1
|
Billas I, Bouchard H, Oelfke U, Duane S. Traceable reference dosimetry in MRI guided radiotherapy using alanine: calibration and magnetic field correction factors of ionisation chambers. Phys Med Biol 2021; 66. [PMID: 34049290 DOI: 10.1088/1361-6560/ac0680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/28/2021] [Indexed: 12/27/2022]
Abstract
Magnetic resonance imaging (MRI)-guided radiotherapy (RT) (MRIgRT) falls outside the scope of existing high energy photon therapy dosimetry protocols, because those protocols do not consider the effects of the magnetic field on detector response and on absorbed dose to water. The aim of this study is to evaluate and demonstrate the traceable measurement of absorbed dose in MRIgRT systems using alanine, made possible by the characterisation of alanine sensitivity to magnetic fields reported previously by Billaset al(2020Phys. Med. Biol.65115001), in a way which is compatible with existing standards and calibrations available for conventional RT. In this study, alanine is used to transfer absorbed dose to water to MRIgRT systems from a conventional linac. This offers an alternative route for the traceable measurement of absorbed dose to water, one which is independent of the transfer using ionisation chambers. The alanine dosimetry is analysed in combination with measurements with several Farmer-type chambers, PTW 30013 and IBA FC65-G, at six different centres and two different MRIgRT systems (Elekta Unity™ and ViewRay MRIdian™). The results are analysed in terms of the magnetic field correction factors, and in terms of the absorbed dose calibration coefficients for the chambers, determined at each centre. This approach to reference dosimetry in MRIgRT produces good consistency in the results, across the centres visited, at the level of 0.4% (standard deviation). Farmer-type ionisation chamber magnetic field correction factors were determined directly, by comparing calibrations in some MRIgRT systems with and without the magnetic field ramped up, and indirectly, by comparing calibrations in all the MRIgRT systems with calibrations in a conventional linac. Calibration coefficients in the MRIgRT systems were obtained with a standard uncertainty of 1.1% (Elekta Unity™) and 0.9% (ViewRay MRIdian™), for three different chamber orientations with respect to the magnetic field. The values obtained for the magnetic field correction factor in this investigation are consistent with those presented in the summary by de Pooteret al(2021Phys. Med. Biol.6605TR02), and would tend to support the adoption of a magnetic field correction factor which depends on the chamber type, PTW 30013 or IBA FC65-G.
Collapse
Affiliation(s)
- Ilias Billas
- National Physical Laboratory, Teddington, United Kingdom.,Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Hugo Bouchard
- Université de Montréal, Département de Physique, Montréal, Canada and Centre Hospitalier de l'Université de Montréal, Montréal, Canada and Centre de recherche du CHUM, Montréal, Canada
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Simon Duane
- National Physical Laboratory, Teddington, United Kingdom
| |
Collapse
|
2
|
Das IJ, Francescon P, Moran JM, Ahnesjö A, Aspradakis MM, Cheng CW, Ding GX, Fenwick JD, Saiful Huq M, Oldham M, Reft CS, Sauer OA. Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions. Med Phys 2021; 48:e886-e921. [PMID: 34101836 DOI: 10.1002/mp.15030] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Palmans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paolo Francescon
- Department of Radiation Oncology, Ospedale Di Vicenza, Vicenza, Italy
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria M Aspradakis
- Institute of Radiation Oncology, Cantonal Hospital of Graubünden, Chur, Switzerland
| | - Chee-Wai Cheng
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John D Fenwick
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh, School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Chester S Reft
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Otto A Sauer
- Department of Radiation Oncology, Klinik fur Strahlentherapie, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Total body irradiation of bone marrow transplant using helical TomoTherapy with a focus on the quality of dose contribution at junction target volumes. Strahlenther Onkol 2021; 197:722-729. [PMID: 33852037 DOI: 10.1007/s00066-021-01769-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/16/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE Total body irradiation (TBI) can be safely delivered on TomoTherapy (Accuray, Sunnyvale, CA, USA) in both pediatric and adult patients with proper imaging and planning despite the length constraint of 135 cm. To overcome this limitation, two CT (Computed Tomography) scans (CT1& CT2) are taken in patients above 135 cm in height. Adequate junction dose coverage is important in TBI. Presently, there is no clinical report with a focus on the quality of dose distribution at the CT junction in view of the guidelines on quality of coverage from the RTOG. Hence, our main objectives were to evaluate the dose distribution and quality of coverage at the junction in 16 patients who received TBI using TomoTherapy. METHODS PTV(upper) and PTV(lower) along with a junction were created on CT1 and CT2, respectively. Subsequently, the 10 cm junction in the thigh region was divided into five target volumes of 2 cm thickness with dose prescription ranging from 10 to 90% to deliver a total dose equal to 100% when fused. RESULTS The D50 was equal to the prescribed dose in most of the cases ranging from 99.5 to 104% for PTV(upper), 100-103% for PTV(lower), and 99.5-108% for junctional PTVs (1PTV, 2PTV, 3PTV, 4PTV, and 5PTV). The average D95 doses from PTV(upper) and PTV(lower) were 97 ± 1.4% and 96.7 ± 1.08%, respectively. The average D95 doses for 1PTV, 2PTV, 3PTV, 4PTV, and 5PTV were 96.1 ± 1.88%, 91.6 ± 1.82%, 87.3 ± 1.5%, 91.6 ± 1.4%, and 96.2 ± 1.5% respectively. QRTOG values ranged between 0.85 and 1.05 and were in concordance with RTOG guidelines. CONCLUSION Since junction-based planning was required for most TBI patients, it is essential to evaluate the quality of dose coverage in the junction for better TBI plans.
