1
|
Mayorca-Torres D, León-Salas AJ, Peluffo-Ordoñez DH. Systematic review of computational techniques, dataset utilization, and feature extraction in electrocardiographic imaging. Med Biol Eng Comput 2025:10.1007/s11517-024-03264-z. [PMID: 39779645 DOI: 10.1007/s11517-024-03264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to analyze computational techniques in ECG imaging (ECGI) reconstruction, focusing on dataset identification, problem-solving, and feature extraction. We employed a PRISMA approach to review studies from Scopus and Web of Science, applying Cochrane principles to assess risk of bias. The selection was limited to English peer-reviewed papers published from 2010 to 2023, excluding studies that lacked computational technique descriptions. From 99 reviewed papers, trends show a preference for traditional methods like the boundary element and Tikhonov methods, alongside a rising use of advanced technologies including hybrid techniques and deep learning. These advancements have enhanced cardiac diagnosis and treatment precision. Our findings underscore the need for robust data utilization and innovative computational integration in ECGI, highlighting promising areas for future research and advances. This shift toward tailored cardiac care suggests significant progress in diagnostic and treatment methods.
Collapse
Affiliation(s)
- Dagoberto Mayorca-Torres
- Department of Software Systems and Programming Languages, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain.
- Faculty of Engineering, Universidad Mariana, Cl 18 34 - 104, Pasto, 52001, Colombia.
| | - Alejandro J León-Salas
- Department of Software Systems and Programming Languages, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain
| | - Diego H Peluffo-Ordoñez
- Faculty of Engineering, Corporación Universitaria Autónoma de Nariño, Pasto, 520001, Colombia
- College of Computing, Mohammed VI Polytechnic University, Lot 660, Ben Guerir, 43150, Morocco
- SDAS Research Group, Ben Guerir, 43150, Morocco
| |
Collapse
|
2
|
Jia Y, Pei H, Liang J, Zhou Y, Yang Y, Cui Y, Xiang M. Preprocessing and Denoising Techniques for Electrocardiography and Magnetocardiography: A Review. Bioengineering (Basel) 2024; 11:1109. [PMID: 39593769 PMCID: PMC11591354 DOI: 10.3390/bioengineering11111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
This review systematically analyzes the latest advancements in preprocessing techniques for Electrocardiography (ECG) and Magnetocardiography (MCG) signals over the past decade. ECG and MCG play crucial roles in cardiovascular disease (CVD) detection, but both are susceptible to noise interference. This paper categorizes and compares different ECG denoising methods based on noise types, such as baseline wander (BW), electromyographic noise (EMG), power line interference (PLI), and composite noise. It also examines the complexity of MCG signal denoising, highlighting the challenges posed by environmental and instrumental interference. This review is the first to systematically compare the characteristics of ECG and MCG signals, emphasizing their complementary nature. MCG holds significant potential for improving the precision of CVD clinical diagnosis. Additionally, it evaluates the limitations of current denoising methods in clinical applications and outlines future directions, including the potential of explainable neural networks, multi-task neural networks, and the combination of deep learning with traditional methods to enhance denoising performance and diagnostic accuracy. In summary, while traditional filtering techniques remain relevant, hybrid strategies combining machine learning offer substantial potential for advancing signal processing and clinical diagnostics. This review contributes to the field by providing a comprehensive framework for selecting and improving denoising techniques, better facilitating signal quality enhancement and the accuracy of CVD diagnostics.
Collapse
Affiliation(s)
- Yifan Jia
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (Y.J.); (H.P.); (J.L.); (Y.Z.); (Y.Y.)
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Hongyu Pei
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (Y.J.); (H.P.); (J.L.); (Y.Z.); (Y.Y.)
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Jiaqi Liang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (Y.J.); (H.P.); (J.L.); (Y.Z.); (Y.Y.)
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Yuheng Zhou
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (Y.J.); (H.P.); (J.L.); (Y.Z.); (Y.Y.)
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Yanfei Yang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (Y.J.); (H.P.); (J.L.); (Y.Z.); (Y.Y.)
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Yangyang Cui
- State Key Laboratory of Traditional Chinese Medicine Syndrome, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310028, China
| | - Min Xiang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (Y.J.); (H.P.); (J.L.); (Y.Z.); (Y.Y.)
