1
|
Crede V, Yelton J. 70 years of hyperon spectroscopy: a review of strange Ξ, Ω baryons, and the spectrum of charmed and bottom baryons. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:106301. [PMID: 39222639 DOI: 10.1088/1361-6633/ad7610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
The first hyperon was discovered about 70 years ago, but the nature of these particles, particularly with regard to multistrange hyperons, and many of their properties can still be considered to be literally strange. A dedicated and successful global spectroscopy program in the 1960s and 1970s usingK-beams revealed many multistrange candidates, but the available evidence of their existence is statistically limited. For this reason, there is still much to learn about the systematics of the spectrum of excited hyperon states and what they have in common with their non-strange companions, or how they differ from the nucleon and Δ resonances. Results from photo- and electroproduction experiments off the proton and neutron using polarized beams and targets have provided intriguing evidence for new nucleon excitations and shed light on the structure of some of the known nucleon and Δ states. Recent years have also seen a great deal of progress in the field of charmed and bottom baryon spectroscopy. Unprecedented data from the Large Hadron Collider in particular indicate continued rapid progress in the field of bottom baryons. On the theoretical side, baryons with one heavy quarkQand a lightqqsystem serve as an ideal laboratory for studying lightqq(diquark) correlations and the dynamics of the light quarks in the colour environment of a heavy quark. In this review, we discuss the status of doubly and triply strange Ξ as well as Ω baryons, and the properties of all the known charmed and bottom states. The comparison of the two heavy sectors reveals many similarities as predicted by heavy-quark symmetries, together with differences in mass splittings easily understood by potential models. The multi-strange hyperons bridge the under-explored gap between the light- and the heavy-flavour baryons. How do the properties of a singly charmedQ-qqsystem change with decreasing mass of the heavy quark in the transition to a doubly strangeq-QQsystem with a heavier quark-quark system relative to one light quark? Significant progress towards understanding hyperon resonances is expected in coming years from the ongoing experiments at the high-energy collider facilities and planned experiments usingKbeams at Jefferson Laboratory and J-PARC.
Collapse
Affiliation(s)
- Volker Crede
- Department of Physics, Florida State University, Tallahassee, FL 32306, United States of America
| | - John Yelton
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| |
Collapse
|
2
|
He M, Rapp R. Bottom Hadrochemistry in High-Energy Hadronic Collisions. PHYSICAL REVIEW LETTERS 2023; 131:012301. [PMID: 37478427 DOI: 10.1103/physrevlett.131.012301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023]
Abstract
The hadrochemistry of bottom quarks (b) produced in hadronic collisions encodes valuable information on the mechanism of color neutralization in these reactions. Since the b-quark mass is much larger than the typical hadronic scale of ∼1 GeV, bb[over ¯] pair production is expected to be well separated from subsequent hadronization processes. A significantly larger fraction of b baryons has been observed in proton-proton (pp) and proton-antiproton (pp[over ¯]) reactions relative to e^{+}e^{-} collisions, challenging theoretical descriptions. We address this problem by employing a statistical hadronization approach with an augmented set of b-hadron states beyond currently measured ones, guided by the relativistic quark model and lattice-QCD computations. Assuming relative chemical equilibrium between different b-hadron yields, thermal densities are used as fragmentation weights of b quarks into various hadron species. With quark model estimates of the decay patterns of excited states, the fragmentation fractions of weakly decaying b hadrons are computed and found to agree with measurements in pp[over ¯] collisions at the Tevatron. By combining transverse-momentum (p_{T}) distributions of b quarks from perturbative QCD with thermal weights and independent fragmentation toward high p_{T}, a fair description of the p_{T}-dependent B[over ¯]_{s}^{0}/B^{-} and Λ_{b}^{0}/B^{-} ratios measured in pp collisions at the LHC is obtained. The observed enhancement of Λ_{b}^{0} production is attributed to the feeddown from thus far unobserved excited b baryons. Finally, we implement the hadrochemistry into a strongly coupled transport approach for b quarks in heavy-ion collisions, utilizing previously determined b-quark transport coefficients in the quark-gluon plasma, to highlight the modifications of hadrochemistry and collective behavior of b hadrons in Pb-Pb collisions at the LHC.
Collapse
Affiliation(s)
- Min He
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ralf Rapp
- Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-3366, USA
| |
Collapse
|
3
|
Chen HX, Chen W, Liu X, Liu YR, Zhu SL. An updated review of the new hadron states. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 86:026201. [PMID: 36395499 DOI: 10.1088/1361-6633/aca3b6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The past decades witnessed the golden era of hadron physics. Many excited open heavy flavor mesons and baryons have been observed since 2017. We shall provide an updated review of the recent experimental and theoretical progresses in this active field. Besides the conventional heavy hadrons, we shall also review the recently observed open heavy flavor tetraquark statesX(2900) andTcc+(3875)as well as the hidden heavy flavor multiquark statesX(6900),Pcs(4459)0,Zcs(3985)-,Zcs(4000)+, andZcs(4220)+. We will also cover the recent progresses on the glueballs and light hybrid mesons, which are the direct manifestations of the non-AbelianSU(3) gauge interaction of the Quantum Chromodynamics in the low-energy region.
Collapse
Affiliation(s)
- Hua-Xing Chen
- School of Physics, Southeast University, Nanjing 210094, People's Republic of China
| | - Wei Chen
- School of Physics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Xiang Liu
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
- Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, People's Republic of China
| | - Yan-Rui Liu
- School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Shi-Lin Zhu
- School of Physics and Center of High Energy Physics, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
4
|
Yang HM, Chen HX, Cui EL, Mao Q. Identifying the
Ξb(6100)
as the
P
-wave bottom baryon of
JP=3/2−. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.106.036018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
|
6
|
Menapara C, Rai AK. Spectroscopic Properties of Light Baryon. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202225803004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hadron Spectroscopy provides a realm to study the internal quark dynamics within the hadrons through phenomenological, theoretical as well as experimental approaches. In the present article, an attempt has been made to exploit the nucleon N resonances using a non-relativistic hypercentral Constituent Quark Model (hCQM). The properties are studied based on the linear nature of confining part of the potential. The 1S-5S, 1P-3P, 1D-2D and 1F states mostly with four star labelled resonances are explored again with the separation of charge states using different constituent quark masses. Also, Regge trajectories for some obtained states are plotted for examining the linear nature.
