1
|
Chamberlain S, Shi G, Sexton S, Talgatov A, Pokharel S, Bellnier D, Hutson A, Cameron CG, Obaid G, McFarland SA, Shafirstein G. Image-based treatment planning for TLD1433 mediated intraoperative photodynamic therapy with an optical surface applicator-A translational rodent study. Photochem Photobiol 2025. [PMID: 40357896 DOI: 10.1111/php.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 05/15/2025]
Abstract
Several clinical studies suggest that following surgical resection, intraoperative photodynamic therapy (intraoperative PDT) has the potential to reduce local recurrence and improve overall survival in patients diagnosed with pleural dissemination of lung cancer. The response to intraoperative PDT depends on the light dose rate (irradiance) and dose (fluence) as well as the intratumoral concentration of the photosensitizer and oxygenation. We seek to advance intraoperative PDT by improving the control of irradiance and fluence with image-based treatment planning for an optical surface applicator (OSA) with a novel photosensitizer (TLD1433) that has shown safety in recent clinical trials. To that end, we tested the accuracy of Monte Carlo-based simulations of light delivery from the OSA in vitro and in vivo. We assess the safety and biodistribution after the instillation of TLD1433 in the peritoneal cavity of mice and rats, and define the relationship between the intratumoral irradiance and fluence, and the volume of tumor ablation in the peritoneal cavity of rats. The Monte Carlo simulations agreed with light dosimetry measurements at a 5-mm prescription depth in vitro. An instillation of TLD1433 in the peritoneal cavity of mice is safe and leads to drug accumulation in the tumor and adjacent organs in the peritoneal cavity of rats. A TLD1433-mediated intraoperative PDT procedure using an instilled dose of 14 mg/kg and 532-nm laser light induces tumor cell degradation in the peritoneal cavity of rats. Our results suggest that the Monte Carlo simulation can be used as an image-based treatment plan for administering a controlled PDT procedure with OSA and TLD1433.
Collapse
Affiliation(s)
- Sarah Chamberlain
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, New York, USA
| | - Ge Shi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Sandra Sexton
- Comparative Oncology Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Alisher Talgatov
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Saraswati Pokharel
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - David Bellnier
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Girgis Obaid
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas, USA
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Gal Shafirstein
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
2
|
Khodaverdi A, Cinthio M, Reistad E, Erlöv T, Malmsjö M, Zackrisson S, Reistad N. Optical tuning of copolymer-in-oil tissue-mimicking materials for multispectral photoacoustic imaging. Biomed Phys Eng Express 2024; 10:055009. [PMID: 38959869 DOI: 10.1088/2057-1976/ad5e85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Objective. The availability of tissue-mimicking materials (TMMs) for manufacturing high-quality phantoms is crucial for standardization, evaluating novel quantitative approaches, and clinically translating new imaging modalities, such as photoacoustic imaging (PAI). Recently, a gel comprising the copolymer styrene-ethylene/butylene-styrene (SEBS) in mineral oil has shown significant potential as TMM due to its optical and acoustic properties akin to soft tissue. We propose using artists' oil-based inks dissolved and diluted in balsam turpentine to tune the optical properties.Approach. A TMM was fabricated by mixing a SEBS copolymer and mineral oil, supplemented with additives to tune its optical absorption and scattering properties independently. A systematic investigation of the tuning accuracies and relationships between concentrations of oil-based pigments and optical absorption properties of the TMM across visible and near-infrared wavelengths using collimated transmission spectroscopy was conducted. The photoacoustic spectrum of various oil-based inks was studied to analyze the effect of increasing concentration and depth.Main results. Artists' oil-based inks dissolved in turpentine proved effective as additives to tune the optical absorption properties of mineral oil SEBS-gel with high accuracy. The TMMs demonstrated long-term stability and suitability for producing phantoms with desired optical absorption properties for PAI studies.Significance. The findings, including tuning of optical absorption and spectral shape, suggest that this TMM facilitates the development of more sophisticated phantoms of arbitrary shapes. This approach holds promise for advancing the development of PAI, including investigation of the spectral coloring effect. In addition, it can potentially aid in the development and clinical translation of ultrasound optical tomography.
Collapse
Affiliation(s)
- Azin Khodaverdi
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | | | - Tobias Erlöv
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophthalmology, Skåne University Hospital, Lund University, 223 62 Lund, Sweden
| | - Sophia Zackrisson
- Department of Translational Medicine, Diagnostic Radiology, Lund University, 205 02 Malmö, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Nina Reistad
- Department of Physics, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
3
|
Singh N, Chérin E, Roa CF, Soenjaya Y, Wodlinger B, Zheng G, Wilson BC, Foster FS, Demore CEM. Adaptation of a Clinical High-Frequency Transrectal Ultrasound System for Prostate Photoacoustic Imaging: Implementation and Pre-clinical Demonstration. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:457-466. [PMID: 38238200 DOI: 10.1016/j.ultrasmedbio.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 02/17/2024]
Abstract
OBJECTIVE High-frequency, high-resolution transrectal micro-ultrasound (micro-US: ≥15 MHz) imaging of the prostate is emerging as a beneficial tool for scoring disease risk and accurately targeting biopsies. Adding photoacoustic (PA) imaging to visualize abnormal vascularization and accumulation of contrast agents in tumors has potential for guiding focal therapies. In this work, we describe a new imaging platform that combines a transrectal micro-US system with transurethral light delivery for PA imaging. METHODS A clinical transrectal micro-US system was adapted to acquire PA images synchronous to a tunable laser pulse. A transurethral side-firing optical fiber was developed for light delivery. A polyvinyl chloride (PVC)-plastisol phantom was developed and characterized to image PA contrast agents in wall-less channels. After resolution measurement in water, PA imaging was demonstrated in phantom channels with dyes and biodegradable nanoparticle contrast agents called porphysomes. In vivo imaging of a tumor model was performed, with porphysomes administered intravenously. RESULTS Photoacoustic imaging data were acquired at 5 Hz, and image reconstruction was performed offline. PA image resolution at a 14-mm depth was 74 and 261 μm in the axial and lateral directions, respectively. The speed of sound in PVC-plastisol was 1383 m/s, and the attenuation was 4 dB/mm at 20 MHz. PA signal from porphysomes was spectrally unmixed from blood signals in the tumor, and a signal increase was observed 3 h after porphysome injection. CONCLUSION A combined transrectal micro-US and PA imaging system was developed and characterized, and in vivo imaging demonstrated. High-resolution PA imaging may provide valuable additional information for diagnostic and therapeutic applications in the prostate.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada.