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310028, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
3
|
Albertova P, Gram M, Blaimer M, Bauer WR, Jakob PM, Nordbeck P. Rotary excitation of non-sinusoidal pulsed magnetic fields: Towards non-invasive direct detection of cardiac conduction. Magn Reson Med 2024; 92:1965-1979. [PMID: 38934418 DOI: 10.1002/mrm.30190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE There is a need for high resolution non-invasive imaging methods of physiologic magnetic fields. The purpose of this work is to develop a MRI detection approach for non-sinusoidal magnetic fields based on the rotary excitation (REX) mechanism which was previously successfully applied for the detection of oscillating magnetic fields in the sub-nT range. METHODS The new detection concept was examined by means of Bloch simulations, evaluating the interaction effect of spin-locked magnetization and low-frequency pulsed magnetic fields. The REX detection approach was validated under controlled conditions in phantom experiments at 3 T. Gaussian and sinc-shaped stimuli were investigated. In addition, the detection of artificial fields resembling a cardiac QRS complex, which is the most prominent peak visible on a magnetocardiogram, was tested. RESULTS Bloch simulations demonstrated that the REX method has a high sensitivity to pulsed fields in the resonance case, which is met when the spin-lock frequency coincides with a non-zero Fourier component of the stimulus field. In the experiments, we found that magnetic stimuli of different durations and waveforms can be distinguished by their characteristic REX response spectrum. The detected REX amplitude was proportional to the stimulus peak amplitude (R2 > 0.98) and the lowest field detection was 1 nT. Furthermore, the detection of QRS-like fields with varying QRS durations yielded significant results in a phantom setup (p < 0.001). CONCLUSION REX detection can be transferred to non-sinusoidal pulsed magnetic fields and could provide a non-invasive, quantitative tool for spatially resolved assessment of cardiac biomagnetism. Potential applications include the direct detection and characterization of cardiac conduction.
Collapse
Affiliation(s)
- Petra Albertova
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | - Maximilian Gram
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | - Martin Blaimer
- Fraunhofer Institute for Integrated Circuits IIS, Würzburg, Germany
| | | | | | - Peter Nordbeck
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Iwata GZ, Nguyen CT, Tharratt K, Ruf M, Reinhardt T, Crivelli-Decker J, Liddy MSZ, Rugar AE, Lu F, Aschbacher K, Pratt EJ, Au-Yeung KY, Bogdanovic S. Bedside Magnetocardiography with a Scalar Sensor Array. SENSORS (BASEL, SWITZERLAND) 2024; 24:5402. [PMID: 39205098 PMCID: PMC11359538 DOI: 10.3390/s24165402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Decades of research have shown that magnetocardiography (MCG) has the potential to improve cardiac care decisions. However, sensor and system limitations have prevented its widespread adoption in clinical practice. We report an MCG system built around an array of scalar, optically pumped magnetometers (OPMs) that effectively rejects ambient magnetic interference without magnetic shielding. We successfully used this system, in conjunction with custom hardware and noise rejection algorithms, to record magneto-cardiograms and functional magnetic field maps from 30 volunteers in a regular downtown office environment. This demonstrates the technical feasibility of deploying our device architecture at the point-of-care, a key step in making MCG usable in real-world settings.
Collapse
|
5
|
Tota M, Jonderko L, Witek J, Novickij V, Kulbacka J. Cellular and Molecular Effects of Magnetic Fields. Int J Mol Sci 2024; 25:8973. [PMID: 39201657 PMCID: PMC11354277 DOI: 10.3390/ijms25168973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Recently, magnetic fields (MFs) have received major attention due to their potential therapeutic applications and biological effects. This review provides a comprehensive analysis of the cellular and molecular impacts of MFs, with a focus on both in vitro and in vivo studies. We investigate the mechanisms by which MFs influence cell behavior, including modifications in gene expression, protein synthesis, and cellular signaling pathways. The interaction of MFs with cellular components such as ion channels, membranes, and the cytoskeleton is analyzed, along with their effects on cellular processes like proliferation, differentiation, and apoptosis. Molecular insights are offered into how MFs modulate oxidative stress and inflammatory responses, which are pivotal in various pathological conditions. Furthermore, we explore the therapeutic potential of MFs in regenerative medicine, cancer treatment, and neurodegenerative diseases. By synthesizing current findings, this article aims to elucidate the complex bioeffects of MFs, thereby facilitating their optimized application in medical and biotechnological fields.
