1
|
Fukuda A, Ichikawa N, Hayashi T, Hirosawa A, Matsubara K. Half-value layer measurements using solid-state detectors and single-rotation technique with lead apertures in spiral computed tomography with and without a tin filter. Radiol Phys Technol 2024; 17:207-218. [PMID: 38127219 DOI: 10.1007/s12194-023-00767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Solid-state detectors (SSDs) may be used along with a lead collimator for half-value layer (HVL) measurement using computed tomography (CT) with or without a tin filter. We aimed to compare HVL measurements obtained using three SSDs (AGMS-DM+ , X2 R/F sensor, and Black Piranha) with those obtained using the single-rotation technique with lead apertures (SRTLA). HVL measurements were performed using spiral CT at tube voltages of 70-140 kV without a tin filter and 100-140 kV (Sn 100-140 kV) with a tin filter in increments of 10 kV. For SRTLA, a 0.6-cc ionization chamber was suspended at the isocenter to measure the free-in-air kerma rate (K ˙ air ) values. Five apertures were made on the gantry cover using lead sheets, and four aluminum plates were placed on these apertures. HVLs in SRTLA were obtained fromK ˙ air decline curves. Subsequently, SSDs inserted into the lead collimator were placed on the gantry cover and used to measure HVLs. Maximum HVL differences of AGMS-DM+ , X2 R/F sensor, and Black Piranha with respect to SRTLA without/with a tin filter were - 0.09/0.6 (only two Sn 100-110 kV) mm, - 0.50/ - 0.6 mm, and - 0.17/(no data available) mm, respectively. These values were within the specification limit. SSDs inserted into the lead collimator could be used to measure HVL using spiral CT without a tin filter. HVLs could be measured with a tin filter using only the X2 R/F sensor, and further improvement of its calibration accuracy with respect to other SSDs is warranted.
Collapse
Affiliation(s)
- Atsushi Fukuda
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima, Fukushima, 960-1295, Japan.
| | - Nao Ichikawa
- Department of Radiological Technology, Faculty of Health Science, Kobe Tokiwa University, 2-6-2 Otani-cho, Kobe, Hyogo, 653-0838, Japan
| | - Takuma Hayashi
- Department of Radiation Oncology, Shiga General Hospital, 5-4-30 Moriyama, Moriyama, Shiga, 524-8524, Japan
| | - Ayaka Hirosawa
- Department of Medical Technology, Toyama Prefectural Central Hospital, 2-2-78 Nishinagae, Toyama, 930-8550, Japan
| | - Kosuke Matsubara
- Department of Quantum Medical Technology, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan
| |
Collapse
|
2
|
Yamauchi-Kawaura C, Maki E, Fujii K, Komori M, Imai K. MEASUREMENT OF HALF-VALUE LAYER IN COMPUTED TOMOGRAPHY SCANNERS USING LUMINESCENCE OF POLYETHERSULFONE RESIN BY X-RAY IRRADIATION. RADIATION PROTECTION DOSIMETRY 2021; 196:26-33. [PMID: 34428288 DOI: 10.1093/rpd/ncab126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/08/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
In this study, a method for estimating the half-value layer (HVL) and effective energy (Eeff) by imaging the luminescence from a polyethersulfone (PES) resin with rotating irradiation of X-rays in a computed tomography scanner was developed. The luminescence of the PES resin was imaged using a charge-coupled device camera. The PES-HVL was determined from the luminance attenuation profile corresponding to the X-ray attenuation within the resin. The PES-HVLs for tube potentials of 80-135 kVp were converted into Eeff values and were compared to those of a conventional lead-covered case method. The Eeff obtained using the proposed luminescence imaging method agreed within ~3.9% of that obtained using the conventional method. Moreover, dose simulations based on the X-ray spectrum calculated from the HVLs were performed using a poly(methyl methacrylate) phantom with a diameter of 16 cm. The simulated doses based on the luminescence imaging method agreed with the in-phantom dosimetry within ~9%.