| | | | - Carlos-Felipe Roa
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | - Gang Zheng
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margret Cancer Center, Toronto, ON, Canada
| | - Brian C Wilson
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margret Cancer Center, Toronto, ON, Canada
| | - F Stuart Foster
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christine E M Demore
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
4
|
Nguyen CD, Edwards SA, Iorizzo TW, Longo BN, Yaroslavsky AN, Kaplan DL, Mallidi S. Investigation of silk as a phantom material for ultrasound and photoacoustic imaging. PHOTOACOUSTICS 2022; 28:100416. [PMID: 36386295 PMCID: PMC9649953 DOI: 10.1016/j.pacs.2022.100416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 05/13/2023]
Abstract
Comprehensive characterization of biomedical imaging systems require phantoms that are easy to fabricate and can mimic human tissue. Additionally, with the arrival of engineered tissues, it is key to develop phantoms that can mimic bioengineered samples. In ultrasound and photoacoustic imaging, water-soluble phantom materials such as gelatin undergo rapid degradation while polymer-based materials such as polyvinyl alcohol are not conducive for generating bioengineered tissues that can incorporate cells. Here we propose silk protein-based hydrogels as an ultrasound and photoacoustic phantom material that has potential to provide a 3D environment for long-term sustainable cell growth. Common acoustic, optical, and biomechanical properties such as ultrasound attenuation, reduced scattering coefficient, and Young's modulus were measured. The results indicate that silk acoustically mimics many tissue types while exhibiting similar reduced optical scattering in the wavelength range of 400-1200 nm. Furthermore, silk-based materials can be stored long-term with no change in acoustic and optical properties, and hence can be utilized to assess the performance of ultrasound and photoacoustic systems.
Collapse
Affiliation(s)
| | - Skye A. Edwards
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Tyler W. Iorizzo
- Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 USA
| | - Brooke N. Longo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Anna N. Yaroslavsky
- Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Corresponding author.
| |
Collapse
|
5
|
Robotic needle steering: state-of-the-art and research challenges. INTEL SERV ROBOT 2022. [DOI: 10.1007/s11370-022-00446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Hacker L, Wabnitz H, Pifferi A, Pfefer TJ, Pogue BW, Bohndiek SE. Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation. Nat Biomed Eng 2022; 6:541-558. [PMID: 35624150 DOI: 10.1038/s41551-022-00890-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/07/2022] [Indexed: 01/08/2023]
Abstract
A lack of accepted standards and standardized phantoms suitable for the technical validation of biophotonic instrumentation hinders the reliability and reproducibility of its experimental outputs. In this Perspective, we discuss general criteria for the design of tissue-mimicking biophotonic phantoms, and use these criteria and state-of-the-art developments to critically review the literature on phantom materials and on the fabrication of phantoms. By focusing on representative examples of standardization in diffuse optical imaging and spectroscopy, fluorescence-guided surgery and photoacoustic imaging, we identify unmet needs in the development of phantoms and a set of criteria (leveraging characterization, collaboration, communication and commitment) for the standardization of biophotonic instrumentation.
Collapse
Affiliation(s)
- Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | | | | | - Brian W Pogue
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Hacker L, Joseph J, Ivory AM, Saed MO, Zeqiri B, Rajagopal S, Bohndiek SE. A Copolymer-in-Oil Tissue-Mimicking Material With Tuneable Acoustic and Optical Characteristics for Photoacoustic Imaging Phantoms. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3593-3603. [PMID: 34152979 DOI: 10.1109/tmi.2021.3090857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photoacoustic imaging (PAI) standardisation demands a stable, highly reproducible physical phantom to enable routine quality control and robust performance evaluation. To address this need, we have optimised a low-cost copolymer-in-oil tissue-mimickingmaterial formulation. The base material consists of mineral oil, copolymer and stabiliser with defined Chemical Abstract Service numbers. Speed of sound c(f) and acoustic attenuation coefficient α (f) were characterised over 2-10 MHz; optical absorption μa ( λ ) and reduced scattering μs '( λ ) coefficients over 450-900 nm. Acoustic properties were optimised by modifying base component ratios and optical properties were adjusted using additives. The temporal, thermomechanical and photo-stabilitywere studied, alongwith intra-laboratory fabrication and field-testing. c(f) could be tuned up to (1516±0.6) [Formula: see text] and α (f) to (17.4±0.3)dB · cm -1 at 5 MHz. The base material exhibited negligible μa ( λ ) and μs '( λ ), which could be independently tuned by addition of Nigrosin or TiO2 respectively. These properties were stable over almost a year and were minimally affected by recasting. The material showed high intra-laboratory reproducibility (coefficient of variation <4% for c ( f ), α ( f ), optical transmittance and reflectance), and good photo- and mechanical-stability in the relevant working range (20-40°C). The optimised copolymer-in-oil material represents an excellent candidate for widespread application in PAI phantoms, with properties suitable for broader use in biophotonics and ultrasound imaging standardisation efforts.
