1
|
Pace E, Caruana CJ, Bosmans H, Cortis K, D'Anastasi M, Valentino G. An inventory of patient-image based risk/dose, image quality and body habitus/size metrics for adult abdomino-pelvic CT protocol optimisation. Phys Med 2024; 125:103434. [PMID: 39096718 DOI: 10.1016/j.ejmp.2024.103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
PURPOSE Patient-specific protocol optimisation in abdomino-pelvic Computed Tomography (CT) requires measurement of body habitus/size (BH), sensitivity-specificity (surrogates image quality (IQ) metrics) and risk (surrogates often dose quantities) (RD). This work provides an updated inventory of metrics available for each of these three categories of optimisation variables derivable directly from patient measurements or images. We consider objective IQ metrics mostly in the spatial domain (i.e., those related directly to sharpness, contrast, noise quantity/texture and perceived detectability as these are used by radiologists to assess the acceptability or otherwise of patient images in practice). MATERIALS AND METHODS The search engine used was PubMed with the search period being 2010-2024. The key words used were: 'comput* tomography', 'CT', 'abdom*', 'dose', 'risk', 'SSDE', 'image quality', 'water equivalent diameter', 'size', 'body composition', 'habit*', 'BMI', 'obes*', 'overweight'. Since BH is critical for patient specific optimisation, articles correlating RD vs BH, and IQ vs BH were reviewed. RESULTS The inventory includes 11 BH, 12 IQ and 6 RD metrics. 25 RD vs BH correlation studies and 9 IQ vs BH correlation studies were identified. 7 articles in the latter group correlated metrics from all three categories concurrently. CONCLUSIONS Protocol optimisation should be fine-tuned to the level of the individual patient and particular clinical query. This would require a judicious choice of metrics from each of the three categories. It is suggested that, for increased utility in clinical practice, more future optimisation studies be clinical task based and involve the three categories of metrics concurrently.
Collapse
Affiliation(s)
- Eric Pace
- Medical Physics, Faculty of Health Science, University of Malta, Msida MSD2080, Malta.
| | - Carmel J Caruana
- Medical Physics, Faculty of Health Science, University of Malta, Msida MSD2080, Malta
| | - Hilde Bosmans
- Medical Physics & Quality Assessment, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Kelvin Cortis
- Medical Imaging Department, Mater Dei Hospital, Msida MSD2090, Malta
| | - Melvin D'Anastasi
- Medical Imaging Department, Mater Dei Hospital, Msida MSD2090, Malta
| | - Gianluca Valentino
- Communications & Computer Engineering Department, Faculty of Information and Communication Technology, University of Malta, Msida MSD2080, Malta
| |
Collapse
|
2
|
Chu PW, Kofler C, Haas B, Lee C, Wang Y, Chu CA, Stewart C, Mahendra M, Delman BN, Bolch WE, Smith-Bindman R. Dose length product to effective dose coefficients in adults. Eur Radiol 2024; 34:2416-2425. [PMID: 37798408 DOI: 10.1007/s00330-023-10262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVES The most accurate method for estimating patient effective dose (a principal metric for tracking patient radiation exposure) from computed tomography (CT) requires time-intensive Monte Carlo simulation. A simpler method multiplies a scalar coefficient by the widely available scanner-reported dose length product (DLP) to estimate effective dose. We developed new adult effective dose coefficients using actual patient scans and assessed their agreement with Monte Carlo simulation. METHODS A multicenter sample of 216,906 adult CT scans was prospectively assembled in 2015-2020 from the University of California San Francisco International CT Dose Registry and the University of Florida library of computational phantoms. We generated effective dose coefficients for eight body regions, stratified by patient sex, diameter, and scanner manufacturer. We applied the new coefficients to DLPs to calculate effective doses and assess their correlations with Monte Carlo radiation transport-generated effective dose. RESULTS Effective dose coefficients varied by body region and decreased in magnitude with increasing patient diameter. Coefficients were approximately twofold higher for torso scans in smallest compared with largest diameter categories. For example, abdomen and pelvis coefficients decreased from 0.027 to 0.013 mSv/mGy-cm between the 16-20 cm and 41+ cm categories. There were modest but consistent differences by sex and manufacturer. Diameter-based coefficients used to estimate effective dose produced strong correlations with the reference standard (Pearson correlations 0.77-0.86). The reported conversion coefficients differ from previous studies, particularly in neck CT. CONCLUSIONS New effective dose coefficients derived from empirical clinical scans can be used to easily estimate effective dose using scanner-reported DLP. CLINICAL RELEVANCE STATEMENT Scalar coefficients multiplied by DLP offer a simple approximation to effective dose, a key radiation dose metric. New effective dose coefficients from this study strongly correlate with gold standard, Monte Carlo-generated effective dose, and differ somewhat from previous studies. KEY POINTS • Previous effective dose coefficients were derived from theoretical models rather than real patient data. • The new coefficients (from a large registry/phantom library) differ from previous studies. • The new coefficients offer reasonably reliable values for estimating effective dose.