Collapse
|
7
|
|
8
|
Gottschall M, Afzal F, Anisovich AV, Bayadilov D, Beck R, Bichow M, Brinkmann KT, Crede V, Dieterle M, Dietz F, Dutz H, Eberhardt H, Elsner D, Ewald R, Fornet-Ponse K, Friedrich S, Frommberger F, Gridnev A, Grüner M, Gutz E, Hammann C, Hannappel J, Hartmann J, Hillert W, Hoffmeister P, Honisch C, Jude T, Kammer S, Kalinowsky H, Keshelashvili I, Klassen P, Klein F, Klempt E, Koop K, Krusche B, Kube M, Lang M, Lopatin I, Mahlberg P, Makonyi K, Metag V, Meyer W, Müller J, Müllers J, Nanova M, Nikonov V, Novotny R, Piontek D, Reicherz G, Rostomyan T, Sarantsev A, Schmidt C, Schmieden H, Seifen T, Sokhoyan V, Spieker K, Thiel A, Thoma U, Urban M, Pee HV, Walther D, Wendel C, Werthmüller D, Wiedner U, Wilson A, Winnebeck A, Witthauer L, Wunderlich Y. Measurement of the helicity asymmetry E for the reaction γ p → π 0 p : The CBELSA/TAPS Collaboration. THE EUROPEAN PHYSICAL JOURNAL. A, HADRONS AND NUCLEI 2021; 57:40. [PMID: 33551676 PMCID: PMC7840663 DOI: 10.1140/epja/s10050-020-00334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
A measurement of the double-polarization observable E for the reaction γ p → π 0 p is reported. The data were taken with the CBELSA/TAPS experiment at the ELSA facility in Bonn using the Bonn frozen-spin butanol (C4 H9 OH) target, which provided longitudinally-polarized protons. Circularly-polarized photons were produced via bremsstrahlung of longitudinally-polarized electrons. The data cover the photon energy range fromE γ = 600 to 2310 MeV and nearly the complete angular range. The results are compared to and have been included in recent partial wave analyses.
Collapse
Affiliation(s)
- M. Gottschall
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - F. Afzal
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - A. V. Anisovich
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
- Petersburg Nuclear Physics Institute, Gatchina, Russia
| | - D. Bayadilov
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
- Petersburg Nuclear Physics Institute, Gatchina, Russia
| | - R. Beck
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - M. Bichow
- Institut für Experimentalphysik I, Ruhr–Universität Bochum, Bochum, Germany
| | | | - V. Crede
- Department of Physics, Florida State University, Tallahassee, FL 32306 USA
| | - M. Dieterle
- Physikalisches Institut, Universität Basel, Basel, Switzerland
| | - F. Dietz
- Physikalisches Institut, Universität Gießen, Gießen, Germany
| | - H. Dutz
- Physikalisches Institut, Universität Bonn, Bonn, Germany
| | - H. Eberhardt
- Physikalisches Institut, Universität Bonn, Bonn, Germany
| | - D. Elsner
- Physikalisches Institut, Universität Bonn, Bonn, Germany
| | - R. Ewald
- Physikalisches Institut, Universität Bonn, Bonn, Germany
| | | | - St. Friedrich
- Physikalisches Institut, Universität Gießen, Gießen, Germany
| | - F. Frommberger
- Physikalisches Institut, Universität Bonn, Bonn, Germany
| | - A. Gridnev
- Petersburg Nuclear Physics Institute, Gatchina, Russia
| | - M. Grüner
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - E. Gutz
- Physikalisches Institut, Universität Gießen, Gießen, Germany
| | - Ch. Hammann
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - J. Hannappel
- Physikalisches Institut, Universität Bonn, Bonn, Germany
| | - J. Hartmann
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - W. Hillert
- Physikalisches Institut, Universität Bonn, Bonn, Germany
| | - Ph. Hoffmeister
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - Ch. Honisch
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - T. Jude
- Physikalisches Institut, Universität Bonn, Bonn, Germany
| | - S. Kammer
- Physikalisches Institut, Universität Bonn, Bonn, Germany
| | - H. Kalinowsky
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | | | - P. Klassen
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - F. Klein
- Physikalisches Institut, Universität Bonn, Bonn, Germany
| | - E. Klempt
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - K. Koop
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - B. Krusche
- Physikalisches Institut, Universität Basel, Basel, Switzerland
| | - M. Kube
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - M. Lang
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - I. Lopatin
- Petersburg Nuclear Physics Institute, Gatchina, Russia
| | - P. Mahlberg
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - K. Makonyi
- Physikalisches Institut, Universität Gießen, Gießen, Germany
| | - V. Metag
- Physikalisches Institut, Universität Gießen, Gießen, Germany
| | - W. Meyer
- Institut für Experimentalphysik I, Ruhr–Universität Bochum, Bochum, Germany
| | - J. Müller
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - J. Müllers
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - M. Nanova
- Physikalisches Institut, Universität Gießen, Gießen, Germany
| | - V. Nikonov
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
- Petersburg Nuclear Physics Institute, Gatchina, Russia
| | - R. Novotny
- Physikalisches Institut, Universität Gießen, Gießen, Germany
| | - D. Piontek
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - G. Reicherz
- Institut für Experimentalphysik I, Ruhr–Universität Bochum, Bochum, Germany
| | - T. Rostomyan
- Physikalisches Institut, Universität Basel, Basel, Switzerland
| | - A. Sarantsev
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
- Petersburg Nuclear Physics Institute, Gatchina, Russia
| | - Ch. Schmidt
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - H. Schmieden
- Physikalisches Institut, Universität Bonn, Bonn, Germany
| | - T. Seifen
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - V. Sokhoyan
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - K. Spieker
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - A. Thiel
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - U. Thoma
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - M. Urban
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - H. van Pee
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - D. Walther
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - Ch. Wendel
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - D. Werthmüller
- Physikalisches Institut, Universität Basel, Basel, Switzerland
| | - U. Wiedner
- Institut für Experimentalphysik I, Ruhr–Universität Bochum, Bochum, Germany
| | - A. Wilson
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
- Department of Physics, Florida State University, Tallahassee, FL 32306 USA
| | - A. Winnebeck
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| | - L. Witthauer
- Physikalisches Institut, Universität Basel, Basel, Switzerland
| | - Y. Wunderlich
- Helmholtz–Institut für Strahlen– und Kernphysik, Universität Bonn, Bonn, Germany
| |
Collapse
|
9
|
Bahtiyar H, Can K, Erkol G, Gubler P, Oka M, Takahashi T. Charmed baryon spectrum from lattice QCD near the physical point. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.102.054513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Abstract
I give an overview on experimental studies of the spectrum and the structure of the excited states of the nucleon and what we can learn about their in ternal structure. One focus is on the efforts to obtain a more complete picture of the light-quark baryon exci tation spectrum employing electromagnetic beams that will allow us to draw some conclusions on the symme tries underlying the spectrum. For the higher mass ex citations, the full employment of coupled channel ap proaches is essential when searching for new excited states in the large amounts of data already accumulated in different channels involving a variety of polarization observables. The other focus is on the study of transition form factors and helicity amplitudes and their de pendences on Q2, especially on some of the more promi nent resonances, especially Δ(1232)3/2+, N(1440)1/2+, and negative parity states N(1535)1/2-, and N(1675)5/2-.These were obtained in pion and eta electroproduction experi ments off proton targets and have already led to further insights in the active degrees-of-freedom as a function of the distance scale involved.
