.14151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Trajectory-based volumetric modulated arc therapy (tr-VMAT) treatment plans enable the option for noncoplanar delivery yielding steeper dose gradients and increased sparing of critical structures compared to conventional treatment plans. The addition of translational couch motion to shorten the effective source-to-axis distance (SAD) may result in improved delivery precision and an increased effective dose rate. In this work, tr-VMAT treatment plans using a noncoplanar "baseball stitch" trajectory were implemented, applied to patients presented with cranial targets, and compared to the clinical treatment plans. METHODS A treatment planning workflow was implemented: (a) beamlet doses were calculated for control points defined along a baseball stitch trajectory using a collapsed-cone convolution-superposition algorithm; (b) VMAT treatment plans were optimized using the column generation approach; (c) a final dose distribution was calculated in Varian Eclipse using the analytical anisotropic algorithm by importing the optimized treatment plan parameters. Tr-VMAT plans were optimized for ten patients presented with cranial targets at both standard and shortened SAD, and compared to the clinical treatment plans through isodose distributions, dose-volume histograms, and dosimetric indices. The control point specifications of the optimized tr-VMAT plans were used to estimate the delivery time. RESULTS The optimized tr-VMAT plans with both shortened and standard SAD delivery yielded a comparable plan quality to the clinical treatment plans. A statistically significant benefit was observed for dose gradient index and monitor unit efficiency for shortened SAD tr-VMAT plans, while improved target volume conformity was observed for the clinical treatment plan (P ≤ 0.05). A clear dosimetric benefit was not demonstrated between tr-VMAT delivery at shortened SAD compared to standard SAD, but shortened SAD delivery yielded a fraction size-dependent reduction in the estimated delivery time. CONCLUSION The implementation of "baseball stitch" tr-VMAT treatment plans to patients presented with cranial targets demonstrated comparable plan quality to clinical treatment plans. The delivery at shortened SAD produced a fraction size-dependent decrease in estimated delivery time.
Collapse
Affiliation(s)
- Joel Mullins
- Department of Physics & Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Marc-André Renaud
- Department of Mathematics and Industrial Engineering, Polytechnique Montréal, Montréal, QC, H3T 1J4, Canada
| | - Veng Heng
- Department of Physics & Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Russell Ruo
- Medical Physics Unit, McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
| | - François DeBlois
- Centre Hospitalier de l'Université de Montréal & Département de Physique, Université de Montréal, Montréal, QC, H2X 3E4, Canada.,McGill University, Montréal, QC, H4A 3J1, Canada
| | - Jan Seuntjens
- Medical Physics Unit, McGill University & Research Institute of the McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
| |
Collapse
|
6
|
Wang X, Sawkey D, Wu Q. Technical Note: A dose calculation framework for dynamic electron arc radiotherapy (DEAR) using VirtuaLinac Monte Carlo simulation tool. Med Phys 2019; 47:164-170. [PMID: 31667858 DOI: 10.1002/mp.13882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Dynamic electron arc radiotherapy (DEAR) is a novel dynamic technique that achieves highly conformal dose through simultaneous couch and gantry motion during delivery. The purpose of this study is to develop a framework integrating a Monte Carlo dose engine (VirtuaLinac) to a treatment planning system (TPS, Eclipse) for DEAR. A quality assurance (QA) procedure is also developed. METHODS AND MATERIALS The interfaces include the following: computed tomography image export and conversion for VirtuaLinac; VirtuaLinac computation tasks management through application programming interface (API); and dose matrix processing and evaluation. The framework was validated with both static beam and DEAR plan with a 3 × 3 cm2 cutout for both 6 and 9 MeV electrons. Verification plans for DEAR were created on flat phantom and a hybrid dose calculation technique was developed which convolves precalculated small field kernel with the beam trajectory, and the resulting dose was compared with the full VirtuaLinac calculation and film measurement. RESULTS Excellent agreement between VirtuaLinac and eMC was observed with three-dimensional γ pass rate of 98% at 1%/1 mm criteria for both 6 and 9 MeV electrons. Film measurement shows two-dimensional (2D) γ passing rate of 99.8 % (6 MeV) and 97.1% (9 MeV) at 2%/2 mm criteria. For DEAR plans the comparison of VirtuaLinac and measurement shows the 2D γ passing rates of 94% at 2%/2 mm for 6 MeV. The dose distributions from hybrid method in phantom are identical to the full VirtuaLinac simulations, but can be done instantly. CONCLUSIONS A framework has been developed for DEAR dose calculation using VirtuaLinac Monte Carlo dose engine. The VirtuaLinac calculated dose was validated against measurement. A feasible and practical DEAR QA method has been developed for dose measurement in phantom. The hybrid dose calculation technique is efficient and suitable for DEAR QA purpose.