Collapse
Affiliation(s)
- Philip W Chu
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, Box 0560, San Francisco, CA, 94143, USA
| | - Cameron Kofler
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Brian Haas
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yifei Wang
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, Box 0560, San Francisco, CA, 94143, USA
| | - Cameron A Chu
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, Box 0560, San Francisco, CA, 94143, USA
| | - Carly Stewart
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, Box 0560, San Francisco, CA, 94143, USA
| | - Malini Mahendra
- Department of Pediatrics, Division of Pediatric Critical Care, UCSF Benioff Children's Hospital, University of California at San Francisco, San Francisco, USA
- Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Bradley N Delman
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wesley E Bolch
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rebecca Smith-Bindman
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, Box 0560, San Francisco, CA, 94143, USA.
- Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
3
|
Chu PW, Kofler C, Mahendra M, Wang Y, Chu CA, Stewart C, Delman BN, Haas B, Lee C, Bolch WE, Smith-Bindman R. Dose length product to effective dose coefficients in children. Pediatr Radiol 2023; 53:1659-1668. [PMID: 36922419 PMCID: PMC10359359 DOI: 10.1007/s00247-023-05638-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The most accurate method for estimating effective dose (the most widely understood metric for tracking patient radiation exposure) from computed tomography (CT) requires time-intensive Monte Carlo simulation. A simpler method multiplies a scalar coefficient by the widely available scanner-reported dose length product (DLP) to estimate effective dose. OBJECTIVE Develop pediatric effective dose coefficients and assess their agreement with Monte Carlo simulation. MATERIALS AND METHODS Multicenter, population-based sample of 128,397 pediatric diagnostic CT scans prospectively assembled in 2015-2020 from the University of California San Francisco International CT Dose Registry and the University of Florida library of highly realistic hybrid computational phantoms. We generated effective dose coefficients for seven body regions, stratified by patient age, diameter, and scanner manufacturer. We applied the new coefficients to DLPs to calculate effective doses and assessed their correlations with Monte Carlo radiation transport-generated effective doses. RESULTS The reported effective dose coefficients, generally higher than previous studies, varied by body region and decreased in magnitude with increasing age. Coefficients were approximately 4 to 13-fold higher (across body regions) for patients <1 year old compared with patients 15-21 years old. For example, head CT (54% of scans) dose coefficients decreased from 0.039 to 0.003 mSv/mGy-cm in patients <1 year old vs. 15-21 years old. There were minimal differences by manufacturer. Using age-based conversion coefficients to estimate effective dose produced moderate to strong correlations with Monte Carlo results (Pearson correlations 0.52-0.80 across body regions). CONCLUSIONS New pediatric effective dose coefficients update existing literature and can be used to easily estimate effective dose using scanner-reported DLP.
Collapse
Affiliation(s)
- Philip W Chu
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, Box 0560, San Francisco, CA, 94143, USA
| | - Cameron Kofler
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Malini Mahendra
- Department of Pediatrics, Division of Pediatric Critical Care, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
- Philip R. Lee Institute for Health Policy Studies, University of California San Francisco, San Francisco, CA, USA
| | - Yifei Wang
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, Box 0560, San Francisco, CA, 94143, USA
| | - Cameron A Chu
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, Box 0560, San Francisco, CA, 94143, USA
| | - Carly Stewart
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, Box 0560, San Francisco, CA, 94143, USA
| | - Bradley N Delman
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Haas
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wesley E Bolch
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rebecca Smith-Bindman
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, Box 0560, San Francisco, CA, 94143, USA.