Collapse
|
11
|
Abstract
Hyperons provide new angles on two of the most challenging problems in contemporary physics: a coherent and quantitative description of the strong interaction, and the matter-antimatter asymmetry of the Universe. The production dynamics and the electromagnetic structure of strange hyperons, as well as hyperon spectroscopy, give insights into the strong interaction in the confinement domain. Furthermore, two-body decays of strange hyperons provide clean tests of CP symmetry, an essential piece to the matter-antimatter puzzle. The future experiment PANDA at FAIR offers unique possibilities to study different aspects of hyperons using antiproton beams. In particular, the hitherto almost unexplored multi-strange sector will be addressed. The expected large production cross sections of hyperons and the versatile, near 4πdetector design makes PANDA a veritable hyperon factory already from the first phase of operation. In these proceedings, the opportunities for hyperon physics with PANDA will be outlined. I will also address how we can benefit from the weak hyperon decays, that provide straight-forward access to the full spin density matrix.
Collapse
|
12
|
Rodríguez-Quintero J, Binosi D, Chen C, Lu Y, Roberts CD, Segovia S. Form factors for the Nucleon-to-Roper electromagnetic transition at large- Q2. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202024102009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report on a recent calculation of all Roper-related electromagnetic transtions form factors, cov ering the range of energies that next-to-come planned experiments are expected to map. Direct reliable cal culations were performed, within a Poincaré covariant approach of the three-body bound-state problem, up to Q2/m2N=6; approximated then by applying the Schlessinger point method and the results eventually extended up to Q2/m2N ≃12 via analytic continuation.
Collapse
|
13
|
Abstract
The Lagrangian that defines quantum chromodynamics (QCD), the strong interaction piece of the Standard Model, appears very simple. Nevertheless, it is responsible for an astonishing array of high-level phenomena with enormous apparent complexity, e.g., the existence, number and structure of atomic nuclei. The source of all these things can be traced to emergent mass, which might itself be QCD’s self-stabilising mechanism. A background to this perspective is provided, presenting, inter alia, a discussion of the gluon mass and QCD’s process-independent effective charge and highlighting an array of observable expressions of emergent mass, ranging from its manifestations in pion parton distributions to those in nucleon electromagnetic form factors.
Collapse
|
14
|
Abstract
We study the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 recently observed by LHCb using the method of Quantum Chromodynamics (QCD) sum rules within the framework of heavy quark effective theory. Our results suggest that they can be interpreted as D-wave bottom baryons of J P = 3 / 2 + and 5 / 2 + respectively, both of which contain two λ -mode excitations. We also investigate other possible assignments containing ρ -mode excitations. We extract all the parameters that are necessary to study their decay properties when using the method of light-cone sum rules. We predict masses of their strangeness partners to be m Ξ b ( 3 / 2 + ) = 6.26 − 0.14 + 0.11 GeV and m Ξ b ( 5 / 2 + ) = 6.26 − 0.14 + 0.11 GeV with the mass splitting Δ M = m Ξ b ( 5 / 2 + ) − m Ξ b ( 3 / 2 + ) = 4.5 − 1.5 + 1.9 MeV, and propose to search for them in future CMS, EIC, and LHCb experiments.
Collapse
|
15
|
|
16
|
|
17
|
Xie JJ, Geng LS, Guo FK. Role of N*(1535) in the Λ +c → K 0ηp decay and the possible фp state in the Λ +c → π 0фp decay. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202024102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nonleptonic weak decays of Λ+c → K0ηp and Λ+c → π0фp are investigated from the viewpoint of probing the N*(1535) resonance and the possible фp state. For the Λ+c → K0ηp decay, we study the invariant mass distribution of ηp with both the chiral unitary approach and an effective Lagrangian model. Within the chiral unitary approach, the N*(1535) resonance is dynamically generated from the final state interaction of mesons and baryons in coupled channels. While for the effective Lagrangian model, we take a Breit-Wigner formula for the N*(1535) resonance. We found that the behavior of the N*(1535) resonance in the Λ+c → K0N*(1535) → K0ηp decay within the two approaches is different. For the Λ+c → π0фp decay, we consider a triangle singularity mechanism, where the Λ+c decays into the K*Σ*(1385), the Σ*(1385) decays into the π0Σ/Λ, and then the K*Σ/Λ merge to produce the фp in the final state. This mechanism produces a peak structure around 2020 MeV. In addition, the possibility that there is a hidden-strange pentaquark-like state is also considered by taking into account the final state interactions of K*Λ, K*Σ, and фp. We conclude that it is difficult to search for the hidden-strange state in this decay. However, we do expect nontrivial behavior in the фp invariant mass distribution. The proposed Λ+c decay mechanism here can provide valuable information on the properties of these nuclear resonances and can in principle be tested by experiments such as BESIII, LHCb and Belle-II.