Collapse
Affiliation(s)
- Maciej Tota
- Student Research Group № K148, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Laura Jonderko
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Julia Witek
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, LT-03227 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
6
|
Roth BJ. The magnetocardiogram. BIOPHYSICS REVIEWS 2024; 5:021305. [PMID: 38827563 PMCID: PMC11139488 DOI: 10.1063/5.0201950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
The magnetic field produced by the heart's electrical activity is called the magnetocardiogram (MCG). The first 20 years of MCG research established most of the concepts, instrumentation, and computational algorithms in the field. Additional insights into fundamental mechanisms of biomagnetism were gained by studying isolated hearts or even isolated pieces of cardiac tissue. Much effort has gone into calculating the MCG using computer models, including solving the inverse problem of deducing the bioelectric sources from biomagnetic measurements. Recently, most magnetocardiographic research has focused on clinical applications, driven in part by new technologies to measure weak biomagnetic fields.
Collapse
Affiliation(s)
- Bradley J. Roth
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| |
Collapse
|
7
|
Brisinda D, Fenici P, Fenici R. Clinical magnetocardiography: the unshielded bet-past, present, and future. Front Cardiovasc Med 2023; 10:1232882. [PMID: 37636301 PMCID: PMC10448194 DOI: 10.3389/fcvm.2023.1232882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 08/29/2023] Open
Abstract
Magnetocardiography (MCG), which is nowadays 60 years old, has not yet been fully accepted as a clinical tool. Nevertheless, a large body of research and several clinical trials have demonstrated its reliability in providing additional diagnostic electrophysiological information if compared with conventional non-invasive electrocardiographic methods. Since the beginning, one major objective difficulty has been the need to clean the weak cardiac magnetic signals from the much higher environmental noise, especially that of urban and hospital environments. The obvious solution to record the magnetocardiogram in highly performant magnetically shielded rooms has provided the ideal setup for decades of research demonstrating the diagnostic potential of this technology. However, only a few clinical institutions have had the resources to install and run routinely such highly expensive and technically demanding systems. Therefore, increasing attempts have been made to develop cheaper alternatives to improve the magnetic signal-to-noise ratio allowing MCG in unshielded hospital environments. In this article, the most relevant milestones in the MCG's journey are reviewed, addressing the possible reasons beyond the currently long-lasting difficulty to reach a clinical breakthrough and leveraging the authors' personal experience since the early 1980s attempting to finally bring MCG to the patient's bedside for many years thus far. Their nearly four decades of foundational experimental and clinical research between shielded and unshielded solutions are summarized and referenced, following the original vision that MCG had to be intended as an unrivaled method for contactless assessment of the cardiac electrophysiology and as an advanced method for non-invasive electroanatomical imaging, through multimodal integration with other non-fluoroscopic imaging techniques. Whereas all the above accounts for the past, with the available innovative sensors and more affordable active shielding technologies, the present demonstrates that several novel systems have been developed and tested in multicenter clinical trials adopting both shielded and unshielded MCG built-in hospital environments. The future of MCG will mostly be dependent on the results from the ongoing progress in novel sensor technology, which is relatively soon foreseen to provide multiple alternatives for the construction of more compact, affordable, portable, and even wearable devices for unshielded MCG inside hospital environments and perhaps also for ambulatory patients.