- Philip R. Lee Institute for Health Policy Studies, University of California San Francisco, San Francisco, CA, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Jansen JT, Shrimpton PC, Edyvean S. Development of a generalized method to allow the estimation of doses to the ICRP reference adults from CT, on the basis of normalized organ and CTDI dose data determined by Monte Carlo calculation for a range of contemporary scanners. Phys Med Biol 2023; 68. [PMID: 36634363 DOI: 10.1088/1361-6560/acb2a8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Objective. Development of a method to provide organ and effective dose coefficients to reference adults for any CT scanner based on values ofCTDImeasured both in air and in standard CT dosimetry phantoms.Approach. Results from previous Monte Carlo simulations for a range of contemporary CT scanners have been analyzed to provide linear models relating values of organ dose (normalized toCTDIfree-in-air), for each slab of 3 reference phantoms (ICRP Male/Female, and AH hermaphrodite), to similarly normalized values ofCTDIin standard CT dosimetry phantoms. Three methods have been investigated to apply the models to values ofCTDIfor a 'new' scanner not previously simulated: a Generic approach using averaged normalized organ dose profiles for whole body exposure of the phantoms; and two processes for matching the scanner, on the basis of normalized organ doses or effective dose (nE103,phan), to one of the 102 sets of dose coefficients previously calculated for 12 contemporary CT scanner models, from 4 manufacturers, operating under a range of conditions.Main results. The merit of each method has been quantitatively assessed when applied to both the present contemporary scanners with each test data set being excluded in turn during the matching process, and also to 3 previously-simulated older scanners. Whereas all three methods appear viable, with all doses being within 1% and 10% for the contemporary and old scanners respectively, matching tonE103,phanis overall the approach preferred in practice, yielding an uncertainty of around 6% in estimated values ofnE103,phan. The present methodology also provides superior performance when compared against some other common normalization factors forE103,phan.Significance. The CT dose model and the data sets will be incorporated into a new CT dosimetry tool that will be made available from UKHSA in support of facilitating improvements in patient protection.
Collapse
Affiliation(s)
- Jan Tm Jansen
- Radiation, Chemical and Environmental Hazards, United Kingdom Health Security Agency, Chilton, Didcot, Oxfordshire, OX11 0RQ, United Kingdom
| | - Paul C Shrimpton
- Radiation, Chemical and Environmental Hazards, United Kingdom Health Security Agency, Chilton, Didcot, Oxfordshire, OX11 0RQ, United Kingdom
| | - Sue Edyvean
- Radiation, Chemical and Environmental Hazards, United Kingdom Health Security Agency, Chilton, Didcot, Oxfordshire, OX11 0RQ, United Kingdom
| |
Collapse
|
5
|
Jansen JT, Shrimpton PC, Edyvean S. CT scanner-specific organ dose coefficients generated by Monte Carlo calculation for the ICRP adult male and female reference computational phantoms. Phys Med Biol 2022; 67. [PMID: 36317285 DOI: 10.1088/1361-6560/ac9e3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Objective.Provide analyses of new organ dose coefficients (hereafter also referred to as normalized doses) for CT that have been developed to update the widely-utilized collection of data published 30 years ago in NRPB-SR250.Approach.In order to reflect changes in technology, and also ICRP recommendations concerning use of the computational phantoms adult male (AM) and adult female (AF), 102 series of new Monte Carlo simulations have been performed covering the range of operating conditions for 12 contemporary models of CT scanner from 4 manufacturers. Normalized doses (relative to free air on axis) have been determined for 39 organs, and for every 8 mm or 4.84 mm slab of AM and AF, respectively.Main results.Analyses of results confirm the significant influence (by up to a few tens of percent), on values of normalized organ (or contributions to effective dose (E103,phan)), for whole body exposure arising from selection of tube voltage and beam shaping filter. Use of partial (when available) rather than a Full fan beam reduced both organ and effective dose by up to 7%. Normalized doses to AF were larger than corresponding figures for AM by up to 30% for organs and by 10% forE103,phan. Additional simulations for whole body exposure have also demonstrated that: practical simplifications in the main modelling (point source, single slice thickness, neglect of patient couch and immobility of phantom arms) have sufficiently small (<5%) effect onE103,phan; mis-centring of the phantom away from the axis of rotation by 5 mm (in any direction) leads to changes in normalized organ dose andE103,phanby up to 20% and 6%, respectively; and angular tube current modulation can result in reductions by up to 35% and <15% in normalized organ dose andE103,phan, respectively, for 100% cosine variation.Significance.These analyses help advance understanding of the influence of operational scanner settings on organ dose coefficients for contemporary CT, in support of improved patient protection. The results will allow the future development of a new dose estimation tool.