Collapse
Affiliation(s)
- Xiaorong Wang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Daren Sawkey
- Varian Medical Systems, Palo Alto, CA, 94304, USA
| | - Qiuwen Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
7
|
Ma C, Parsons D, Chen M, Jiang S, Hou Q, Gu X, Lu W. Electron modulated arc therapy (EMAT) using photon MLC for postmastectomy chest wall treatment I: Monte Carlo-based dosimetric characterizations. Phys Med 2019; 67:1-8. [PMID: 31606657 PMCID: PMC6925626 DOI: 10.1016/j.ejmp.2019.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To study the dosimetric properties of electron arc beams delivered by photon-beam multi-leaf collimators (pMLC) in electron modulated arc therapy (EMAT) for postmastectomy chest wall treatments. METHODS Using the Monte Carlo method, we simulated a 2100EX Varian linear accelerator and verified the beam models in a water tank. Dosimetric characterizations were performed on cylindrical water phantoms of elliptical bases with various field sizes, arc ranges and source-to-surface distances (SSDs) for 6, 9 and 12 MeV beam energy. RESULTS The arc beam has a higher bremsstrahlung dose than the static beam at the isocenter due to crossfire, but choosing a field size greater than 5 cm effectively reduces the bremsstrahlung dose. The depths of the 90% maximum dose located at 1.7, 2.8 and 4.1 cm for 6, 9 and 12 MeV, respectively, are similar to those of the static beams and independent of the field size and arc range. CONCLUSION Based on the study, we recommend using the 5 cm field width for electron arc beams considering both bremsstrahlung dose at the isocenter and the arc profile penumbra. To ensure sufficient PTV edge coverage, we recommend a field length extension of at least 4 cm from PTV's edge for all beam energies and an arc extension of around 7°, 5°, and 5° for beam energies 6, 9, and 12 MeV, respectively. These dosimetric characterizations are the basis of pMLC-delivered EMAT treatment planning for postmastectomy chest wall patients.
Collapse
Affiliation(s)
- Chaoqiong Ma
- Key Lab for Radiation Physics and Technology of Education Ministry of China, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, Sichuan 610064, China; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - David Parsons
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Mingli Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Steve Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Qing Hou
- Key Lab for Radiation Physics and Technology of Education Ministry of China, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xuejun Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
8
|
Collins C, Yoon SW, Kodra J, Coakley R, Subashi E, Sidhu K, Adamovics J, Oldham M. An investigation of a novel reusable radiochromic sheet for 2D dose measurement. Med Phys 2019; 46:5758-5769. [PMID: 31479518 DOI: 10.1002/mp.13798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Radiochromic film remains a useful and versatile clinical dosimetry tool. Current film options are single use. Here, we introduce a novel prototype two-dimensional (2D) radiochromic sheet, which optically clears naturally at room temperature after irradiation and can be reused. We evaluate the sheets for potential as a 2D dosimeter and as a radiochromic bolus with capability for dose measurement. METHODS A novel derivative of reusable Presage® was manufactured into thin sheets of 5 mm thickness. The sheets contained 2% cumin-leucomalachitegreen-diethylamine (LMG-DEA) and plasticizer (up to 25% by weight). Irradiation experiments were performed to characterize the response to megavoltage radiation, including dose sensitivity, temporal decay rate, consistency of repeat irradiations, intra and inter-sheet reproducibility, multi-modality response (electrons and photons), and temperature sensitivity (22°C to 36°C). The local change in optical-density (ΔOD), before and after radiation, was obtained with a flat-bed film scanner and extracting the red channel. Repeat scanning enabled investigation of the temporal decay of ΔOD. Additional studies investigated clinical utility of the sheets through application to IMRT treatment plans (prostate and a TG119 commissioning plan), and a chest wall electron boost treatment. In the latter test, the sheet performed as a radiochromic bolus. RESULTS The radiation induced OD change in the sheets was found to be proportional to dose and to exponentially decay to baseline in ~24 h (R2 = 0.9986). The sheet could be reused and had similar sensitivity (within 1% after the first irradiation) for at least eight irradiations. Importantly, no memory