Collapse
|
8
|
Cabrelli LC, Uliana JH, da Cruz Junior LB, Bachmann L, Carneiro AAO, Pavan TZ. Glycerol-in-SEBS gel as a material to manufacture stable wall-less vascular phantom for ultrasound and photoacoustic imaging. Biomed Phys Eng Express 2021; 7. [PMID: 34496358 DOI: 10.1088/2057-1976/ac24d6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/08/2021] [Indexed: 11/12/2022]
Abstract
Styrene-ethylene/butylene-styrene (SEBS) copolymer-in-mineral oil gel is an appropriate tissue-mimicking material to manufacture stable phantoms for ultrasound and photoacoustic imaging. Glycerol dispersion has been proposed to further tune the acoustic properties and to incorporate hydrophilic additives into SEBS gel. However, this type of material has not been investigated to produce wall-less vascular flow phantom for these imaging modalities. In this paper, the development of a wall-less vascular phantom for ultrasound and photoacoustic imaging is reported. Mixtures of glycerol/TiO2-in-SEBS gel samples were manufactured at different proportions of glycerol (10%, 15%, and 20%) and TiO2(0% to 0.5%) to characterize their optical and acoustic properties. Optical absorption in the 500-950 nm range was independent of the amount of glycerol and TiO2, while optical scattering increased linearly with the concentration of TiO2. Acoustic attenuation and speed of sound were not influenced by the presence of TiO2. The sample manufactured using weight percentages of 10% SEBS, 15% glycerol, and 0.2% TiO2was selected to make the vascular phantom. The phantom proved to be stable during the pulsatile blood-mimicking fluid (BMF) flow, without any observed damage to its structure or leaks. Ultrasound color Doppler images showed a typical laminar flow, while the B-mode images showed a homogeneous speckled pattern due to the presence of the glycerol droplets in the gel. The photoacoustic images of the phantom showed a well-defined signal coming from the surface of the phantom and from the vessels where BMF was flowing. The Spearman's correlations between the photoacoustic and tabulated spectra calculated from the regions containing BMF, in this case a mixture of salt solutions (NiCl2and CuSO4), were higher than 0.95. Our results demonstrated that glycerol-in-SEBS gel was an adequate material to make a stable vascular flow phantom for ultrasound photoacoustic imaging.
Collapse
Affiliation(s)
- Luciana C Cabrelli
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Joao H Uliana
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Luciano Bachmann
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antonio A O Carneiro
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Theo Z Pavan
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Hariri A, Palma-Chavez J, Wear KA, Pfefer TJ, Jokerst JV, Vogt WC. Polyacrylamide hydrogel phantoms for performance evaluation of multispectral photoacoustic imaging systems. PHOTOACOUSTICS 2021; 22:100245. [PMID: 33747787 PMCID: PMC7972966 DOI: 10.1016/j.pacs.2021.100245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 05/21/2023]
Abstract
As photoacoustic imaging (PAI) begins to mature and undergo clinical translation, there is a need for well-validated, standardized performance test methods to support device development, quality control, and regulatory evaluation. Despite recent progress, current PAI phantoms may not adequately replicate tissue light and sound transport over the full range of optical wavelengths and acoustic frequencies employed by reported PAI devices. Here we introduce polyacrylamide (PAA) hydrogel as a candidate material for fabricating stable phantoms with well-characterized optical and acoustic properties that are biologically relevant over a broad range of system design parameters. We evaluated suitability of PAA phantoms for conducting image quality assessment of three PAI systems with substantially different operating parameters including two commercial systems and a custom system. Imaging results indicated that appropriately tuned PAA phantoms are useful tools for assessing and comparing PAI system image quality. These phantoms may also facilitate future standardization of performance test methodology.
Collapse
Affiliation(s)
- Ali Hariri
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jorge Palma-Chavez
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Keith A Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - T Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - William C Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
10
|
Joseph J, Ajith Singh MK, Sato N, Bohndiek SE. Technical validation studies of a dual-wavelength LED-based photoacoustic and ultrasound imaging system. PHOTOACOUSTICS 2021; 22:100267. [PMID: 33948434 PMCID: PMC8080074 DOI: 10.1016/j.pacs.2021.100267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 05/12/2023]
Abstract
Recent advances in high power, pulsed, light emitting diodes (LEDs) have shown potential as fast, robust and relatively inexpensive excitation sources for photoacoustic imaging (PAI), yet systematic characterization of performance for biomedical imaging is still lacking. We report here technical and biological validation studies of a commercial dual-wavelength LED-based PAI and ultrasound system. Phantoms and small animals were used to assess temporal precision. In phantom studies, we found high temporal stability of the LED-based PAI system, with no significant drift in performance observed during 6 h of operation or over 30 days of repeated measurements. In vivo dual-wavelength imaging was able to map the dynamics of changes in blood oxygenation during oxygen-enhanced imaging and reveal the kinetics of indocyanine green contrast agent inflow after intravenous administration (Tmax∼6 min). Taken together, these studies indicate that LED-based excitation could be promising for future application in functional and molecular PAI.