Collapse
|
4
|
Eaton DJ, Bass G, Booker P, Byrne J, Duane S, Frame J, Grattan M, Thomas RAS, Thorp N, Nisbet A. IPEM code of practice for high-energy photon therapy dosimetry based on the NPL absorbed dose calibration service. ACTA ACUST UNITED AC 2020; 65:195006. [DOI: 10.1088/1361-6560/ab99e3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Lopes MDC, Santos T, Ventura T, Capela M. Application of the TRS 483 code of practice for reference and relative dosimetry in tomotherapy. Med Phys 2019; 46:5799-5806. [DOI: 10.1002/mp.13855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - Tania Santos
- Medical Physics Department IPOCFG, E.P.E Coimbra Portugal
- Physics Department FCTUC University of Coimbra Coimbra Portugal
| | - Tiago Ventura
- Medical Physics Department IPOCFG, E.P.E Coimbra Portugal
| | - Miguel Capela
- Medical Physics Department IPOCFG, E.P.E Coimbra Portugal
| |
Collapse
|
6
|
Comments on the
TRS
‐483 protocol on small field dosimetry. Med Phys 2018; 45:5666-5668. [DOI: 10.1002/mp.13236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 11/07/2022] Open
|
7
|
Howitz S, Schwedas M, Wiezorek T, Zink K. Experimental and Monte Carlo-based determination of the beam quality specifier for TomoTherapyHD treatment units. Z Med Phys 2017; 28:142-149. [PMID: 29031915 DOI: 10.1016/j.zemedi.2017.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Reference dosimetry by means of clinical linear accelerators in high-energy photon fields requires the determination of the beam quality specifier TPR20,10, which characterizes the relative particle flux density of the photon beam. The measurement of TPR20,10 has to be performed in homogenous photon beams of size 10×10cm2 with a focus-detector distance of 100cm. These requirements cannot be fulfilled by TomoTherapy treatment units from Accuray. The TomoTherapy unit provides a flattening-filter-free photon fan beam with a maximum field width of 40cm and field lengths of 1.0cm, 2.5cm and 5.0cm at a focus-isocenter distance of 85cm. For the determination of the beam quality specifier from measurements under nonstandard reference conditions Sauer and Palmans proposed experiment-based fit functions. Moreover, Sauer recommends considering the impact of the flattening-filter-free beam on the measured data. To verify these fit functions, in the present study a Monte Carlo based model of the treatment head of a TomoTherapyHD unit was designed and commissioned with existing beam data of our clinical TomoTherapy machine. Depth dose curves and dose profiles were in agreement within 1.5% between experimental and Monte Carlo-based data. Based on the fit functions from Sauer and Palmans the beam quality specifier TPR20,10 was determined from field sizes 5×5cm2, 10×5cm2, 20×5cm2 and 40×5cm2 based on dosimetric measurements and Monte Carlo simulations. The mean value from all experimental values of TPR20,10 resulted in TPR20,10¯=0.635±0.4%. The impact of the non-homogenous field due to the flattening-filter-free beam was negligible for field sizes below 20×5cm2. The beam quality specifier calculated by Monte Carlo simulations was TPR20,10=0.628 and TPR20,10=0.631 for two different calculation methods. The stopping power ratio water-to-air sw,aΔ directly depends on the beam quality specifier. The value determined from all experimental TPR20,10 data was sw,aΔ=1.126±0.1%, which is in excellent agreement with the value directly calculated by Monte Carlo simulations. The agreement is a good indication that the equations proposed by Sauer and Palmans are able to calculate the beam quality specifier under reference conditions from measurements in arbitrary photon field sizes with high accuracy and are applicable for the TomoTherapyHD treatment unit.