Collapse
Affiliation(s)
- D. Brisinda
- Dipartimento Scienze dell'invecchiamento, ortopediche e reumatologiche, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- School of Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
- Biomagnetism and Clinical Physiology International Center (BACPIC), Rome, Italy
| | - P. Fenici
- School of Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
- Biomagnetism and Clinical Physiology International Center (BACPIC), Rome, Italy
| | - R. Fenici
- Biomagnetism and Clinical Physiology International Center (BACPIC), Rome, Italy
| |
Collapse
|
8
|
Han B, Trew ML, Zgierski-Johnston CM. Cardiac Conduction Velocity, Remodeling and Arrhythmogenesis. Cells 2021; 10:cells10112923. [PMID: 34831145 PMCID: PMC8616078 DOI: 10.3390/cells10112923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac electrophysiological disorders, in particular arrhythmias, are a key cause of morbidity and mortality throughout the world. There are two basic requirements for arrhythmogenesis: an underlying substrate and a trigger. Altered conduction velocity (CV) provides a key substrate for arrhythmogenesis, with slowed CV increasing the probability of re-entrant arrhythmias by reducing the length scale over which re-entry can occur. In this review, we examine methods to measure cardiac CV in vivo and ex vivo, discuss underlying determinants of CV, and address how pathological variations alter CV, potentially increasing arrhythmogenic risk. Finally, we will highlight future directions both for methodologies to measure CV and for possible treatments to restore normal CV.
Collapse
Affiliation(s)
- Bo Han
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, 79110 Freiburg im Breisgau, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Department of Cardiovascular Surgery, The Fourth People’s Hospital of Jinan, 250031 Jinan, China
| | - Mark L. Trew
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand;
| | - Callum M. Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, 79110 Freiburg im Breisgau, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Correspondence:
| |
Collapse
|
9
|
Yang Y, Xu M, Liang A, Yin Y, Ma X, Gao Y, Ning X. A new wearable multichannel magnetocardiogram system with a SERF atomic magnetometer array. Sci Rep 2021; 11:5564. [PMID: 33692397 PMCID: PMC7970947 DOI: 10.1038/s41598-021-84971-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/23/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, a wearable multichannel human magnetocardiogram (MCG) system based on a spin exchange relaxation-free regime (SERF) magnetometer array is developed. The MCG system consists of a magnetically shielded device, a wearable SERF magnetometer array, and a computer for data acquisition and processing. Multichannel MCG signals from a healthy human are successfully recorded simultaneously. Independent component analysis (ICA) and empirical mode decomposition (EMD) are used to denoise MCG data. MCG imaging is realized to visualize the magnetic and current distribution around the heart. The validity of the MCG signals detected by the system is verified by electrocardiogram (ECG) signals obtained at the same position, and similar features and intervals of cardiac signal waveform appear on both MCG and ECG. Experiments show that our wearable MCG system is reliable for detecting MCG signals and can provide cardiac electromagnetic activity imaging.
Collapse
Affiliation(s)
- Yanfei Yang
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, 100191, China
| | - Mingzhu Xu
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, 100191, China
| | - Aimin Liang
- Department of Child Health Care Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yan Yin
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, 100191, China
| | - Xin Ma
- Hangzhou Innovation Institute, Beihang University, Hangzhou, 310051, China.,Research Institute for Frontier Science, Beihang University, Beijing, 100191, China
| | - Yang Gao
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China.,School of Physics, Beihang University, Beijing, 100191, China
| | - Xiaolin Ning
- Hangzhou Innovation Institute, Beihang University, Hangzhou, 310051, China. .,Research Institute for Frontier Science, Beihang University, Beijing, 100191, China.
| |
Collapse
|
10
|
Zheng W, Su S, Zhang G, Bi X, Lin Q. Vector magnetocardiography measurement with a compact elliptically polarized laser-pumped magnetometer. BIOMEDICAL OPTICS EXPRESS 2020; 11:649-659. [PMID: 32206390 PMCID: PMC7041466 DOI: 10.1364/boe.380314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
We report on a practical approach to vector biomagnetism measurement with an optically pumped magnetometer for measuring total magnetic field intensity. Its application to vector magnetocardiography is experimentally demonstrated with a compact elliptically polarized laser-pumped M x atomic magnetometer (EPMx OPM). The approach is proved to be effective and able to provide more complete cardiac magnetic information. The cardiac magnetic vectors are displayed in three-dimensional space in the form of magnetic vector loops. The sensor configuration and the image processing method here are expected to form further values, especially for multi-channel vector biomagnetism measurement, clinical diagnosis, and field source reconstruction.