Collapse
Affiliation(s)
- James Joseph
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Now at School of Science and Engineering, Fulton Building, University of Dundee, DD1 4HN, UK
| | | | - Naoto Sato
- Research and Development Division, CYBERDYNE INC, Tsukuba, 305-0818, Japan
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
11
|
Dantuma M, Kruitwagen S, Ortega-Julia J, Pompe van Meerdervoort RP, Manohar S. Tunable blood oxygenation in the vascular anatomy of a semi-anthropomorphic photoacoustic breast phantom. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200370RR. [PMID: 33728828 PMCID: PMC7961914 DOI: 10.1117/1.jbo.26.3.036003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 05/21/2023]
Abstract
SIGNIFICANCE Recovering accurate oxygenation estimations in the breast with quantitative photoacoustic tomography (QPAT) is not straightforward. Accurate light fluence models are required, but the unknown ground truth of the breast makes it difficult to validate them. Phantoms are often used for the validation, but most reported phantoms have a simple architecture. Fluence models developed in these simplistic objects are not accurate for application on the complex tissues of the breast. AIM We present a sophisticated breast phantom platform for photoacoustic (PA) and ultrasound (US) imaging in general, and specifically for QPAT. The breast phantom is semi-anthropomorphic in distribution of optical and acoustic properties and contains wall-less channels with blood. APPROACH 3D printing approaches are used to develop the solid 3D breast phantom from custom polyvinyl chloride plastisol formulations and additives for replicating the tissue optical and acoustic properties. A flow circuit was developed to flush the channels with bovine blood with a controlled oxygen saturation level. To showcase the phantom's functionality, PA measurements were performed on the phantom with two oxygenation levels. Image reconstructions with and without fluence compensation from Monte Carlo simulations were analyzed for the accuracy of oxygen saturation estimations. RESULTS We present design aspects of the phantom, demonstrate how it is developed, and present its breast-like appearance in PA and US imaging. The oxygen saturations were estimated in two regions of interest with and without using the fluence models. The fluence compensation positively influenced the SO2 estimations in all cases and confirmed that highly accurate fluence models are required to minimize estimation errors. CONCLUSIONS This phantom allows studies to be performed in PA in carefully controlled laboratory settings to validate approaches to recover both qualitative and quantitative features sought after in in-vivo studies. We believe that testing with phantoms of this complexity can streamline the transition of new PA technologies from the laboratory to studies in the clinic.
Collapse
Affiliation(s)
- Maura Dantuma
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
- Address all correspondence to Maura Dantuma,
| | - Saskia Kruitwagen
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
- Medisch Spectrum Twente, Enschede, The Netherlands
| | - Javier Ortega-Julia
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
| | | | - Srirang Manohar
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
| |
Collapse
|
12
|
Chandramoorthi S, Thittai AK. Extending Imaging Depth in PLD-Based Photoacoustic Imaging: Moving Beyond Averaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:549-557. [PMID: 32784132 DOI: 10.1109/tuffc.2020.3015130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pulsed laser diodes (PLDs) promise to be an attractive alternative to solid-state laser sources in photoacoustic tomography (PAT) due to their portability, high-pulse repetition frequency (PRF), and cost effectiveness. However, due to their lower energy per pulse, which, in turn, results in lower fluence required per photoacoustic signal generation, PLD-based photoacoustic systems generally have maximum imaging depth that is lower in comparison to solid-state lasers. Averaging of multiple frames is usually employed as a common practice in high PRF PLD systems to improve the signal-to-noise ratio of the PAT images. In this work, we demonstrate that by combining the recently described approach of subpitch translation on the receive-side ultrasound transducer alongside averaging of multiple frames, it is feasible to increase the depth sensitivity in a PLD-based PAT imaging system. Here, experiments on phantom containing diluted India ink targets were performed at two different laser energy level settings, that is, 21 and [Formula: see text]. Results obtained showed that the imaging depth improves by ~38.5% from 9.1 to 12.6 mm for 21- [Formula: see text] energy level setting and by ~33.3% from 10.8 to 14.4 mm for 27- [Formula: see text] energy level setting by using λ /4-pitch translation and average of 128 frames in comparison to λ -pitch data acquired with the average of 128 frames. However, the achievable frame rate is reduced by a factor of 2 and 4 for λ /2 and λ /4 subpitch translation, respectively.
Collapse
|
13
|
Clancy NT, Jones G, Maier-Hein L, Elson DS, Stoyanov D. Surgical spectral imaging. Med Image Anal 2020; 63:101699. [PMID: 32375102 PMCID: PMC7903143 DOI: 10.1016/j.media.2020.101699] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022]
Abstract
Recent technological developments have resulted in the availability of miniaturised spectral imaging sensors capable of operating in the multi- (MSI) and hyperspectral imaging (HSI) regimes. Simultaneous advances in image-processing techniques and artificial intelligence (AI), especially in machine learning and deep learning, have made these data-rich modalities highly attractive as a means of extracting biological information non-destructively. Surgery in particular is poised to benefit from this, as spectrally-resolved tissue optical properties can offer enhanced contrast as well as diagnostic and guidance information during interventions. This is particularly relevant for procedures where inherent contrast is low under standard white light visualisation. This review summarises recent work in surgical spectral imaging (SSI) techniques, taken from Pubmed, Google Scholar and arXiv searches spanning the period 2013-2019. New hardware, optimised for use in both open and minimally-invasive surgery (MIS), is described, and recent commercial activity is summarised. Computational approaches to extract spectral information from conventional colour images are reviewed, as tip-mounted cameras become more commonplace in MIS. Model-based and machine learning methods of data analysis are discussed in addition to simulation, phantom and clinical validation experiments. A wide variety of surgical pilot studies are reported but it is apparent that further work is needed to quantify the clinical value of MSI/HSI. The current trend toward data-driven analysis emphasises the importance of widely-available, standardised spectral imaging datasets, which will aid understanding of variability across organs and patients, and drive clinical translation.
Collapse
Affiliation(s)
- Neil T Clancy
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, United Kingdom; Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom.
| | - Geoffrey Jones
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, United Kingdom; Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, United Kingdom
| | | | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, United Kingdom; Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, United Kingdom; Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, United Kingdom
| |
Collapse
|
14
|
Bakaric M, Miloro P, Zeqiri B, Cox BT, Treeby BE. The Effect of Curing Temperature and Time on the Acoustic and Optical Properties of PVCP. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:505-512. [PMID: 31613754 DOI: 10.1109/tuffc.2019.2947341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyvinyl chloride plastisol (PVCP) has been increasingly used as a phantom material for photoacoustic and ultrasound imaging. As one of the most useful polymeric materials for industrial applications, its mechanical properties and behavior are well-known. Although the acoustic and optical properties of several formulations have previously been investigated, it is still unknown how these are affected by varying the fabrication method. Here, an improved and straightforward fabrication method is presented, and the effect of curing temperature and curing time on the PVCP acoustic and optical properties, as well as their stability over time, is investigated. The speed of sound and attenuation were determined over a frequency range from 2 to 15 MHz, while the optical attenuation spectra of samples were measured over a wavelength range from 500 to 2200 nm. The results indicate that the optimum properties are achieved at curing temperatures between 160 °C and 180 °C, while the required curing time decreases with increasing temperature. The properties of the fabricated phantoms were highly repeatable, meaning that the phantoms are not sensitive to the manufacturing conditions provided that the curing temperature and time are within the range of complete gelation-fusion (samples are optically clear) and below the limit of thermal degradation (indicated by the yellowish appearance of the sample). The samples' long-term stability was assessed over 16 weeks, and no significant change was observed in the measured acoustic and optical properties.