of previous irradiations was observed within measurement uncertainty. The consistency of dose response from photons (6 and 15 MV) and electrons (6-20 MeV) was found to be within calibration uncertainty (~1%). The dose sensitivity of the sheets had a temperature dependence of 0.0012 ΔOD/°C. For the short (1 min) single field IMRT QA verification, good agreement was observed between the Presage sheet and EBT film (gamma pass rate 97% at 3% 3 mm dose-difference and distance-to-agreement tolerance, with a 10% threshold). For the longer (~13 min) TG-119 9-field IMRT verification the gamma agreement was lower at 93% pass rate at 5% 3 mm, 10% threshold, when compared with Eclipse. The lower rate is attributed to uncertainty arising from signal decay during irradiation and indicates a current limitation. For the electron cutout treatment, both Presage and EBT agreed well (within 2% RMS difference) but differed from the Eclipse treatment plan (~7% RMS difference) indicating some limitations to the Eclipse modeling in this case. The worst case estimates of uncertainty introduced by the signal decay for deliveries of 2, 5, and 10 min are 0.6%, 1.4%, and 2.8% respectively. CONCLUSIONS Reusable Presage sheets show promise for 2D dose measurement and as a radiochromic bolus for in vivo dose measurement. The current prototype is suitable for deliveries of length up to 5 min, where the uncertainty introduced by signal decay is anticipated to be ~1% (worst case 1.4%), or for longer deliveries where there is no temporal modulation (e.g. physical compensators, or open beams). Additionally, spatial resolution is limited by sheet thickness and scanner resolution, resulting in a practical resolution of 0.8 mm.
Collapse
Affiliation(s)
- Cielle Collins
- Physics Division, Department of Radiation Oncology, Duke University Medical Center, Trent Drive, Durham, NC, 27710, USA
| | - Suk Whan Yoon
- Physics Division, Department of Radiation Oncology, Duke University Medical Center, Trent Drive, Durham, NC, 27710, USA
| | - Jacob Kodra
- Physics Division, Department of Radiation Oncology, Duke University Medical Center, Trent Drive, Durham, NC, 27710, USA
| | | | - Ergys Subashi
- Physics Division, Department of Radiation Oncology, Duke University Medical Center, Trent Drive, Durham, NC, 27710, USA
| | - Kulbir Sidhu
- Duke University Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - Mark Oldham
- Physics Division, Department of Radiation Oncology, Duke University Medical Center, Trent Drive, Durham, NC, 27710, USA
| |
Collapse
|
9
|
Mueller S, Manser P, Volken W, Frei D, Kueng R, Herrmann E, Elicin O, Aebersold DM, Stampanoni MFM, Fix MK. Part 2: Dynamic mixed beam radiotherapy (DYMBER): Photon dynamic trajectories combined with modulated electron beams. Med Phys 2018; 45:4213-4226. [PMID: 29992574 DOI: 10.1002/mp.13085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The purpose of this study was to develop a treatment technique for dynamic mixed beam radiotherapy (DYMBER) utilizing increased degrees of freedom (DoF) of a conventional treatment unit including different particle types (photons and electrons), intensity and energy modulation and dynamic gantry, table, and collimator rotations. METHODS A treatment planning process has been developed to create DYMBER plans combining photon dynamic trajectories (DTs) and step and shoot electron apertures collimated with the photon multileaf collimator (pMLC). A gantry-table path is determined for the photon DTs with minimized overlap of the organs at risk (OARs) with the target. In addition, an associated dynamic collimator rotation is established with minimized area between the pMLC leaves and the target contour. pMLC sequences of photon DTs and electron pMLC apertures are then simultaneously optimized using direct aperture optimization (DAO). Subsequently, the final dose distribution of the electron pMLC apertures is calculated using the Swiss Monte Carlo Plan (SMCP). The pMLC sequences of the photon DTs are then re-optimized with a finer control point resolution and with the final electron dose distribution taken into account. Afterwards, the final photon dose distribution is calculated also using the SMCP and summed together with the one of the electrons. This process is applied for a brain and two head and neck cases. The resulting DYMBER dose distributions are compared to those of dynamic trajectory radiotherapy (DTRT) plans consisting only of photon DTs and clinically applied VMAT plans. Furthermore, the deliverability of the DYMBER plans is verified in terms of dosimetric accuracy, delivery time and collision avoidance. For