1
|
Carollo F, Lesanovsky I. Applicability of Mean-Field Theory for Time-Dependent Open Quantum Systems with Infinite-Range Interactions. PHYSICAL REVIEW LETTERS 2024; 133:150401. [PMID: 39454166 DOI: 10.1103/physrevlett.133.150401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/09/2024] [Indexed: 10/27/2024]
Abstract
Understanding quantum many-body systems with long-range or infinite-range interactions is of relevance across a broad set of physical disciplines, including quantum optics, nuclear magnetic resonance, and nuclear physics. From a theoretical viewpoint, these systems are appealing since they can be efficiently studied with numerics, and in the thermodynamic limit are expected to be governed by mean-field equations of motion. Over the past years the capabilities to experimentally create long-range interacting systems have dramatically improved permitting their control in space and time. This allows us to induce and explore a plethora of nonequilibrium dynamical phases, including time crystals and even chaotic regimes. However, establishing the emergence of these phases from numerical simulations turns out to be surprisingly challenging. This difficulty led to the assertion that mean-field theory may not be applicable to time-dependent infinite-range interacting systems. Here, we rigorously prove that mean-field theory in fact exactly captures their dynamics, in the thermodynamic limit. We further provide bounds for finite-size effects and their dependence on the evolution time.
Collapse
|
2
|
McAleese H, Paternostro M. Critical Assessment of Information Back-Flow in Measurement-Free Teleportation. ENTROPY (BASEL, SWITZERLAND) 2024; 26:780. [PMID: 39330113 PMCID: PMC11431569 DOI: 10.3390/e26090780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
We assess a scheme for measurement-free quantum teleportation from the perspective of the resources underpinning its performance. In particular, we focus on claims recently made about the crucial role played by the degree of non-Markovianity of the dynamics of the information carrier whose state we aim to teleport. We prove that any link between the efficiency of teleportation and the back-flow of information depends fundamentally on the way the various operations entailed by the measurement-free teleportation protocol are implemented while-in general-no claim of causal link can be made. Our result reinforces the need for the explicit assessment of the underlying physical platform when assessing the performance and resources for a given quantum protocol and the need for a rigorous quantum resource theory of non-Markovianity.
Collapse
Affiliation(s)
- Hannah McAleese
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Mauro Paternostro
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK
- Department of Physics and Chemistry-Emilio Segrè, University of Palermo, Via Archirafi 36, I-90123 Palermo, Italy
| |
Collapse
|
3
|
Onishchenko O, Guarnieri G, Rosillo-Rodes P, Pijn D, Hilder J, Poschinger UG, Perarnau-Llobet M, Eisert J, Schmidt-Kaler F. Probing coherent quantum thermodynamics using a trapped ion. Nat Commun 2024; 15:6974. [PMID: 39143048 PMCID: PMC11324868 DOI: 10.1038/s41467-024-51263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Quantum thermodynamics is aimed at grasping thermodynamic laws as they apply to thermal machines operating in the deep quantum regime, where coherence and entanglement are expected to matter. Despite substantial progress, however, it has remained difficult to develop thermal machines in which such quantum effects are observed to be of pivotal importance. In this work, we demonstrate the possibility to experimentally measure and benchmark a genuine quantum correction, induced by quantum friction, to the classical work fluctuation-dissipation relation. This is achieved by combining laser-induced coherent Hamiltonian rotations and energy measurements on a trapped ion. Our results demonstrate that recent developments in stochastic quantum thermodynamics can be used to benchmark and unambiguously distinguish genuine quantum coherent signatures generated along driving protocols, even in presence of experimental SPAM errors and, most importantly, beyond the regimes for which theoretical predictions are available (e.g., in slow driving).
Collapse
Affiliation(s)
- O Onishchenko
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - G Guarnieri
- Department of Physics and INFN - Sezione di Pavia, University of Pavia, Via Bassi 6, 27100, Pavia, Italy.
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195, Berlin, Germany.
| | - P Rosillo-Rodes
- Institute for Cross-Disciplinary Physics and Complex Systems, Campus Universitat de les Illes Balears, E-07122, Palma, Spain
| | - D Pijn
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - J Hilder
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - U G Poschinger
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - M Perarnau-Llobet
- Department of Applied Physics, University of Geneva, 1211, Geneva, Switzerland
| | - J Eisert
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195, Berlin, Germany
| | - F Schmidt-Kaler
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| |
Collapse
|
4
|
Hosseiny SM, Seyed-Yazdi J, Norouzi M. Witness of non-Markovian dynamics based on Bhattacharyya quantum distance. Sci Rep 2024; 14:18261. [PMID: 39107350 PMCID: PMC11303554 DOI: 10.1038/s41598-024-69081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Non-Markovian effects due to quantum memory in the dynamics of open systems typically correspond to information backflows from the surrounding environment to the system. We propose a witness to quantify the non-Markovianity of quantum evolutions using the Bhattacharyya distance (BD), a specific quantum statistical distance. This witness has the advantage of not requiring the calculation of the evolved density matrix and only computes through the initial and final states of the system, therefore leading to the improvement of quantum metrology. It means that we calculate the quantum angle between two states to detect non-Markovian effects. This proposal is investigated by considering several instances of open quantum systems, such as two and three-level atoms interacting in single and two-mode fields, respectively, and two effective two-level atoms interacting locally with two independent environments. We demonstrate that the suggested BD-based non-Markovianity witness identifies memory effects, consistent with well-established witnesses based on Bures distance, quantum Fisher information, and Hilbert-Schmidt speed, showing sensitivity to information backflows.