Collapse
|
15
|
Manohar S, Dantuma M. Current and future trends in photoacoustic breast imaging. PHOTOACOUSTICS 2019; 16:100134. [PMID: 31871887 PMCID: PMC6909206 DOI: 10.1016/j.pacs.2019.04.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 05/14/2023]
Abstract
Non-invasive detection of breast cancer has been regarded as the holy grail of applications for photoacoustic (optoacoustic) imaging right from the early days of re-discovery of the method. Two-and-a-half decades later we report on the state-of-the-art in photoacoustic breast imaging technology and clinical studies. Even within the single application of breast imaging, we find imagers with various measurement geometries, ultrasound detection characteristics, illumination schemes, and image reconstruction strategies. We first analyze the implications on performance of a few of these design choices in a generic imaging system, before going into detailed descriptions of the imagers. Per imaging system we present highlights of patient studies, which barring a couple are mostly in the nature of technology demonstrations and proof-of-principle studies. We close this work with a discussion on several aspects that may turn out to be crucial for the future clinical translation of the method.
Collapse
|
16
|
Zalev J, Richards LM, Clingman BA, Harris J, Cantu E, Menezes GLG, Avila C, Bertrand A, Saenz X, Miller S, Oraevsky AA, Kolios MC. Opto-acoustic imaging of relative blood oxygen saturation and total hemoglobin for breast cancer diagnosis. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-16. [PMID: 31849204 PMCID: PMC7005558 DOI: 10.1117/1.jbo.24.12.121915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/22/2019] [Indexed: 05/14/2023]
Abstract
Opto-acoustic imaging involves using light to produce sound waves for visualizing blood in biological tissue. By using multiple optical wavelengths, diagnostic images of blood oxygen saturation and total hemoglobin are generated using endogenous optical contrast, without injection of any external contrast agent and without using any ionizing radiation. The technology has been used in recent clinical studies for diagnosis of breast cancer to help distinguish benign from malignant lesions, potentially reducing the need for biopsy through improved diagnostic imaging accuracy. To enable this application, techniques for mapping oxygen saturation differences within tissue are necessary. Using biologically relevant opto-acoustic phantoms, we analyze the ability of an opto-acoustic imaging system to display colorized parametric maps that are generated using a statistical mapping approach. To mimic breast tissue, a material with closely matching properties for optical absorption, optical scattering, acoustic attenuation, and speed of sound is used. The phantoms include two vessels filled with whole blood at oxygen saturation levels determined using a sensor-based approach. A flow system with gas-mixer and membrane oxygenator adjusts the oxygen saturation of each vessel independently. Datasets are collected with an investigational Imagio® breast imaging system. We examine the ability to distinguish vessels as the oxygen saturation level and imaging depth are varied. At depth of 15 mm and hematocrit of 42%, a sufficient level of contrast to distinguish between two 1.6-mm diameter vessels was measured for an oxygen saturation difference of ∼4.6 % . In addition, an oxygenated vessel was visible at a depth of 48 mm using an optical wavelength of 1064 nm, and a deoxygenated vessel was visible to a depth of 42 mm with 757 nm. The results provide insight toward using color mapped opto-acoustic images for diagnosing breast cancer.
Collapse
Affiliation(s)
- Jason Zalev
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
- Ryerson University, Department of Physics, Toronto, Ontario, Canada
- Address all correspondence to Jason Zalev, E-mail: ; Lisa M. Richards, E-mail: ; Bryan A. Clingman, E-mail:
| | - Lisa M. Richards
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
- Address all correspondence to Jason Zalev, E-mail: ; Lisa M. Richards, E-mail: ; Bryan A. Clingman, E-mail:
| | - Bryan A. Clingman
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
- Address all correspondence to Jason Zalev, E-mail: ; Lisa M. Richards, E-mail: ; Bryan A. Clingman, E-mail:
| | - Jeff Harris
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
| | - Edgar Cantu
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
| | | | - Carlos Avila
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
| | - Allison Bertrand
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
| | - Xavier Saenz
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
| | - Steve Miller
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
| | | | | |
Collapse
|
17
|
Dantuma M, van Dommelen R, Manohar S. Semi-anthropomorphic photoacoustic breast phantom. BIOMEDICAL OPTICS EXPRESS 2019; 10:5921-5939. [PMID: 31799055 PMCID: PMC6865090 DOI: 10.1364/boe.10.005921] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 05/04/2023]
Abstract
Imaging parameters of photoacoustic breast imaging systems such as the spatial resolution and imaging depth are often characterized with phantoms. These objects usually contain simple structures in homogeneous media such as absorbing wires or spherical objects in scattering gels. While these kinds of basic phantoms are uncluttered and useful, they do not challenge the system as much as a breast does, and can thereby overestimate the system's performance. The female breast is a complex collection of tissue types, and the acoustic and optical attenuation of these tissues limit the imaging depth, the resolution and the ability to extract quantitative information. For testing and challenging photoacoustic breast imaging systems to the full extent before moving to in vivo studies, a complex breast phantom which simulates the breast's most prevalent tissues is required. In this work we present the first three dimensional multi-layered semi-anthropomorphic photoacoustic breast phantom. The phantom aims to simulate skin, fat, fibroglandular tissue and blood vessels. The latter three are made from custom polyvinyl chloride plastisol (PVCP) formulations and are appropriately doped with additives to obtain tissue realistic acoustic and optical properties. Two tumors are embedded, which are modeled as clusters of small blood vessels. The PVCP materials are surrounded by a silicon layer mimicking the skin. The tissue mimicking materials were cast into the shapes and sizes expected in the breast using 3D-printed moulds developed from a magnetic resonance imaging segmented numerical breast model. The various structures and layers were assembled to obtain a realistic breast morphology. We demonstrate the phantom's appearance in both ultrasound imaging as photoacoustic tomography and make a comparison with a photoacoustic image of a real breast. A good correspondence is observed, which confirms the phantom's usefulness.