Collapse
Affiliation(s)
- Jan Tm Jansen
- Radiation, Chemical and Environmental Hazards, United Kingdom Health Security Agency, Chilton, Didcot, Oxfordshire, OX11 0RQ, United Kingdom
| | - Paul C Shrimpton
- Radiation, Chemical and Environmental Hazards, United Kingdom Health Security Agency, Chilton, Didcot, Oxfordshire, OX11 0RQ, United Kingdom.,Retired, United Kingdom
| | - Sue Edyvean
- Radiation, Chemical and Environmental Hazards, United Kingdom Health Security Agency, Chilton, Didcot, Oxfordshire, OX11 0RQ, United Kingdom
| |
Collapse
|
6
|
Kapoor S, O'Dowd K, Hilis A, Quraishi N. The Nottingham radiation protocol for O-arm navigation in paediatric deformity patients: a feasibility study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:1920-1927. [PMID: 33611717 DOI: 10.1007/s00586-021-06762-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND O-arm assisted pedicle screw placement has been proven to be more accurate than free-hand technique. Radiation exposure remains the primary drawback. We determined the feasibility and safety of a reduced radiation protocol in paediatric patients undergoing scoliosis correction. METHODS A reduced radiation protocol for a medtronic O-arm navigational system was devised. 3D CT reconstructions of an anthropomorphic pelvic phantom indicated adequate image quality after reduction to 14% of current manufacturer default factors. A feasibility study to test the image quality was undertaken on four patients, one with syndromic and three with idiopathic scoliosis each receiving progressively reducing radiation exposure of 60%, 50%, 40% and 14% of what would have been delivered using the manufacturer default protocol. This represented 32% of the mayo clinic protocol. It was achieved by reducing the x-ray tube current to 10 mA while keeping the tube potential at 90 kVp. RESULTS A low dose O-arm protocol was able to generate adequate image quality while delivering as little as 14% (for lumbar region reconstructions) of the recommended protocol radiation dose. The total radiation dose delivered with this protocol was approximately 0.8 milliSieverts for a single spin. This effective dose represents < 1/3 of average UK and < 1/6 average US annual radiation exposure. There were no neurological or implant-related complications. CONCLUSIONS Our low dose O-arm radiation protocol significantly reduces the radiation exposure compared to the manufacturer recommended Mayo clinic protocol providing operational image quality to allow accurate screw placement in spinal deformity.
Collapse
Affiliation(s)
- Saurabh Kapoor
- Department of Spinal Surgery, Queen's Medical Center, 15 Chester House, Nottingham, NG3 5AW, United Kingdom.
| | - Kenneth O'Dowd
- Department of Medical Physics, Queen's Medical Center, Nottingham, United Kingdom
| | - Aaron Hilis
- Department of Spinal Surgery, Queen's Medical Center, 15 Chester House, Nottingham, NG3 5AW, United Kingdom
| | - Nasir Quraishi
- Department of Spinal Surgery, Queen's Medical Center, 15 Chester House, Nottingham, NG3 5AW, United Kingdom
| |
Collapse
|
7
|
Samei E, Ria F, Tian X, Segars PW. A database of 40 patient-based computational models for benchmarking organ dose estimates in CT. Med Phys 2020; 47:6562-6566. [PMID: 32628272 DOI: 10.1002/mp.14373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/24/2020] [Accepted: 06/26/2020] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Patient radiation burden in computed tomography (CT) can best be characterized through risk estimates derived from organ doses. Organ doses can be estimated by Monte Carlo simulations of the CT procedures on computational phantoms assumed to emulate the patients. However, the results are subject to uncertainties related to how accurately the patient and CT procedure are modeled. Different methods can lead to different results. This paper, based on decades of organ dosimetry research, offers a database of CT scans, scan specifics, and organ doses computed using a validated Monte Carlo simulation of each patient and acquisition. It is aimed that the database can serve as means to benchmark different organ dose estimation methods against a benchmark dataset. ACQUISITION AND VALIDATION METHODS Organ doses were estimated for 40 adult patients (22 male, 18 female) who underwent chest and abdominopelvic CT examinations. Patient-based computational models were created for each patient including 26 organs for female and 25 organs for male cases. A Monte Carlo code, previously validated experimentally, was applied to calculate organ doses under constant and two modulated tube current conditions. DATA FORMAT AND USAGE NOTES The generated database reports organ dose values for chest and abdominopelvic examinations per patient and imaging condition. Patient information and images and scan specifications (energy spectrum, bowtie filter specification, and tube current profiles) are provided. The database is available at publicly accessible digital repositories. POTENTIAL APPLICATIONS Consistency in patient risk estimation, and associated justification and optimization requires accuracy and consistency in organ dose estimation. The database provided in this paper is a helpful tool to benchmark different organ dose estimation methodologies to facilitate comparisons, assess uncertainties, and improve risk assessment of CT scans based on organ dose.