Collapse
|
11
|
Mäntynen V, Lehto M, Parikka H, Montonen J. Noninvasive mapping reveals recurrent and suddenly changing patterns in atrial fibrillation-a magnetocardiographic study. Physiol Meas 2018; 39:025006. [PMID: 29271352 DOI: 10.1088/1361-6579/aaa3bb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To study noninvasive magnetocardiographic (MCG) mapping of ongoing atrial fibrillation (AF) and, for the possible mapping patterns observed, to develop simplified but meaningful descriptors or parameters, providing a possible basis for future research and clinical use of the mappings. APPROACH MCG mapping with simultaneous ECG was recorded during arrhythmia in patients representing a range of typical, clinically classical atrial arrhythmias. The recordings were assessed using MCG map animations, and a method to compute magnetic field map orientation (MFO) and its time course was created to facilitate presentation of the findings. All the data were segmented into four categories of ECG waveform regularity. MAIN RESULTS In visual observation of the MCG animations, an abundance of clear spatial and temporal patterns with regularity were found, often perceived as rotations of the map. This rotation and its sudden reversals of direction were distinctly present in the time course of the MFO. The shortest segments with consistent rotation lasted for some hundreds of milliseconds, i.e. a couple of cycles, but segments lasting for tens of seconds were observed as well. In the ECG, all four categories of regularity were present. The rotation of the MFO was observed in all patients under study and regardless of the ECG categories. Further, a change in ECG category during a measurement was frequently, but not always, found to be simultaneous with a change in the rotation pattern of the MFO. Utilization of spatial information of MCG mapping could enable detection of both regularities and instantaneous phenomena during AF. SIGNIFICANCE Cardiac mapping may offer a useful noninvasive means to study the mechanisms of AF, including superior temporal resolution.
Collapse
Affiliation(s)
- Ville Mäntynen
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, PO Box 340, FI-00029 HUS, Finland. Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland, PO Box 12200, FI-00076 AALTO, Finland
| | | | | | | |
Collapse
|
12
|
Gusev NA, Vetoshko PM, Kuzmichev AN, Chepurnova DA, Samoilova EV, Zvezdin AK, Korotaeva AA, Belotelov VI. Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping. BIOMEDICAL ENGINEERING-MEDITSINSKAYA TEKNIKA 2017. [DOI: 10.1007/s10527-017-9705-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Morales S, Corsi MC, Fourcault W, Bertrand F, Cauffet G, Gobbo C, Alcouffe F, Lenouvel F, Le Prado M, Berger F, Vanzetto G, Labyt E. Magnetocardiography measurements with 4He vector optically pumped magnetometers at room temperature. Phys Med Biol 2017; 62:7267-7279. [PMID: 28257003 DOI: 10.1088/1361-6560/aa6459] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this paper, we present a proof of concept study which demonstrates for the first time the possibility of recording magnetocardiography (MCG) signals with 4He vector optically pumped magnetometers (OPM) operated in a gradiometer mode. Resulting from a compromise between sensitivity, size and operability in a clinical environment, the developed magnetometers are based on the parametric resonance of helium in a zero magnetic field. Sensors are operated at room temperature and provide a tri-axis vector measurement of the magnetic field. Measured sensitivity is around 210 f T (√Hz)-1 in the bandwidth (2 Hz; 300 Hz). MCG signals from a phantom and two healthy subjects are successfully recorded. Human MCG data obtained with the OPMs are compared to reference electrocardiogram recordings: similar heart rates, shapes of the main patterns of the cardiac cycle (P/T waves, QRS complex) and QRS widths are obtained with both techniques.