Collapse
Affiliation(s)
- C Yamauchi-Kawaura
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | - E Maki
- Department of Radiological Technology, Nagoya City East Medical Center, 1-2-23, Wakamizu, Chikusa-ku, Nagoya 464-8547, Japan
| | - K Fujii
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | - M Komori
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | - K Imai
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| |
Collapse
|
3
|
Muramatsu S. [2. Topics in Bow-tie Filter]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:75-80. [PMID: 33473082 DOI: 10.6009/jjrt.2021_jsrt_77.1.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Fukuda A, Ichikawa N, Tashiro M, Yamao T, Murakami K, Kubo H. Measurement of the half-value layer for CT systems in a single-rotation technique: Reduction of stray radiation with lead apertures. Phys Med 2020; 76:221-226. [DOI: 10.1016/j.ejmp.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/26/2022] Open
|
5
|
Okubo R, Matsubara K, Chusin T, Hibino T, Ito Y. Feasibility of the new copper pipe method for evaluating half-value layer in computed tomography: A measurement and Monte Carlo simulation study. J Appl Clin Med Phys 2019; 20:186-192. [PMID: 31763770 PMCID: PMC6909117 DOI: 10.1002/acm2.12780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 02/03/2023] Open
Abstract
This study aimed to verify the accuracy of half‐value layer (HVL) measured using the new copper pipe method with the CT ionization chamber while the X‐ray tube is rotating and to compare it with the conventional nonrotating method and Monte Carlo simulation method based on the actual measurement and geometry of the new copper pipe method. HVL was measured while the X‐ray tube was rotating using a CT ionization chamber surrounded by copper pipe absorbers and located at the isocenter of the CT gantry. The exposure as the copper pipe thickness approached 0 mm was extrapolated from the attenuation curve to take the influence of scatter radiation into consideration. The results of the new copper pipe method were compared with those of the other two methods. Data were acquired using two different CT scanners on a single axial scan. The two one‐sided test (TOST) equivalent test yielded equivalence between HVLs derived from the new copper pipe and the nonrotating methods (P < 0.05) and those derived from the new copper pipe and the simulation methods (P < 0.05) at the equivalence margins of ± 0.03 mmCu. The mean absolute difference in HVL between the new copper pipe and conventional nonrotating methods was 0.01 ± 0.02 mmCu, which corresponded to an error of effective energy of (0.86 ± 1.66)%. The new copper pipe method can ensure that HVL of CT scanner can easily be evaluated using solely the CT ionization chamber and copper pipe absorbers without requiring service engineering mode.
Collapse
Affiliation(s)
- Rena Okubo
- Department of Radiological Technology, DAIYUKAI HEALTH SYSTEM, Ichinomiya, Japan
| | - Kosuke Matsubara
- Department of Quantum Medical Technology, Faculty of Health Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Thunyarat Chusin
- Department of Quantum Medical Technology, Graduate Course of Medical Science and Technology, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomoya Hibino
- Department of Radiological Technology, DAIYUKAI HEALTH SYSTEM, Ichinomiya, Japan.,Department of Quantum Medical Technology, Graduate Course of Medical Science and Technology, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yusuke Ito
- Department of Radiological Technology, DAIYUKAI HEALTH SYSTEM, Ichinomiya, Japan
| |
Collapse
|
6
|
Fukuda A, Lin PP, Ichikawa N, Matsubara K. Estimation of primary radiation output for wide‐beam computed tomography scanner. J Appl Clin Med Phys 2019; 20:152-159. [PMID: 31050131 PMCID: PMC6560250 DOI: 10.1002/acm2.12598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 01/19/2023] Open
Abstract