Collapse
Affiliation(s)
- Ehsan Samei
- Carl E. Ravin Advanced Imaging Labs, Clinical Imaging Physics Group, Medical Physics Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University, 2424 Erwin Road, Suite 302, Durham, NC, 27710, USA
| | - Francesco Ria
- Carl E. Ravin Advanced Imaging Labs and Clinical Imaging Physics Group, Duke University Health System, 2424 Erwin Road, Suite 302, Durham, NC, 27710, USA
| | - Xiaoyu Tian
- Carl E. Ravin Advanced Imaging Labs, 2424 Erwin Road, Suite 302, Durham, NC, 27710, USA
| | - Paul W Segars
- Carl E. Ravin Advanced Imaging Labs, 2424 Erwin Road, Suite 302, Durham, NC, 27710, USA
| |
Collapse
|
8
|
Individual Calculation of Effective Dose and Risk of Malignancy Based on Monte Carlo Simulations after Whole Body Computed Tomography. Sci Rep 2020; 10:9475. [PMID: 32528028 PMCID: PMC7289876 DOI: 10.1038/s41598-020-66366-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/14/2020] [Indexed: 01/30/2023] Open
Abstract
Detailed knowledge about radiation exposure is crucial for radiology professionals. The conventional calculation of effective dose (ED) for computed tomography (CT) is based on dose length product (DLP) and population-based conversion factors (k). This is often imprecise and unable to consider individual patient characteristics. We sought to provide more precise and individual radiation exposure calculation using image based Monte Carlo simulations (MC) in a heterogeneous patient collective and to compare it to phantom based MC provided from the National Cancer Institute (NCI) as academic reference. Dose distributions were simulated for 22 patients after whole-body CT during Positron Emission Tomography-CT. Based on MC we calculated individual Lifetime Attributable Risk (LAR) and Excess Relative Risk (ERR) of cancer mortality. EDMC was compared to EDDLP and EDNCI. EDDLP (13.2 ± 4.5 mSv) was higher compared to EDNCI (9.8 ± 2.1 mSv) and EDMC (11.6 ± 1.5 mSv). Relative individual differences were up to -48% for EDMC and -44% for EDNCI compared to EDDLP. Matching pair analysis illustrates that young age and gender are affecting LAR and ERR significantly. Because of these uncertainties in radiation dose assessment automated individual dose and risk estimation would be desirable for dose monitoring in the future.
Collapse
|
9
|
Maxwell S, Fox R, McRobbie D, Bulsara M, Doust J, O’Leary P, Slavotinek J, Stubbs J, Moorin R. How have advances in CT dosimetry software impacted estimates of CT radiation dose and cancer incidence? A comparison of CT dosimetry software: Implications for past and future research. PLoS One 2019; 14:e0217816. [PMID: 31412037 PMCID: PMC6693687 DOI: 10.1371/journal.pone.0217816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 05/21/2019] [Indexed: 12/01/2022] Open
Abstract
Objective Organ radiation dose from a CT scan, calculated by CT dosimetry software, can be combined with cancer risk data to estimate cancer incidence resulting from CT exposure. We aim to determine to what extent the use of improved anatomical representation of the adult human body “phantom” in CT dosimetry software impacts estimates of radiation dose and cancer incidence, to inform comparison of past and future research. Methods We collected 20 adult cases for each of three CT protocols (abdomen/pelvis, chest and head) from each of five public hospitals (random sample) (January-April inclusive 2010) and three private clinics (self-report). Organ equivalent and effective dose were calculated using both ImPACT (mathematical phantom) and NCICT (voxelised phantom) software. Bland-Altman plots demonstrate agreement and Passing-Bablok regression reports systematic, proportional or random differences between results. We modelled the estimated lifetime attributable risk of cancer from a single exposure for each protocol, using age-sex specific risk-coefficients from the Biologic Effects of Ionizing Radiation VII report. Results For the majority of organs used in epidemiological studies of cancer incidence, the NCICT software (voxelised) provided higher dose estimates. Across the lifespan NCICT resulted in cancer estimates 2.9%-6.6% and 14.8%-16.3% higher in males and females (abdomen/pelvis) and 7.6%-19.7% and 12.9%-26.5% higher in males and females respectively (chest protocol). For the head protocol overall cancer estimates were lower for NCICT, but with greatest disparity, >30% at times. Conclusion When the results of previous studies estimating CT dose and cancer incidence are compared to more recent, or future, studies the dosimetry software must be considered. Any change in radiation dose or cancer risk may be attributable to the software and phantom used, rather than—or in addition to—changes in scanning practice. Studies using dosimetry software to estimate radiation dose should describe software comprehensively to facilitate comparison with past and future research.