Collapse
|
18
|
Roy P, Park S, Crede V, Anisovich AV, Klempt E, Nikonov VA, Sarantsev AV, Wei NC, Huang F, Nakayama K, Adhikari KP, Adhikari S, Angelini G, Avakian H, Barion L, Battaglieri M, Bedlinskiy I, Biselli AS, Boiarinov S, Briscoe WJ, Brock J, Brooks WK, Burkert VD, Cao F, Carlin C, Carman DS, Celentano A, Chatagnon P, Chetry T, Ciullo G, Cole PL, Contalbrigo M, Cortes O, D'Angelo A, Dashyan N, De Vita R, De Sanctis E, Deur A, Diehl S, Djalali C, Dugger M, Dupre R, Duran B, Egiyan H, Ehrhart M, El Alaoui A, El Fassi L, Eugenio P, Fegan S, Filippi A, Fradi A, Gilfoyle GP, Girod FX, Golovatch E, Gothe RW, Griffioen KA, Guidal M, Guo L, Hafidi K, Hanretty C, Harrison N, Hattawy M, Hayward TB, Heddle D, Hicks K, Holtrop M, Ilieva Y, Ireland DG, Ishkhanov BS, Isupov EL, Jenkins D, Jo HS, Johnston S, Joosten S, Kabir ML, Keith CD, Keller D, Khachatryan G, Khachatryan M, Khanal A, Khandaker M, Kim A, Kim W, Klein FJ, Kubarovsky V, Kuleshov SV, Kunkel MC, Lanza L, Lenisa P, Livingston K, MacGregor IJD, Marchand D, McKinnon B, Meekins DG, Meyer CA, Mineeva T, Mokeev V, Montgomery RA, Movsisyan A, Munoz Camacho C, Nadel-Turonski P, Niccolai S, Niculescu G, Osipenko M, Ostrovidov AI, Paolone M, Pappalardo LL, Paremuzyan R, Pasyuk E, Payette D, Phelps W, Pierce J, Pogorelko O, Prok Y, Protopopescu D, Raue BA, Ripani M, Riser D, Ritchie BG, Rizzo A, Rosner G, Sabatié F, Salgado C, Schumacher RA, Seely ML, Sharabian YG, Shrestha U, Skorodumina I, Sokhan D, Soto O, Sparveris N, Strakovsky II, Strauch S, Taiuti M, Tan JA, Torayev B, Tyler N, Ungaro M, Voskanyan H, Voutier E, Walford NK, Wang R, Watts DP, Wei X, Wood MH, Zachariou N, Zhang J, Zhao ZW. First Measurements of the Double-Polarization Observables F, P, and H in ω Photoproduction off Transversely Polarized Protons in the N^{*} Resonance Region. PHYSICAL REVIEW LETTERS 2019; 122:162301. [PMID: 31075002 DOI: 10.1103/physrevlett.122.162301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/12/2019] [Indexed: 06/09/2023]
Abstract
First measurements of double-polarization observables in ω photoproduction off the proton are presented using transverse target polarization and data from the CEBAF Large Acceptance Spectrometer (CLAS) FROST experiment at Jefferson Lab. The beam-target asymmetry F has been measured using circularly polarized, tagged photons in the energy range 1200-2700 MeV, and the beam-target asymmetries H and P have been measured using linearly polarized, tagged photons in the energy range 1200-2000 MeV. These measurements significantly increase the database on polarization observables. The results are included in two partial-wave analyses and reveal significant contributions from several nucleon (N^{*}) resonances. In particular, contributions from new N^{*} resonances listed in the Review of Particle Properties are observed, which aid in reaching the goal of mapping out the nucleon resonance spectrum.
Collapse
Affiliation(s)
- P Roy
- Florida State University, Tallahassee, Florida 32306, USA
| | - S Park
- Florida State University, Tallahassee, Florida 32306, USA
| | - V Crede
- Florida State University, Tallahassee, Florida 32306, USA
| | - A V Anisovich
- Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 53115 Bonn, Germany
- NRC "Kurchatov Institute," PNPI, 188300, Gatchina, Russia
| | - E Klempt
- Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 53115 Bonn, Germany
| | - V A Nikonov
- Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 53115 Bonn, Germany
- NRC "Kurchatov Institute," PNPI, 188300, Gatchina, Russia
| | - A V Sarantsev
- Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 53115 Bonn, Germany
- NRC "Kurchatov Institute," PNPI, 188300, Gatchina, Russia
| | - N C Wei
- Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - F Huang
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - K Nakayama
- University of Georgia, Athens, Georgia 30602, USA
| | - K P Adhikari
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - S Adhikari
- Florida International University, Miami, Florida 33199, USA
| | - G Angelini
- The George Washington University, Washington, DC 20052, USA
| | - H Avakian
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - L Barion
- INFN, Sezione di Ferrara, 44100 Ferrara, Italy
| | | | - I Bedlinskiy
- Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia
| | - A S Biselli
- Fairfield University, Fairfield, Connecticut 06824, USA
| | - S Boiarinov
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - W J Briscoe
- The George Washington University, Washington, DC 20052, USA
| | - J Brock
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - W K Brooks
- Universidad Técnica Federico Santa María, Casilla 110-V Valparaíso, Chile
| | - V D Burkert
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - F Cao
- University of Connecticut, Storrs, Connecticut 06269, USA
| | - C Carlin
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - D S Carman
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - A Celentano
- INFN, Sezione di Genova, 16146 Genova, Italy
| | - P Chatagnon
- Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France
| | - T Chetry
- Ohio University, Athens, Ohio 45701, USA
| | - G Ciullo
- Università di Ferrara, 44121 Ferrara, Italy
- INFN, Sezione di Ferrara, 44100 Ferrara, Italy
| | - P L Cole
- Idaho State University, Pocatello, Idaho 83209, USA
- Lamar University, 4400 MLK Blvd, P.O. Box 10009, Beaumont, Texas 77710, USA
| | | | - O Cortes
- The George Washington University, Washington, DC 20052, USA
| | - A D'Angelo
- INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy
- Università di Roma Tor Vergata, 00133 Rome, Italy
| | - N Dashyan
- Yerevan Physics Institute, 375036 Yerevan, Armenia
| | - R De Vita
- INFN, Sezione di Genova, 16146 Genova, Italy
| | - E De Sanctis
- INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
| | - A Deur
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - S Diehl
- University of Connecticut, Storrs, Connecticut 06269, USA
| | - C Djalali
- Ohio University, Athens, Ohio 45701, USA
- University of South Carolina, Columbia, South Carolina 29208, USA
| | - M Dugger
- Arizona State University, Tempe, Arizona 85287-1504, USA
| | - R Dupre
- Argonne National Laboratory, Argonne, Illinois 60439, USA
- Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France
| | - B Duran
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - H Egiyan
- University of New Hampshire, Durham, New Hampshire 03824-3568, USA
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - M Ehrhart
- Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France
| | - A El Alaoui
- Universidad Técnica Federico Santa María, Casilla 110-V Valparaíso, Chile
| | - L El Fassi
- Mississippi State University, Mississippi State, Mississippi 39762-5167, USA
| | - P Eugenio
- Florida State University, Tallahassee, Florida 32306, USA
| | - S Fegan
- University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - A Filippi
- INFN, Sezione di Torino, 10125 Torino, Italy
| | - A Fradi
- Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France
| | - G P Gilfoyle
- University of Richmond, Richmond, Virginia 23173, USA
| | - F X Girod
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - E Golovatch
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - R W Gothe
- University of South Carolina, Columbia, South Carolina 29208, USA
| | - K A Griffioen
- College of William and Mary, Williamsburg, Virginia 23187-8795, USA
| | - M Guidal
- Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France
| | - L Guo
- Florida International University, Miami, Florida 33199, USA
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - K Hafidi
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - C Hanretty
- Florida State University, Tallahassee, Florida 32306, USA
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - N Harrison
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - M Hattawy
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - T B Hayward
- College of William and Mary, Williamsburg, Virginia 23187-8795, USA
| | - D Heddle