Purpose To estimate in‐air primary radiation output in a wide‐beam multidetector computed tomography (CT) scanner. Materials and methods A 6‐cc ionization chamber was placed free‐in‐air at the isocenter, and two sheets of lead (1‐mm thickness) were placed on the bottom of the gantry cover, forming apertures of 40–80 mm in increments of 8 mm. The air‐kerma rate profiles were measured with and without the apertures (K˙w-A, K˙w/o-A) for 4.8 s at tube potentials of 80, 100, 120, and 135 kVp, tube current of 50 mA, and rotation time of 0.4 s. The nominal beam width was varied from 40 to 160 mm in increments of 40 mm. Upon completion of data acquisition, the K˙w/o-A were plotted as a function of the measured beam width, and the extrapolated dose rates (K˙0-w/o-A) at zero beam width were calculated by second‐order least‐squares estimation. Similarly, the K˙w-A were plotted as a function of the radiation field (measured beam width × aperture size at the isocenter), and the extrapolated dose rates (K˙0-w-A) were compared with the K˙0-w/o-A. Results The means and standard errors of the K˙w/o-A with 40‐, 80‐, 120‐, and 160‐mm nominal beam widths at 120 kVp were 10.94 ± 0.01, 11.13 ± 0.01, 11.22 ± 0.01, and 11.31 ± 0.01 mGy/s, respectively, and the K˙0-w/o-A was reduced to 10.67 ± 0.02 mGy/s. The K˙0-w-A of 40‐, 80‐, 120‐, and 160‐mm beam widths were reduced to 10.6 ± 0.1, 10.6 ± 0.2, 10.5 ± 0.1, and 10.6 ± 0.1 mGy/s and were not significantly different from the K˙0-w/o-A. Conclusions A method for describing the in‐air primary radiation output in a wide‐beam CT scanner was proposed that provides a means to characterize the scatter‐to‐primary ratio of the CT scanner.
Collapse
Affiliation(s)
- Atsushi Fukuda
- Department of Radiology Virginia Commonwealth University Medical Center Richmond VA USA
- Preparing Section for New Faculty of Medical Science Fukushima Medical University Fukushima Japan
| | - Pei‐Jan P. Lin
- Department of Radiology Virginia Commonwealth University Medical Center Richmond VA USA
| | - Nao Ichikawa
- Department of Radiology Shiga General Hospital Shiga Japan
- Department of Quantum Medical Technology, Graduate Course of Medical Science and Technology, Division of Health Science Kanazawa University Graduate School of Medical Sciences Ishikawa Japan
| | - Kosuke Matsubara
- Department of Quantum Medical Technology, Faculty of Health Sciences Kanazawa University Ishikawa Japan
| |
Collapse
|
7
|
Rosendahl S, Büermann L, Borowski M, Kortesniemi M, Sundell VM, Kosunen A, Siiskonen T. CT beam dosimetric characterization procedure for personalized dosimetry. Phys Med Biol 2019; 64:075009. [PMID: 30856614 DOI: 10.1088/1361-6560/ab0e97] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Personalized dosimetry in computed tomography (CT) can be realized by a full Monte Carlo (MC) simulation of the scan procedure. Essential input data needed for the simulation are appropriate CT x-ray source models and a model of the patient's body which is based on the CT image. The purpose of this work is to develop comprehensive procedures for the determination of CT x-ray source models and their verification by comparison of calculated and measured dose distributions in physical phantoms. Mobile equipment together with customized software was developed and used for non-invasive determination of equivalent source models of CT scanners under clinical conditions. Standard and physical anthropomorphic CT dose phantoms equipped with real-time CT dose probes at five representative positions were scanned. The accumulated dose was measured during the scan at the five positions. ImpactMC, an MC-based CT dose software program, was used to simulate the scan. The necessary inputs were obtained from the scan parameters, from the equivalent source models and from the material-segmented CT images of the phantoms. 3D dose distributions in the phantoms were simulated and the dose values calculated at the five positions inside the phantom were compared to measured dose values. Initial results were obtained by means of a General Electric Optima CT 660 and a Toshiba (Canon) Aquilion ONE. In general, the measured and calculated dose values were within relative uncertainties that had been estimated to be less than 10%. The procedures developed were found to be viable and rapid. The procedures are applicable to any scanner type under clinical conditions without making use of the service mode with stationary x-ray tube position. Results show that the procedures are well suited for determining and verifying the equivalent source models needed for personalized CT dosimetry based on post-scan MC calculations.