Collapse
Affiliation(s)
- Simon Howitz
- University Hospital Jena, Department of Radiation Oncology, Germany; Institute for Medical Physics and Radiation Protection IMPS, University of Applied Science - THM, Giessen, Germany; Philipps-University, Marburg, Germany.
| | - Michael Schwedas
- University Hospital Jena, Department of Radiation Oncology, Germany
| | - Tilo Wiezorek
- University Hospital Jena, Department of Radiation Oncology, Germany
| | - Klemens Zink
- Institute for Medical Physics and Radiation Protection IMPS, University of Applied Science - THM, Giessen, Germany; University Medical Center Giessen-Marburg, Department of Radiation Oncology, Germany; Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
| |
Collapse
|
8
|
Lechner W, Kuess P, Georg D, Palmans H. Equivalent (uniform) square field sizes of flattening filter free photon beams. ACTA ACUST UNITED AC 2017; 62:7694-7713. [DOI: 10.1088/1361-6560/aa83f5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Sutton JD, Littler JP. Accounting for the ion recombination factor in relative dosimetry of flattening filter free photon radiation. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa5493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Castellano EA, Eaton DJ, MacDougall ND, Cherry SR. IPEM codes of practice and topical report series. Phys Med Biol 2016; 61:E5-E6. [PMID: 27819252 DOI: 10.1088/0031-9155/61/23/e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Elly A Castellano
- Director, Science Research and Innovation Council (2014-2016), Institute of Physics and Engineering in Medicine
| | | | | | | |
Collapse
|
11
|
Budgell G, Brown K, Cashmore J, Duane S, Frame J, Hardy M, Paynter D, Thomas R. IPEM topical report 1: guidance on implementing flattening filter free (FFF) radiotherapy. Phys Med Biol 2016; 61:8360-8394. [DOI: 10.1088/0031-9155/61/23/8360] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Eaton DJ, Thomas RAS, Duane S. Multi-centre audit of absolute dose calibration for flattening filter-free photon beams. Biomed Phys Eng Express 2015. [DOI: 10.1088/2057-1976/1/4/047002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Bouchard H, Seuntjens J, Duane S, Kamio Y, Palmans H. Detector dose response in megavoltage small photon beams. I. Theoretical concepts. Med Phys 2015; 42:6033-47. [DOI: 10.1118/1.4930053] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Design and implementation of a "cheese" phantom-based Tomotherapy TLD dose intercomparison. Strahlenther Onkol 2015; 191:855-61. [PMID: 26087907 DOI: 10.1007/s00066-015-0850-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND The unique beam-delivery technique of Tomotherapy machines (Accuray Inc., Sunnyvale, Calif.) necessitates tailored quality assurance. This requirement also applies to external dose intercomparisons. Therefore, the aim of the 2014 SSRMP (Swiss Society of Radiobiology and Medical Physics) dosimetry intercomparison was to compare two set-ups with different phantoms. MATERIALS AND METHODS A small cylindrical Perspex phantom, which is similar to the IROC phantom (Imaging and Radiation Oncology Core, Houston, Tex.), and the "cheese" phantom, which is provided by the Tomotherapy manufacturer to all institutions, were used. The standard calibration plans for the TomoHelical and TomoDirect irradiation techniques were applied. These plans are routinely used for dose output calibration in Tomotherapy institutions. We tested 20 Tomotherapy machines in Germany and Switzerland. The ratio of the measured (Dm) to the calculated (Dc) dose was assessed for both phantoms and irradiation techniques. The Dm/Dc distributions were determined to compare the suitability of the measurement set-ups investigated. RESULTS The standard deviations of the TLD-measured (thermoluminescent dosimetry) Dm/Dc ratios for the "cheese" phantom were 1.9 % for the TomoHelical (19 measurements) and 1.2 % (11 measurements) for the TomoDirect irradiation techniques. The corresponding ratios for the Perspex phantom were 2.8 % (18 measurements) and 1.8 % (11 measurements). CONCLUSION Compared with the Perspex phantom-based set-up, the "cheese" phantom-based set-up without individual planning was demonstrated to be more suitable for Tomotherapy dose checks. Future SSRMP dosimetry intercomparisons for Tomotherapy machines will therefore be based on the "cheese" phantom set-up.
Collapse
|
15
|
Dalaryd M, Knöös T, Ceberg C. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams. Med Phys 2014; 41:111716. [DOI: 10.1118/1.4898325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|