- Christopher Newport University, Newport News, Virginia 23606, USA
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - K Hicks
- Ohio University, Athens, Ohio 45701, USA
| | - M Holtrop
- University of New Hampshire, Durham, New Hampshire 03824-3568, USA
| | - Y Ilieva
- The George Washington University, Washington, DC 20052, USA
- University of South Carolina, Columbia, South Carolina 29208, USA
| | - D G Ireland
- University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - B S Ishkhanov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - E L Isupov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - D Jenkins
- Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | - H S Jo
- Kyungpook National University, Daegu 41566, Republic of Korea
| | - S Johnston
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - S Joosten
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - M L Kabir
- Mississippi State University, Mississippi State, Mississippi 39762-5167, USA
| | - C D Keith
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - D Keller
- University of Virginia, Charlottesville, Virginia 22901, USA
| | | | - M Khachatryan
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - A Khanal
- Florida International University, Miami, Florida 33199, USA
| | - M Khandaker
- Norfolk State University, Norfolk, Virginia 23504, USA
| | - A Kim
- University of Connecticut, Storrs, Connecticut 06269, USA
| | - W Kim
- Kyungpook National University, Daegu 41566, Republic of Korea
| | - F J Klein
- Catholic University of America, Washington, D.C. 20064, USA
| | - V Kubarovsky
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - S V Kuleshov
- Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia
- Universidad Técnica Federico Santa María, Casilla 110-V Valparaíso, Chile
| | - M C Kunkel
- Institut für Kernphysik, 52425 Jülich, Germany
| | - L Lanza
- INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy
| | - P Lenisa
- INFN, Sezione di Ferrara, 44100 Ferrara, Italy
| | - K Livingston
- University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - D Marchand
- Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France
| | - B McKinnon
- University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - D G Meekins
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - C A Meyer
- Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - T Mineeva
- Universidad Técnica Federico Santa María, Casilla 110-V Valparaíso, Chile
| | - V Mokeev
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | | | - A Movsisyan
- INFN, Sezione di Ferrara, 44100 Ferrara, Italy
| | - C Munoz Camacho
- Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France
| | - P Nadel-Turonski
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - S Niccolai
- Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France
| | - G Niculescu
- James Madison University, Harrisonburg, Virginia 22807, USA
| | - M Osipenko
- INFN, Sezione di Genova, 16146 Genova, Italy
| | - A I Ostrovidov
- Florida State University, Tallahassee, Florida 32306, USA
| | - M Paolone
- University of South Carolina, Columbia, South Carolina 29208, USA
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | - R Paremuzyan
- University of New Hampshire, Durham, New Hampshire 03824-3568, USA
- Yerevan Physics Institute, 375036 Yerevan, Armenia
| | - E Pasyuk
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - D Payette
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - W Phelps
- The George Washington University, Washington, DC 20052, USA
| | - J Pierce
- University of Virginia, Charlottesville, Virginia 22901, USA
| | - O Pogorelko
- Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia
| | - Y Prok
- Christopher Newport University, Newport News, Virginia 23606, USA
- Old Dominion University, Norfolk, Virginia 23529, USA
- University of Virginia, Charlottesville, Virginia 22901, USA
| | | | - B A Raue
- Florida International University, Miami, Florida 33199, USA
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - M Ripani
- INFN, Sezione di Genova, 16146 Genova, Italy
| | - D Riser
- University of Connecticut, Storrs, Connecticut 06269, USA
| | - B G Ritchie
- Arizona State University, Tempe, Arizona 85287-1504, USA
| | - A Rizzo
- INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy
- Università di Roma Tor Vergata, 00133 Rome, Italy
| | - G Rosner
- University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - F Sabatié
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - C Salgado
- Norfolk State University, Norfolk, Virginia 23504, USA
| | - R A Schumacher
- Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - M L Seely
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - Y G Sharabian
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - U Shrestha
- Ohio University, Athens, Ohio 45701, USA
| | - Iu Skorodumina
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
- University of South Carolina, Columbia, South Carolina 29208, USA
| | - D Sokhan
- University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - O Soto
- Universidad Técnica Federico Santa María, Casilla 110-V Valparaíso, Chile
| | - N Sparveris
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - I I Strakovsky
- The George Washington University, Washington, DC 20052, USA
| | - S Strauch
- University of South Carolina, Columbia, South Carolina 29208, USA
| | - M Taiuti
- Università di Genova, 16146 Genova, Italy
| | - J A Tan
- Kyungpook National University, Daegu 41566, Republic of Korea
| | - B Torayev
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - N Tyler
- University of South Carolina, Columbia, South Carolina 29208, USA
| | - M Ungaro
- University of Connecticut, Storrs, Connecticut 06269, USA
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - H Voskanyan
- Yerevan Physics Institute, 375036 Yerevan, Armenia
| | - E Voutier
- Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France
| | - N K Walford
- Catholic University of America, Washington, D.C. 20064, USA
| | - R Wang
- Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France
| | - D P Watts
- University of York, York YO10, United Kingdom
| | - X Wei
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - M H Wood
- Canisius College, Buffalo, New York 14208, USA
| | - N Zachariou
- The George Washington University, Washington, DC 20052, USA
- University of York, York YO10, United Kingdom
| | - J Zhang
- Old Dominion University, Norfolk, Virginia 23529, USA
- University of Virginia, Charlottesville, Virginia 22901, USA
| | - Z W Zhao
- Duke University, Durham, North Carolina 27708-0305, USA
- University of South Carolina, Columbia, South Carolina 29208, USA
- University of Virginia, Charlottesville, Virginia 22901, USA
| |
Collapse
|
19
|
Yang P, Guo JJ, Zhang A. Identification of the newly observed
Σb(6097)±
baryons from their strong decays. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.99.034018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Mai M, Döring M. Finite-Volume Spectrum of π^{+}π^{+} and π^{+}π^{+}π^{+} Systems. PHYSICAL REVIEW LETTERS 2019; 122:062503. [PMID: 30822051 DOI: 10.1103/physrevlett.122.062503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/14/2019] [Indexed: 06/09/2023]
Abstract
The ab initio understanding of hadronic three-body systems above threshold, such as exotic resonances or the baryon spectrum, requires the mapping of the finite-volume eigenvalue spectrum, produced in lattice QCD calculations, to the infinite volume. We present the first application of such a formalism to a physical system in form of three interacting positively charged pions. The results for the ground state energies agree with the available lattice QCD results by the NPLQCD collaboration at unphysical pion masses. Extrapolations to physical pion masses are performed using input from effective field theory. The excited energy spectrum is predicted. This demonstrates the feasibility to determine three-body amplitudes above threshold from lattice QCD, including resonance properties of axial mesons, exotics, and excited baryons.