Collapse
Affiliation(s)
- S Morales
- CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Alday EAP, Ni H, Zhang C, Colman MA, Gan Z, Zhang H. Comparison of Electric- and Magnetic-Cardiograms Produced by Myocardial Ischemia in Models of the Human Ventricle and Torso. PLoS One 2016; 11:e0160999. [PMID: 27556808 PMCID: PMC4996509 DOI: 10.1371/journal.pone.0160999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022] Open
Abstract
Myocardial ventricular ischemia arises from a lack of blood supply to the heart, which may cause abnormal repolarization and excitation wave conduction patterns in the tissue, leading to cardiac arrhythmias and even sudden death. Current diagnosis of cardiac ischemia by the 12-lead electrocardiogram (ECG) has limitations as they are insensitive in many cases and may show unnoticeable differences to normal patterns. As the magnetic field provides extra information on cardiac excitation and is more sensitive to tangential currents to the surface of the chest, whereas the electric field is more sensitive to flux currents, it has been hypothesized that the magnetocardiogram (MCG) may provide a complementary method to the ECG in ischemic diagnosis. However, it is unclear yet about the differences in sensitivity regions of body surface ECG and MCG signals to ischemic conditions. The aim of this study was to investigate such differences by using 12-, 36- ECG and 36-MCG computed from multi-scale biophysically detailed computational models of the human ventricles and torso in both control and ischemic conditions. It was shown that ischemia produced changes in the ECG and MCG signals in the QRS complex, T-wave and ST-segment, with greater relative differences seen in the 36-lead ECG and MCG as compared to the 12-leads ECG (34% and 37% vs 26%, respectively). The 36-lead ECG showed more averaged sensitivity than the MCG in the change of T-wave due to ischemia (37% vs 32%, respectively), whereas the MCG showed greater sensitivity than the ECG in the change of the ST-segment (50% vs 40%, respectively). In addition, both MCG and ECG showed regional-dependent changes to ischemia, but with MCG showing a stronger correlation between ischemic region in the heart. In conclusion, MCG shows more sensitivity than ECG in response to ischemia, which may provide an alternative method for the diagnosis of ischemia.
Collapse
Affiliation(s)
- Erick A. Perez Alday
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Haibo Ni
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Chen Zhang
- Applied superconductivity Research Center, School of Physics, Peking University, Beijing, China
| | - Michael A. Colman
- Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Zizhao Gan
- Applied superconductivity Research Center, School of Physics, Peking University, Beijing, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Zhang SH, Tse ZTH, Dumoulin CL, Kwong RY, Stevenson WG, Watkins R, Ward J, Wang W, Schmidt EJ. Gradient-induced voltages on 12-lead ECGs during high duty-cycle MRI sequences and a method for their removal considering linear and concomitant gradient terms. Magn Reson Med 2015; 75:2204-16. [PMID: 26101951 DOI: 10.1002/mrm.25810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/18/2015] [Accepted: 05/23/2015] [Indexed: 11/08/2022]
Abstract
PURPOSE To restore 12-lead electrocardiographic (ECG) signal fidelity inside MRI by removing magnetic field gradient-induced voltages during high gradient duty cycle sequences. THEORY AND METHODS A theoretical equation was derived to provide first- and second-order electrical fields induced at individual ECG electrodes as a function of gradient fields. Experiments were performed at 3T on healthy volunteers using a customized acquisition system that captured the full amplitude and frequency response of ECGs, or a commercial recording system. The 19 equation coefficients were derived via linear regression of data from accelerated sequences and were used to compute induced voltages in real-time during full resolution sequences to remove ECG artifacts. Restored traces were evaluated relative to ones acquired without imaging. RESULTS Measured induced voltages were 0.7 V peak-to-peak during balanced steady state free precession (bSSFP) with the heart at the isocenter. Applying the equation during gradient echo sequencing, three-dimensional fast spin echo, and multislice bSSFP imaging restored nonsaturated traces and second-order concomitant terms showed larger contributions in electrodes further from the magnet isocenter. Equation coefficients are evaluated with high repeatability (ρ = 0.996) and are dependent on subject, sequence, and slice orientation. CONCLUSION Close agreement between theoretical and measured gradient-induced voltages allowed for real-time removal. Prospective estimation of sequence periods in which large induced voltages occur may allow hardware removal of these signals.
Collapse
Affiliation(s)
- Shelley HuaLei Zhang
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Zion Tsz Ho Tse
- Department of Engineering, University of Georgia, Athens, Georgia, USA
| | - Charles L Dumoulin
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Raymond Y Kwong
- Department of Cardiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - William G Stevenson
- Department of Cardiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ronald Watkins
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jay Ward
- E-TROLZ Inc, North Andover, Massachusetts, USA
| | - Wei Wang
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ehud J Schmidt
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|