Collapse
Affiliation(s)
- Maura Dantuma
- Multi-Modality Medical Imaging group, TechMed Centre, University of Twente, Enschede, The Netherlands
- Biomedical Photonic Imaging group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Rianne van Dommelen
- Biomedical Photonic Imaging group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Srirang Manohar
- Multi-Modality Medical Imaging group, TechMed Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
18
|
Akhlaghi N, Pfefer TJ, Wear KA, Garra BS, Vogt WC. Multidomain computational modeling of photoacoustic imaging: verification, validation, and image quality prediction. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-12. [PMID: 31705636 PMCID: PMC7005568 DOI: 10.1117/1.jbo.24.12.121910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/14/2019] [Indexed: 05/05/2023]
Abstract
As photoacoustic imaging (PAI) technology matures, computational modeling will increasingly represent a critical tool for facilitating clinical translation through predictive simulation of real-world performance under a wide range of device and biological conditions. While modeling currently offers a rapid, inexpensive tool for device development and prediction of fundamental image quality metrics (e.g., spatial resolution and contrast ratio), rigorous verification and validation will be required of models used to provide regulatory-grade data that effectively complements and/or replaces in vivo testing. To address methods for establishing model credibility, we developed an integrated computational model of PAI by coupling a previously developed three-dimensional Monte Carlo model of tissue light transport with a two-dimensional (2D) acoustic wave propagation model implemented in the well-known k-Wave toolbox. We then evaluated ability of the model to predict basic image quality metrics by applying standardized verification and validation principles for computational models. The model was verified against published simulation data and validated against phantom experiments using a custom PAI system. Furthermore, we used the model to conduct a parametric study of optical and acoustic design parameters. Results suggest that computationally economical 2D acoustic models can adequately predict spatial resolution, but metrics such as signal-to-noise ratio and penetration depth were difficult to replicate due to challenges in modeling strong clutter observed in experimental images. Parametric studies provided quantitative insight into complex relationships between transducer characteristics and image quality as well as optimal selection of optical beam geometry to ensure adequate image uniformity. Multidomain PAI simulation tools provide high-quality tools to aid device development and prediction of real-world performance, but further work is needed to improve model fidelity, especially in reproducing image noise and clutter.
Collapse
Affiliation(s)
- Nima Akhlaghi
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
- Address all correspondence to Nima Akhlaghi, E-mail:
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Keith A. Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Brian S. Garra
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| |
Collapse
|
19
|
Ratto F, Cavigli L, Borri C, Centi S, Magni G, Mazzoni M, Pini R. Hybrid organosilicon/polyol phantom for photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:3719-3730. [PMID: 31452970 PMCID: PMC6701555 DOI: 10.1364/boe.10.003719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 05/15/2023]
Abstract
The rapid development of hardware and software for photoacoustic technologies is urging the establishment of dedicated tools for standardization and performance assessment. In particular, the fabrication of anatomical phantoms for photoacoustic imaging remains an open question, as current solutions have not yet gained unanimous support. Here, we propose that a hybrid material made of a water-in-oil emulsion of glycerol and polydimethylsiloxane may represent a versatile platform to host a broad taxonomy of hydrophobic and hydrophilic dyes and recapitulate the optical and acoustic features of bio tissue. For a full optical parameterization, we refer to Wróbel, et al. [ Biomed. Opt. Express7, 2088 (2016)], where this material was first presented for optical imaging. Instead, here, we complete the picture and find that its speed of sound and acoustic attenuation resemble those of pure polydimethylsiloxane, i.e. respectively 1150 ± 30 m/s and 3.5 ± 0.4 dB/(MHz·cm). We demonstrate its use under a commercial B-mode scanner and a home-made A-mode stage for photoacoustic analysis to retrieve the ground-truth encoded in a multilayer architecture containing indocyanine green, plasmonic particles and red blood cells. Finally, we verify the stability of its acoustic, optical and geometric features over a time span of three months.
Collapse
Affiliation(s)
- Fulvio Ratto
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Lucia Cavigli
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Claudia Borri
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Sonia Centi
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Giada Magni
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Marina Mazzoni
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Roberto Pini
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
20
|
Bungart B, Cao Y, Yang-Tran T, Gorsky S, Lan L, Roblyer D, Koch MO, Cheng L, Masterson T, Cheng JX. Cylindrical illumination with angular coupling for whole-prostate photoacoustic tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:1405-1419. [PMID: 30891355 PMCID: PMC6420282 DOI: 10.1364/boe.10.001405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 05/20/2023]
Abstract
Current diagnosis of prostate cancer relies on histological analysis of tissue samples acquired by biopsy, which could benefit from real-time identification of suspicious lesions. Photoacoustic tomography has the potential to provide real-time targets for prostate biopsy guidance with chemical selectivity, but light delivered from the rectal cavity has been unable to penetrate to the anterior prostate. To overcome this barrier, a urethral device with cylindrical illumination is developed for whole-prostate imaging, and its performance as a function of angular light coupling is evaluated with a prostate-mimicking phantom.