Collapse
Affiliation(s)
- M Mai
- Institute for Nuclear Studies and Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - M Döring
- Institute for Nuclear Studies and Department of Physics, The George Washington University, Washington, DC 20052, USA
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| |
Collapse
|
21
|
Willemyns C, Scoccola N. Towers of baryons of the
N=2
quark model band in the large
Nc
limit. Int J Clin Exp Med 2018. [DOI: 10.1103/physrevd.98.034019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
|
23
|
Abstract
We present results from our recent lattice QCD study of Nπ scattering in the positive-parity nucleon channel, where the puzzling Roper resonance N*(1440) resides in experiment. Using a variety of hadron operators, that include qqq-like, Nπ in p-wave and Nσ in s-wave, we systematically extract the excited lattice spectrum in the nucleon channel up to 1.65 GeV. Our lattice results indicate that Nπ scattering in the elastic approximation alone does not describe a low-lying Roper. Coupled channel effects between Nπ and Nππ seem to be crucial to render a low-lying Roper in experiment, reinforcing the notion that this state could be a dynamically generated resonance. After giving a brief motivation for studying the Roper channel and the relevant technical details to this study, we will discuss the results and the conclusions based on our lattice investigation and in comparison with other lattice calculations.
Collapse
|
24
|
Strauch S. Nucleon Spectroscopy with CLAS. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201817203004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Meson photoproduction is an important tool in the study of nucleon resonances. The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of polarization observables. The N* program at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) includes experimental studies with linearly- and circularly-polarized tagged-photon beams, longitudinally- and transversely-polarized nucleon targets, and recoil polarizations. Selected results from these experimental studies will be presented.
Collapse
|
25
|
Ye DD, Zhao Z, Zhang A. Study of
P
-wave excitations of observed charmed strange baryons. Int J Clin Exp Med 2017. [DOI: 10.1103/physrevd.96.114009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Chen HX, Chen W, Liu X, Liu YR, Zhu SL. A review of the open charm and open bottom systems. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:076201. [PMID: 28252448 DOI: 10.1088/1361-6633/aa6420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Since the discovery of the first charmed meson in 1976, many open-charm and open-bottom hadrons were observed. In 2003 two narrow charm-strange states [Formula: see text] and D s1(2460) were discovered by the BaBar and CLEO Collaborations, respectively. After that, more excited heavy hadrons were reported. In this work, we review the experimental and theoretical progress in this field.
Collapse
Affiliation(s)
- Hua-Xing Chen
- School of Physics and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Willemyns C, Schat C. Towers of positive parity excited baryons and their mixing in the large
Nc
limit. Int J Clin Exp Med 2017. [DOI: 10.1103/physrevd.95.094007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
|
29
|
Schönning K. Strong Interaction Studies with PANDA at FAIR. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201612501006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Przygoda W. Production and decay of baryonic resonances in pion induced reactions. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201613001021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Segovia J, El-Bennich B, Rojas E, Cloët IC, Roberts CD, Xu SS, Zong HS. Completing the Picture of the Roper Resonance. PHYSICAL REVIEW LETTERS 2015; 115:171801. [PMID: 26551101 DOI: 10.1103/physrevlett.115.171801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 06/05/2023]
Abstract
We employ a continuum approach to the three valence-quark bound-state problem in relativistic quantum field theory to predict a range of properties of the proton's radial excitation and thereby unify them with those of numerous other hadrons. Our analysis indicates that the nucleon's first radial excitation is the Roper resonance. It consists of a core of three dressed quarks, which expresses its valence-quark content and whose charge radius is 80% larger than the proton analogue. That core is complemented by a meson cloud, which reduces the observed Roper mass by roughly 20%. The meson cloud materially affects long-wavelength characteristics of the Roper electroproduction amplitudes but the quark core is revealed to probes with Q(2)≳3m(N)(2).
Collapse
Affiliation(s)
- Jorge Segovia
- Grupo de Física Nuclear and Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, E-37008 Salamanca, Spain
| | - Bruno El-Bennich
- Laboratório de Física Teórica e Computacional, Universidade Cruzeiro do Sul, 01506-000 São Paulo, SP, Brazil
- Instituto de Física Teórica, Universidade Estadual Paulista, 01140-070 São Paulo, SP, Brazil
| | - Eduardo Rojas
- Laboratório de Física Teórica e Computacional, Universidade Cruzeiro do Sul, 01506-000 São Paulo, SP, Brazil
- Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Ian C Cloët
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Craig D Roberts
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Shu-Sheng Xu
- Department of Physics, Nanjing University, Nanjing 210093, China
| | - Hong-Shi Zong
- Department of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
32
|
Shi M, Danilkin I, Fernández-Ramírez C, Mathieu V, Pennington M, Schott D, Szczepaniak A. Double-Regge exchange limit for theγp→K+K−preaction. Int J Clin Exp Med 2015. [DOI: 10.1103/physrevd.91.034007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Moriya K. Production of Resonances Using CLAS at Jefferson Lab. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20159700021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Brambilla N, Eidelman S, Foka P, Gardner S, Kronfeld AS, Alford MG, Alkofer R, Butenschoen M, Cohen TD, Erdmenger J, Fabbietti L, Faber M, Goity JL, Ketzer B, Lin HW, Llanes-Estrada FJ, Meyer HB, Pakhlov P, Pallante E, Polikarpov MI, Sazdjian H, Schmitt A, Snow WM, Vairo A, Vogt R, Vuorinen A, Wittig H, Arnold P, Christakoglou P, Di Nezza P, Fodor Z, Garcia i Tormo X, Höllwieser R, Janik MA, Kalweit A, Keane D, Kiritsis E, Mischke A, Mizuk R, Odyniec G, Papadodimas K, Pich A, Pittau R, Qiu JW, Ricciardi G, Salgado CA, Schwenzer K, Stefanis NG, von Hippel GM, Zakharov VI. QCD and strongly coupled gauge theories: challenges and perspectives. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS 2014; 74:2981. [PMID: 25972760 PMCID: PMC4413533 DOI: 10.1140/epjc/s10052-014-2981-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/05/2014] [Indexed: 05/17/2023]
Abstract
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.