Collapse
Affiliation(s)
- S Rosendahl
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Matsubara K, Nagata H, Okubo R, Takata T, Kobayashi M. Method for determining the half-value layer in computed tomography scans using a real-time dosimeter: Application to dual-source dual-energy acquisition. Phys Med 2017; 44:227-231. [DOI: 10.1016/j.ejmp.2017.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/09/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022] Open
|
9
|
Yang K, Li X, George Xu X, Liu B. Direct and fast measurement of CT beam filter profiles with simultaneous geometrical calibration. Med Phys 2017; 44:57-70. [PMID: 28102951 DOI: 10.1002/mp.12024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 11/03/2016] [Accepted: 11/12/2016] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To accurately measure the beam filter profiles from a variety of CT scanner models and to provide reference data for Monte Carlo simulations of CT scanners. METHODS This study proposed a new method to measure CT beam filter profiles using a linear-array x-ray detector (X-Scan 0.8f3-512; Detection Technology Inc., Espoo, Finland) under gantry rotation mode. A robust geometrical calibration approach was developed to determine key geometrical parameters by considering the x-ray focal spot location relative to the linear-array detector and the gantry's angular increment at each acquisition point. CT beam intensity profiles were synthesized from continuously measured data during a 10° gantry rotation range with calibrated detector response and system geometry information. Relative transmission profiles of nineteen sets of beam filters were then derived for nine different CT scanner models from three different manufacturers. Equivalent aluminum thickness profiles of these beam filters were determined by analytical calculation using the Spektr Matlab software package to match the measured transmission profiles. Three experiments were performed to validate the accuracy of the geometrical calibration, detector response modeling, and the derived equivalent aluminum thickness profiles. RESULTS The beam intensity profiles measured from gantry rotation mode showed very good agreement with those measured with gantry stationary mode, with a maximal difference of 3%. The equivalent aluminum thickness determined by this proposed method agreed well with what was measured by an ion chamber, with a mean difference of 0.4%. The determined HVL profiles matched well with data from a previous study (max difference of 4.7%). CONCLUSIONS An accurate and robust method to directly measure profiles from a broad list of beam filters and CT scanner models was developed, implemented, and validated. Useful reference data was provided for future research on CT system modeling.
Collapse
Affiliation(s)
- Kai Yang
- Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Xinhua Li
- Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - X George Xu
- Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| | - Bob Liu
- Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
10
|
Randazzo M, Tambasco M. A rapid noninvasive characterization of CT x-ray sources. Med Phys 2016; 42:3960-8. [PMID: 26133596 DOI: 10.1118/1.4921805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aim of this study is to generate spatially varying half value layers (HVLs) that can be used to construct virtual equivalent source models of computed tomography (CT) x-ray sources for use in Monte Carlo CT dose computations. METHODS To measure the spatially varying HVLs, the authors combined a cylindrical HVL measurement technique with the characterization of bowtie filter relative attenuation (COBRA) geometry. An apparatus given the name "HVL Jig" was fabricated to accurately position a real-time dosimeter off-isocenter while surrounded by concentric cylindrical aluminum filters (CAFs). In this geometry, each projection of the rotating x-ray tube is filtered by an identical amount of high-purity (type 1100 H-14) aluminum while the stationary radiation dose probe records an air kerma rate versus time waveform. The CAFs were progressively nested to acquire exposure data at increasing filtrations to calculate the HVL. Using this dose waveform and known setup geometry, each timestamp was related to its corresponding fan angle. Data were acquired using axial CT protocols (i.e., rotating tube and stationary patient table) at energies of 80, 100, and 120 kVp on a single CT scanner. These measurements were validated against the more laborious conventional step-and-shoot approach (stationary x-ray tube). RESULTS At each energy, HVL data points from the COBRA-cylinder technique were fit to a trendline and compared with the conventional approach. The average relative difference in HVL between the two techniques was 1.3%. There was a systematic overestimation in HVL due to scatter contamination. CONCLUSIONS The described method is a novel, rapid, accurate, and noninvasive approach that allows one to acquire the spatially varying fluence and HVL data using a single experimental setup in a minimum of three scans. These measurements can be used to characterize the CT beam in terms of the angle-dependent fluence and energy spectra along the bowtie filter direction, which can serve as input for accurate CT dose computations.