Collapse
Affiliation(s)
- Brittani Bungart
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA
- Medical Scientist Training Program, Indiana University School of Medicine, 635 Barnhill Drive MS 2031, Indianapolis, IN 46202, USA
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s Street, Boston, MA 02215, USA
| | - Yingchun Cao
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s Street, Boston, MA 02215, USA
| | - Tiffany Yang-Tran
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Sean Gorsky
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s Street, Boston, MA 02215, USA
| | - Lu Lan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Michael O. Koch
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Timothy Masterson
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s Street, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
21
|
Marjanovic M, Nguyen FT, Ahmad A, Huang PC, Suslick KS, Boppart SA. Characterization of Magnetic Nanoparticle-Seeded Microspheres for Magnetomotive and Multimodal Imaging. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2019; 25:7101314. [PMID: 30880897 PMCID: PMC6413528 DOI: 10.1109/jstqe.2018.2856582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Magnetic iron-oxide nanoparticles have been developed as contrast agents in magnetic resonance imaging (MRI) and as therapeutic agents in magnetic hyperthermia. They have also recently been demonstrated as contrast and elastography agents in magnetomotive optical coherence tomography and elastography (MM-OCT and MM-OCE, respectively). Protein-shell microspheres containing suspensions of these magnetic nanoparticles in lipid cores, and with functionalized outer shells for specific targeting, have also been demonstrated as efficient contrast agents for imaging modalities such as MM-OCT and MRI, and can be easily modified for other modalities such as ultrasound, fluorescence, and luminescence imaging. By leveraging the benefits of these various imaging modalities with the use of only a single agent, a magnetic microsphere, it becomes possible to use a widefield imaging method (such as MRI or small animal fluorescence imaging) to initially locate the agent, and then use MM-OCT to obtain dynamic contrast images with cellular level morphological resolution. In addition to multimodal contrast-enhanced imaging, these microspheres could serve as drug carriers for targeted delivery under image guidance. Although the preparation and surface modifications of protein microspheres containing iron oxide nanoparticles has been previously described and feasibility studies conducted, many questions regarding their production and properties remain. Since the use of multifunctional microspheres could have high clinical relevance, here we report a detailed characterization of their properties and behavior in different environments to highlight their versatility. The work presented here is an effort for the development and optimization of nanoparticle-based microspheres as multi-modal contrast agents that can bridge imaging modalities on different size scales, especially for their use in MM-OCT and MRI imaging.
Collapse
Affiliation(s)
- Marina Marjanovic
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Freddy T Nguyen
- University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA. He is now with the Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Adeel Ahmad
- University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA. He is now with Texas Instruments.
| | - Pin-Chieh Huang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kenneth S Suslick
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Stephen A Boppart
- Department of Electrical and Computer Engineering and Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (phone: 217-244-7479; fax: 217-333-5833; )
| |
Collapse
|
22
|
Jawad HJ, Sarimollaoglu M, Biris AS, Zharov VP. Dynamic blood flow phantom with negative and positive photoacoustic contrasts. BIOMEDICAL OPTICS EXPRESS 2018; 9:4702-4713. [PMID: 30319897 PMCID: PMC6179420 DOI: 10.1364/boe.9.004702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 05/03/2023]
Abstract
In vivo photoacoustic (PA) flow cytometry (PAFC) has great clinical potential for early, noninvasive diagnosis of cancer, infections (e.g., malaria and bacteremia), sickle anemia, and cardiovascular disorders, including stroke prevention through detection of circulating white clots with negative PA contrast. For clinical applications, this diagnostic platform still requires optimization and calibration. We have already demonstrated that this need can be partially addressed by in vivo examination of large mouse blood vessels, which are similar to human vessels used. Here, we present an alternative method for PAFC optimization that utilizes novel, clinically relevant phantoms resembling pigmented skin, tissue, vessels, and flowing blood. This phantom consists of a scattering-absorbing medium with a melanin layer and plastic tube with flowing beads to model light-absorbing red blood cells (RBCs) and circulating tumor cells (CTCs), as well as transparent beads to model white blood cells and clots. Using a laser diode, we demonstrated the extraordinary ability of PAFC to dynamically detect fast-moving mimic CTCs with positive PA contrast and white clots with negative PA contrast in an RBC background. Time-resolved detection of the delayed PA signals from blood vessels demonstrated complete suppression of the PA background from the modeled pigmented skin. This novel, medically relevant, dynamic blood flow phantom can be used to calibrate and maintain PAFC parameters for routine clinical applications.
Collapse
Affiliation(s)
- Hind J. Jawad
- Department of Physics and Astronomy, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA
| | - Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA
| | - Vladimir P. Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA
| |
Collapse
|
23
|
Li P, Yang Z, Jiang S. Tissue mimicking materials in image-guided needle-based interventions: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:1116-1131. [PMID: 30274042 DOI: 10.1016/j.msec.2018.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/25/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022]
Abstract
Image-guided interventions are widely employed in clinical medicine, which brings significant revolution in healthcare in recent years. However, it is impossible for medical trainees to experience the image-guided interventions physically in patients due to the lack of certificated skills. Therefore, training phantoms, which are normally tissue mimicking materials, are widely used in medical research, training, and quality assurance. This review focuses on the tissue mimicking materials used in image-guided needle-based interventions. In this case, we need to investigate the microstructure characteristics and mechanical properties (for needle intervention), optical properties and acoustical properties (for imaging) of these training phantoms to compare with the related properties of human real tissues. The widely used base materials, additives and the corresponding concentrations of the training phantoms are summarized from the literatures in recent ten years. The microstructure characteristics, mechanical behavior, optical properties and acoustical properties of the tissue mimicking materials are investigated, accompanied with the common experimental methods, apparatus and theoretical algorithm. The influence of the concentrations of the base materials and additives on these characteristics are compared and classified. In this review, we assess a comprehensive overview of the existing techniques with the main accomplishments, and limitations as well as recommendations for tissue mimicking materials used in image-guided needle-based interventions.