Collapse
Affiliation(s)
- N. Brambilla
- Physik Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - S. Eidelman
- Budker Institute of Nuclear Physics, SB RAS, Novosibirsk , 630090 Russia
- Novosibirsk State University, Novosibirsk , 630090 Russia
| | - P. Foka
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - S. Gardner
- Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 USA
| | - A. S. Kronfeld
- Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510-5011 USA
| | - M. G. Alford
- Department of Physics, Washington University, St Louis, MO 63130 USA
| | | | - M. Butenschoen
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria
| | - T. D. Cohen
- Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, MD 20742-4111 USA
| | - J. Erdmenger
- Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich, Germany
| | - L. Fabbietti
- Excellence Cluster “Origin and Structure of the Universe”, Technische Universität München, 85748 Garching, Germany
| | - M. Faber
- Atominstitut, Technische Universität Wien, 1040 Vienna, Austria
| | - J. L. Goity
- Hampton University, Hampton, VA 23668 USA
- Jefferson Laboratory, Newport News, VA 23606 USA
| | - B. Ketzer
- Physik Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
- Present Address: Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 53115 Bonn, Germany
| | - H. W. Lin
- Department of Physics, University of Washington, Seattle, WA 98195-1560 USA
| | - F. J. Llanes-Estrada
- Department Fisica Teorica I, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - H. B. Meyer
- PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut Mainz, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - P. Pakhlov
- Institute of Theoretical and Experimental Physics, Moscow, 117218 Russia
- Moscow Institute for Physics and Technology, Dolgoprudny, 141700 Russia
| | - E. Pallante
- Centre for Theoretical Physics, University of Groningen, 9747 AG Groningen, The Netherlands
| | - M. I. Polikarpov
- Institute of Theoretical and Experimental Physics, Moscow, 117218 Russia
- Moscow Institute for Physics and Technology, Dolgoprudny, 141700 Russia
| | - H. Sazdjian
- Institut de Physique Nucléaire CNRS/IN2P3, Université Paris-Sud, 91405 Orsay, France
| | - A. Schmitt
- Institut für Theoretische Physik, Technische Universität Wien, 1040 Vienna, Austria
| | - W. M. Snow
- Center for Exploration of Energy and Matter and Department of Physics, Indiana University, Bloomington, IN 47408 USA
| | - A. Vairo
- Physik Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - R. Vogt
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94551 USA
- Physics Department, University of California, Davis, CA 95616 USA
| | - A. Vuorinen
- Department of Physics and Helsinki Institute of Physics, University of Helsinki, Helsinki, P.O. Box 64, 00014 Finland
| | - H. Wittig
- PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut Mainz, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - P. Arnold
- Department of Physics, University of Virginia, 382 McCormick Rd., P.O. Box 400714, Charlottesville, VA 22904-4714 USA
| | | | - P. Di Nezza
- Istituto Nazionale di Fisica Nucleare (INFN), Via E. Fermi 40, 00044 Frascati, Italy
| | - Z. Fodor
- Wuppertal University, 42119 Wuppertal, Germany
- Eötvös University, 1117 Budapest, Hungary
- Forschungszentrum Jülich, 52425 Jülich, Germany
| | - X. Garcia i Tormo
- Albert Einstein Center for Fundamental Physics, Institut für Theoretische Physik, Universität Bern, Sidlerstraße 5, 3012 Bern, Switzerland
| | - R. Höllwieser
- Atominstitut, Technische Universität Wien, 1040 Vienna, Austria
| | - M. A. Janik
- Faculty of Physics, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - A. Kalweit
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - D. Keane
- Department of Physics, Kent State University, Kent, OH 44242 USA
| | - E. Kiritsis
- Crete Center for Theoretical Physics, Department of Physics, University of Crete, 71003 Heraklion, Greece
- Laboratoire APC, Université Paris Diderot, Paris Cedex 13, Sorbonne Paris-Cité , 75205 France
- Theory Group, Physics Department, CERN, 1211 Geneva 23, Switzerland
| | - A. Mischke
- Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - R. Mizuk
- Institute of Theoretical and Experimental Physics, Moscow, 117218 Russia
- Moscow Physical Engineering Institute, Moscow, 115409 Russia
| | - G. Odyniec
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - K. Papadodimas
- Centre for Theoretical Physics, University of Groningen, 9747 AG Groningen, The Netherlands
| | - A. Pich
- IFIC, Universitat de València, CSIC, Apt. Correus 22085, 46071 València, Spain
| | - R. Pittau
- Departamento de Fisica Teorica y del Cosmos and CAFPE, Campus Fuentenueva s. n., Universidad de Granada, 18071 Granada, Spain
| | - J.-W. Qiu
- Physics Department, Brookhaven National Laboratory, Upton, NY 11973 USA
- C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 USA
| | - G. Ricciardi
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
- INFN, Sezione di Napoli, 80126 Napoli, Italy
| | - C. A. Salgado
- Departamento de Fisica de Particulas y IGFAE, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - K. Schwenzer
- Department of Physics, Washington University, St Louis, MO 63130 USA
| | - N. G. Stefanis
- Institut für Theoretische Physik II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - G. M. von Hippel
- PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut Mainz, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - V. I. Zakharov
- Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich, Germany
- Institute of Theoretical and Experimental Physics, Moscow, 117218 Russia
- Moscow Institute for Physics and Technology, Dolgoprudny, 141700 Russia
- School of Biomedicine, Far Eastern Federal University, Sukhanova str 8, Vladivostok, 690950 Russia
| |
Collapse
|
35
|
Akondi CS, Annand JRM, Arends HJ, Beck R, Bernstein A, Borisov N, Braghieri A, Briscoe WJ, Cherepnya S, Collicott C, Costanza S, Downie EJ, Dieterle M, Fix A, Fil'kov LV, Garni S, Glazier DI, Gradl W, Gurevich G, Hall Barrientos P, Hamilton D, Hornidge D, Howdle D, Huber GM, Kashevarov VL, Keshelashvili I, Kondratiev R, Korolija M, Krusche B, Lazarev A, Lisin V, Livingston K, MacGregor IJD, Mancel J, Manley DM, Martel P, McNicoll EF, Meyer W, Middleton D, Miskimen R, Mushkarenkov A, Nefkens BMK, Neganov A, Nikolaev A, Oberle M, Ostrick M, Ortega H, Ott P, Otte PB, Oussena B, Pedroni P, Polonski A, Polyanski VV, Prakhov S, Reicherz G, Rostomyan T, Sarty A, Schumann S, Steffen O, Strakovsky II, Strub T, Supek I, Tiator L, Thomas A, Unverzagt M, Usov YA, Watts DP, Werthmüller D, Witthauer L, Wolfes M. Measurement of the transverse target and beam-target asymmetries in η meson photoproduction at MAMI. PHYSICAL REVIEW LETTERS 2014; 113:102001. [PMID: 25238349 DOI: 10.1103/physrevlett.113.102001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Indexed: 06/03/2023]