Collapse
Affiliation(s)
- Matt Randazzo
- Department of Physics, San Diego State University, San Diego, California 92182-1233
| | - Mauro Tambasco
- Department of Physics, San Diego State University, San Diego, California 92182-1233
| |
Collapse
|
11
|
Non-invasive experimental determination of a CT source model. Phys Med 2016; 32:59-66. [DOI: 10.1016/j.ejmp.2015.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 11/21/2022] Open
|
12
|
Whiting BR, Evans JD, Dohatcu AC, Williamson JF, Politte DG. Measurement of bow tie profiles in CT scanners using a real-time dosimeter. Med Phys 2015; 41:101915. [PMID: 25281967 DOI: 10.1118/1.4896196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Several areas of computed tomography (CT) research require knowledge about the intensity profile of the x-ray fan beam that is introduced by a bow tie filter. This information is considered proprietary by CT manufacturers, so noninvasive measurement methods are required. One method using real-time dosimeters has been proposed in the literature. A commercially available dosimeter was used to apply that method, and analysis techniques were developed to extract fan beam profiles from measurements. METHODS A real-time ion chamber was placed near the periphery of an empty CT gantry and the dose rate versus time waveform was recorded as the x-ray source rotated about the isocenter. In contrast to previously proposed analysis methods that assumed a pointlike detector, the finite-size ion chamber received varying amounts of coverage by the collimated x-ray beam during rotation, precluding a simple relationship between the source intensity as a function of fan beam angle and measured intensity. A two-parameter model for measurement intensity was developed that included both effective collimation width and source-to-detector distance, which then was iteratively solved to minimize the error between duplicate measurements at corresponding fan beam angles, allowing determination of the fan beam profile from measured dose-rate waveforms. Measurements were performed on five different scanner systems while varying parameters such as collimation, kVp, and bow tie filters. On one system, direct measurements of the bow tie profile were collected for comparison with the real-time dosimeter technique. RESULTS The data analysis method for a finite-size detector was found to produce a fan beam profile estimate with a relative error between duplicate measurement intensities of <5%. It was robust over a wide range of collimation widths (e.g., 1-40 mm), producing fan beam profiles that agreed with a relative error of 1%-5%. Comparison with a direct measurement technique on one system produced agreement with a relative error of 2%-6%. Fan beam profiles were found to differ for different filter types on a given system and between different vendors. CONCLUSIONS A commercially available real-time dosimeter probe was found to be a convenient and accurate instrument for measuring fan beam profiles. An analysis method was developed that could handle a wide range of collimation widths by explicitly considering the finite width of the ion chamber. Relative errors in the profiles were found to be less than 5%. Measurements of five different clinical scanners demonstrate the variation in bow tie designs, indicating that generic bow tie models will not be adequate for CT system research.
Collapse
Affiliation(s)
- Bruce R Whiting
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Joshua D Evans
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Andreea C Dohatcu
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| | - Jeffrey F Williamson
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - David G Politte
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110
| |
Collapse
|