Collapse
Affiliation(s)
- Pan Li
- Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, No. 135, Yaguan Road, Jinnan District, Tianjin City 300354, China
| | - Zhiyong Yang
- Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, No. 135, Yaguan Road, Jinnan District, Tianjin City 300354, China
| | - Shan Jiang
- Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, No. 135, Yaguan Road, Jinnan District, Tianjin City 300354, China.
| |
Collapse
|
24
|
Maneas E, Xia W, Ogunlade O, Fonseca M, Nikitichev DI, David AL, West SJ, Ourselin S, Hebden JC, Vercauteren T, Desjardins AE. Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9. [PMID: 29541509 PMCID: PMC5846519 DOI: 10.1364/boe.9.001151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Tissue-mimicking phantoms are widely used for the calibration, evaluation and standardisation of medical imaging systems, and for clinical training. For photoacoustic imaging, tissue-mimicking materials (TMMs) that have tuneable optical and acoustic properties, high stability, and mechanical robustness are highly desired. In this study, gel wax is introduced as a TMM that satisfies these criteria for developing photoacoustic imaging phantoms. The reduced scattering and optical absorption coefficients were independently tuned with the addition of TiO2 and oil-based inks. The frequency-dependent acoustic attenuation obeyed a power law; for native gel wax, it varied from 0.71 dB/cm at 3 MHz to 9.93 dB/cm at 12 MHz. The chosen oil-based inks, which have different optical absorption spectra in the range of 400 to 900 nm, were found to have good photostability under pulsed illumination with photoacoustic excitation light. Optically heterogeneous phantoms that comprised of inclusions with different concentrations of carbon black and coloured inks were fabricated, and multispectral photoacoustic imaging was performed with an optical parametric oscillator and a planar Fabry-Pérot sensor. We conclude that gel wax is well suited as a TMM for multispectral photoacoustic imaging.
Collapse
Affiliation(s)
- Efthymios Maneas
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Wenfeng Xia
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Olumide Ogunlade
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Martina Fonseca
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Daniil I. Nikitichev
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Anna L. David
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Institute for Women’s Health, University College London, 86-96 Chenies Mews, London WC1E 6HX,
UK
- Department of Development and Regeneration, KU Leuven (Katholieke Universiteit),
Belgium
| | - Simeon J. West
- Department of Anaesthesia, University College Hospital, Main Theatres, Maple Bridge Link Corridor, Podium 3, 235 Euston Road, London NW1 2BU,
UK
| | - Sebastien Ourselin
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Jeremy C. Hebden
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Tom Vercauteren
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Adrien E. Desjardins
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| |
Collapse
|
25
|
Melchert O, Wollweber M, Roth B. An efficient procedure for custom beam-profile convolution in polar coordinates: testing, benchmarking and application to biophotonics. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaa51a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Vogt WC, Jia C, Wear KA, Garra BS, Pfefer TJ. Phantom-based image quality test methods for photoacoustic imaging systems. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-14. [PMID: 28901055 DOI: 10.1117/1.jbo.22.9.095002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/15/2017] [Indexed: 05/07/2023]
Abstract
As photoacoustic imaging (PAI) technologies advance and applications arise, there is increasing need for standardized approaches to provide objective, quantitative performance assessment at various stages of the product development and clinical translation process. We have developed a set of performance test methods for PAI systems based on breast-mimicking tissue phantoms containing embedded inclusions. Performance standards for mature imaging modalities [magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound] were used to guide selection of critical PAI image quality characteristics and experimental methods. Specifically, the tests were designed to address axial, lateral, and elevational spatial resolution, signal uniformity, penetration depth, sensitivity, spatial measurement accuracy, and PAI-ultrasound coregistration. As an initial demonstration of the utility of these test methods, we characterized the performance of a modular, bimodal PAI-ultrasound system using four clinical ultrasound transducers with varying design specifications. Results helped to inform optimization of acquisition and data processing procedures while providing quantitative elucidation of transducer-dependent differences in image quality. Comparison of solid, tissue-mimicking polymer phantoms with those based on Intralipid indicated the superiority of the former approach in simulating real-world conditions for PAI. This work provides a critical foundation for the establishment of well-validated test methods that will facilitate the maturation of PAI as a medical imaging technology.
Collapse
Affiliation(s)
- William C Vogt
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire A, United States
| | - Congxian Jia
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire A, United States
| | - Keith A Wear
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire A, United States
| | - Brian S Garra
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire A, United States
| | - T Joshua Pfefer
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire A, United States
| |
Collapse
|
27
|
Huang N, Guo H, Qi W, Zhang Z, Rong J, Yuan Z, Ge W, Jiang H, Xi L. Whole-body multispectral photoacoustic imaging of adult zebrafish. BIOMEDICAL OPTICS EXPRESS 2016; 7:3543-3550. [PMID: 27699119 PMCID: PMC5030031 DOI: 10.1364/boe.7.003543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/27/2016] [Accepted: 08/12/2016] [Indexed: 05/19/2023]
Abstract
The zebrafish, an ideal vertebrate for studying developmental biology and genetics, is increasingly being used to understand human diseases, due to its high similarity to the human genome and its optical transparency during embryonic stages. Once the zebrafish has fully developed, especially wild-type breeds, conventional optical imaging techniques have difficulty in imaging the internal organs and structures with sufficient resolution and penetration depth. Even with established mutant lines that remain transparent throughout their life cycle, it is still challenging for purely optical imaging modalities to visualize the organs of juvenile and adult zebrafish at a micro-scale spatial resolution. In this work, we developed a non-invasive three-dimensional photoacoustic imaging platform with an optimized illumination pattern and a cylindrical-scanning-based data collection system to image entire zebrafish with micro-scale resolutions of 80 μm and 600 μm in the lateral and axial directions, respectively. In addition, we employed a multispectral strategy that utilized excitation wavelengths from 690 nm to 930 nm to statistically quantify the relative optical absorption spectrum of major organs.
Collapse
Affiliation(s)
- Na Huang
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Heng Guo
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Weizhi Qi
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Zhiwei Zhang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Jian Rong
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Huabei Jiang
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Lei Xi
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Sichuan, China
| |
Collapse
|