Collapse
Affiliation(s)
- Susannah Maxwell
- Health Systems and Health Economics, School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
- * E-mail:
| | - Richard Fox
- School of Physics, University of Western Australia, Perth, Western Australia, Australia
| | - Donald McRobbie
- School of Physical Sciences, University of Adelaide, Adelaide, South Australia
- Faculty of Medicine, Imperial College, London, United Kingdom
| | - Max Bulsara
- Institute for Health and Rehabilitation Research, University of Notre Dame, Fremantle, Western Australia, Australia
- Centre for Health Services Research, School of Population Health, Faculty of Medicine, Dentistry and Health Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Jenny Doust
- Centre for Research in Evidence-Based Practice Faculty of Health Sciences and Medicine Bond University, Gold Coast, Queensland, Australia
| | - Peter O’Leary
- Health Systems and Health Economics, School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
- Obstetrics and Gynaecology Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine, QE2 Medical Centre, Nedlands, Western Australia
| | - John Slavotinek
- SA Medical Imaging, SA Health and College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - John Stubbs
- CanSpeak Australia, Spring Hill, Queensland, Australia
| | - Rachael Moorin
- Health Systems and Health Economics, School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
- Centre for Health Services Research, School of Population Health, Faculty of Medicine, Dentistry and Health Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
10
|
Jansen JTM, Shrimpton PC, Holroyd J, Edyvean S. Selection of bone dosimetry models for application in Monte Carlo simulations to provide CT scanner-specific organ dose coefficients. Phys Med Biol 2018; 63:125015. [PMID: 29787379 DOI: 10.1088/1361-6560/aac717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This is the second paper arising from a project concerning the application of Monte Carlo simulations to provide scanner-specific organ dose coefficients for modern CT scanners. The present focus is centred on the bone dosimetry models that have been developed. Simulations have been performed in photon only transport mode, with the assumption of electron equilibrium. This approximation breaks down for doses to active marrow and endosteum since the target cells are localised within tens of micrometre from bone tissue and dose enhancement functions are necessary to correct for the additional dose from photoelectric electrons created in adjacent material. The dose enhancement models used previously in publications NRPB-SR250 (Jones and Shrimpton 1993 Software Report NRPB-SR250, National Radiological Protection Board, Chilton, UK) and ORNL-TM8381 (Cristy and Eckerman 1987 Technical Report Oak Ridge National Laboratory, Oak Ridge, TN) have been implemented and compared with the contemporary approaches of Johnson et al (2011 Phys. Med. Biol. 56 2347-65) and ICRP Publication 116 (ICRP 2010 Ann. ICRP 40 1-257) that are being adopted in the present project. In addition, the calculation of dose to endosteum in the medullary cavity is reviewed and updated using electron mode simulations. For the purposes of quality assurance and comparison, the various dose enhancement functions have been applied in relation to the NRPB18+DJ and HPA18+ stylised hermaphrodite phantoms and also the adult male and female voxel phantoms recommended in ICRP Publication 110 (ICRP 2009 Ann. ICRP 39 1-165), for exposure from three CT scanners modelled previously. Contemporary results for standard examinations on the head and trunk calculated for these latter phantoms demonstrate moderate increases (modal value +18%) in active marrow dose coefficients relative to values derived from data published in NRPB-SR250. A similar analysis in relation to endosteum dose coefficients shows larger reductions (modal value -46%), owing at least in part to changes in assumed location of the target cells. Even larger changes are apparent for both of these dose coefficients in relation to examination of the upper legs (-39% and -94%, respectively). However, resultant changes in any values of effective dose will be less owing to the low weighting factors applied for these tissues.
Collapse
Affiliation(s)
- Jan T M Jansen
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England (PHE), Chilton, Didcot, Oxfordshire, OX11 0RQ, United Kingdom. Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|
11
|
Cros M, Joemai RMS, Geleijns J, Molina D, Salvadó M. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms. ACTA ACUST UNITED AC 2017; 62:6304-6321. [DOI: 10.1088/1361-6560/aa77ea] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|