Xie T, Lee C, Bolch WE, Zaidi H. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models.
Med Phys 2015;
42:2955-66. [PMID:
26127049 PMCID:
PMC5148206 DOI:
10.1118/1.4921364]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/24/2015] [Accepted: 05/08/2015] [Indexed: 12/26/2022] Open
Abstract
PURPOSE
Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired.
METHODS
Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms.
RESULTS
For most organs, (201)Tl produces the highest absorbed dose whereas (82)Rb and (15)O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of (82)Rb is 48% and 77% lower than that of (99m)Tc-tetrofosmin (rest), respectively.
CONCLUSIONS
(82)Rb results in lower effective dose in adults compared to (99m)Tc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice.
Collapse