Abstract
We present new data for the transverse target asymmetry T and the very first data for the beam-target asymmetry F in the γ[over →]p[over →]→ηp reaction up to a center-of-mass energy of W=1.9 GeV. The data were obtained with the Crystal-Ball/TAPS detector setup at the Glasgow tagged photon facility of the Mainz Microtron MAMI. All existing model predictions fail to reproduce the new data indicating a significant impact on our understanding of the underlying dynamics of η meson photoproduction. The peculiar nodal structure observed in existing T data close to threshold is not confirmed.
Collapse
Affiliation(s)
- C S Akondi
- Kent State University, Kent, Ohio 44242-0001, USA
| | - J R M Annand
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - H J Arends
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - R Beck
- Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, D-53115 Bonn, Germany
| | - A Bernstein
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - N Borisov
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | | | - W J Briscoe
- The George Washington University, Washington, DC 20052-0001, USA
| | - S Cherepnya
- Lebedev Physical Institute, 119991 Moscow, Russia
| | - C Collicott
- Department of Astronomy and Physics, Saint Marys University, Halifax, Nova Scotia B3H 3C3, Canada
| | - S Costanza
- INFN Sezione di Pavia, I-27100 Pavia, Italy
| | - E J Downie
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany and The George Washington University, Washington, DC 20052-0001, USA
| | - M Dieterle
- Departement für Physik, University of Basel, CH-4056 Basel, Switzerland
| | - A Fix
- Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634034 Tomsk, Russia
| | - L V Fil'kov
- Lebedev Physical Institute, 119991 Moscow, Russia
| | - S Garni
- Departement für Physik, University of Basel, CH-4056 Basel, Switzerland
| | - D I Glazier
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom and SUPA School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| | - W Gradl
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - G Gurevich
- Institute for Nuclear Research, 125047 Moscow, Russia
| | - P Hall Barrientos
- SUPA School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| | - D Hamilton
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - D Hornidge
- Mount Allison University, Sackville, New Brunswick E4L 1E6, Canada
| | - D Howdle
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - G M Huber
- University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - V L Kashevarov
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany and Lebedev Physical Institute, 119991 Moscow, Russia
| | - I Keshelashvili
- Departement für Physik, University of Basel, CH-4056 Basel, Switzerland
| | - R Kondratiev
- Institute for Nuclear Research, 125047 Moscow, Russia
| | - M Korolija
- Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia
| | - B Krusche
- Departement für Physik, University of Basel, CH-4056 Basel, Switzerland
| | - A Lazarev
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - V Lisin
- Institute for Nuclear Research, 125047 Moscow, Russia
| | - K Livingston
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - I J D MacGregor
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - J Mancel
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - D M Manley
- Kent State University, Kent, Ohio 44242-0001, USA
| | - P Martel
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - E F McNicoll
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - W Meyer
- Institut für Experimentalphysik, Ruhr-Universität, D-44780 Bochum, Germany
| | - D Middleton
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany and Mount Allison University, Sackville, New Brunswick E4L 1E6, Canada
| | - R Miskimen
- University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - A Mushkarenkov
- INFN Sezione di Pavia, I-27100 Pavia, Italy and University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - B M K Nefkens
- University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - A Neganov
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - A Nikolaev
- Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, D-53115 Bonn, Germany
| | - M Oberle
- Departement für Physik, University of Basel, CH-4056 Basel, Switzerland
| | - M Ostrick
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - H Ortega
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - P Ott
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - P B Otte
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - B Oussena
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany and The George Washington University, Washington, DC 20052-0001, USA
| | - P Pedroni
- INFN Sezione di Pavia, I-27100 Pavia, Italy
| | - A Polonski
- Institute for Nuclear Research, 125047 Moscow, Russia
| | | | - S Prakhov
- University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - G Reicherz
- Institut für Experimentalphysik, Ruhr-Universität, D-44780 Bochum, Germany
| | - T Rostomyan
- Departement für Physik, University of Basel, CH-4056 Basel, Switzerland
| | - A Sarty
- Department of Astronomy and Physics, Saint Marys University, Halifax, Nova Scotia B3H 3C3, Canada
| | - S Schumann
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - O Steffen
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - I I Strakovsky
- The George Washington University, Washington, DC 20052-0001, USA
| | - Th Strub
- Departement für Physik, University of Basel, CH-4056 Basel, Switzerland
| | - I Supek
- Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia
| | - L Tiator
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - A Thomas
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - M Unverzagt
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Yu A Usov
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - D P Watts
- SUPA School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| | - D Werthmüller
- Departement für Physik, University of Basel, CH-4056 Basel, Switzerland
| | - L Witthauer
- Departement für Physik, University of Basel, CH-4056 Basel, Switzerland
| | - M Wolfes
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| |
Collapse
|