this purpose, The DYMBER plans are delivered to Gafchromic EBT3 films placed in an anthropomorphic head phantom on a Varian TrueBeam linear accelerator. RESULTS For each case, the dose homogeneity in the target is similar or better for DYMBER compared to DTRT and VMAT. Averaged over all three cases, the mean dose to the parallel OARs is 16% and 28% lower, D2% to the serial OARs is 17% and 37% lower and V10% to normal tissue is 12% and 4% lower for the DYMBER plans compared to the DTRT and VMAT plans, respectively. The DYMBER plans are delivered without collision and with a 4-5 min longer delivery time than the VMAT plans. The absolute dose measurements are compared to calculation by gamma analysis using 2% (global)/2 mm criteria with passing rates of at least 99%. CONCLUSIONS A treatment technique for DYMBER has been successfully developed and verified for its deliverability. The dosimetric superiority of DYMBER over DTRT and VMAT indicates utilizing increased DoF to be the key to improve brain and head and neck radiation treatments in future.
Collapse
Affiliation(s)
- S Mueller
- Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - P Manser
- Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - W Volken
- Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - D Frei
- Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - R Kueng
- Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - E Herrmann
- Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - O Elicin
- Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - D M Aebersold
- Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - M F M Stampanoni
- Institute for Biomedical Engineering, ETH Zürich and PSI, CH-5232, Villigen, Switzerland
| | - M K Fix
- Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| |
Collapse
|
10
|
Joosten A, Müller S, Henzen D, Volken W, Frei D, Aebersold DM, Manser P, Fix MK. A dosimetric evaluation of different levels of energy and intensity modulation for inversely planned multi-field MERT. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aabe40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Renaud M, Serban M, Seuntjens J. On mixed electron–photon radiation therapy optimization using the column generation approach. Med Phys 2017; 44:4287-4298. [DOI: 10.1002/mp.12338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023] Open
Affiliation(s)
- Marc‐André Renaud
- Department of Physics & Medical Physics Unit McGill University Montreal Canada
| | - Monica Serban
- Medical Physics Unit McGill University Health Centre Montreal Canada
| | - Jan Seuntjens
- Medical Physics Unit McGill University and Research Institute of the McGill University Health Centre Montreal Canada
| |
Collapse
|
12
|
Sipilä P, Ojala J, Kaijaluoto S, Jokelainen I, Kosunen A. Gafchromic EBT3 film dosimetry in electron beams - energy dependence and improved film read-out. J Appl Clin Med Phys 2016; 17:360-373. [PMID: 26894368 PMCID: PMC5690204 DOI: 10.1120/jacmp.v17i1.5970] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 09/27/2015] [Indexed: 11/23/2022] Open
Abstract
For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in 60Co gamma ray beam with addition of experimental and Monte Carlo (MC)-simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read-out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose-dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ± 50 pixel values (PVs). To improve the read-out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scan-ner glass can be detected and eliminated. Responses from red and green channels were averaged for read-out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k = 2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC-simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV-16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read-out procedure established, the nearly uniform energy dependence found and the estimated uncertainties, the EBT3 film was concluded to be a suitable 2D dosimeter for measuring electron or mixed photon/electron dose distributions in water phantom. Uncertainties of 3.7% (k = 2) for absolute and 2.3% (k = 2) for relative dose were estimated.
Collapse
|
13
|
Rodrigues A, Sawkey D, Yin FF, Wu Q. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs. Med Phys 2015; 42:2389-403. [DOI: 10.1118/1.4916896] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
14
|
Lee MacDonald R, Thomas CG. Dynamic trajectory-based couch motion for improvement of radiation therapy trajectories in cranial SRT. Med Phys 2015; 42:2317-25. [DOI: 10.1118/1.4917165] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|