Collapse
Affiliation(s)
- Seyed Mohammad Hosseiny
- Physics Department, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Jamileh Seyed-Yazdi
- Physics Department, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Milad Norouzi
- Physics Department, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
5
|
Wu W, An JH. Generalized Quantum Fluctuation Theorem for Energy Exchange. PHYSICAL REVIEW LETTERS 2024; 133:050401. [PMID: 39159107 DOI: 10.1103/physrevlett.133.050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024]
Abstract
The nonequilibrium fluctuation relation is a cornerstone of quantum thermodynamics. It is widely believed that the system-bath heat exchange obeys the famous Jarzynski-Wójcik fluctuation theorem. However, this theorem is established in the Born-Markovian approximation under the weak-coupling condition. Via studying the energy exchange between a harmonic oscillator and its coupled bath in the non-Markovian dynamics, we establish a generalized quantum fluctuation theorem for energy exchange being valid for arbitrary coupling strength. The Jarzynski-Wójcik fluctuation theorem is recovered in the weak-coupling limit. We also find the average energy exchange exhibits rich nonequilibrium characteristics when different numbers of system-bath bound states are formed, which suggests a useful way to control the quantum heat. Deepening our understanding of the fluctuation relation in quantum thermodynamics, our result lays the foundation to design high-efficiency quantum heat engines.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Jun-Hong An
- Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Cai X, Feng Y, Ren J, Peng Y, Zheng Y. Quantum decoherence dynamics in stochastically fluctuating environments. J Chem Phys 2024; 161:044106. [PMID: 39041876 DOI: 10.1063/5.0217863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
We theoretically study the decoherence of a two-level quantum system coupled to noisy environments exhibiting linear and quadratic fluctuations within the framework of a stochastic Liouville equation. It is shown that the intrinsic energy levels of the quantum system renormalize under either the linear or quadratic influence of the environmental noise. In the case of quadratic dependence, the renormalization of the energy levels of the system emerges even if the environmental noise exhibits stationary statistical properties. This is in contrast to the case under linear influence, where the intrinsic energy levels of the system renormalize only if the environmental noise displays nonstationary statistics. We derive the analytical expressions of the decoherence function in the cases where the fluctuation of the frequency difference depends linearly and quadratically on the nonstationary Ornstein-Uhlenbeck noise (OUN) and random telegraph noise (RTN) processes, respectively. In the case of the linear dependence of the OUN, the environmental nonstationary statistical property can enhance the dynamical decoherence. However, the nonstationary statistics of the environmental noise can suppress the quantum decoherence in this case under the quadratic influence of the OUN. In the presence of the RTN, the quadratic influence of the environmental noise does not give rise to decoherence but only causes a determinate frequency renormalization in dynamical evolution. The environmental nonstationary statistical property can suppress the quantum decoherence of the case under the linear influence of the RTN.
Collapse
Affiliation(s)
- Xiangji Cai
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Yanyan Feng
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Jing Ren
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Yonggang Peng
- School of Physics, Shandong University, Jinan 250100, China
| | - Yujun Zheng
- School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
7
|
Humphries BS, Kinslow JC, Green D, Jones GA. Role of Quantum Information in HEOM Trajectories. J Chem Theory Comput 2024; 20:5383-5395. [PMID: 38889316 PMCID: PMC11238535 DOI: 10.1021/acs.jctc.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Open quantum systems often operate in the non-Markovian regime where a finite history of a trajectory is intrinsic to its evolution. The degree of non-Markovianity for a trajectory may be measured in terms of the amount of information flowing from the bath back into the system. In this study, we consider how information flows through the auxiliary density operators (ADOs) in the hierarchical equations of motion. We consider three cases for a range of baths, underdamped, intermediate, and overdamped. By understanding how information flows, we are able to determine the relative importance of different ADOs within the hierarchy. We show that ADOs sharing a common Matsubara axis behave similarly, while ADOs on different Matsubara axes behave differently. Using this knowledge, we are able to truncate hierarchies significantly, thus reducing the computation time, while obtaining qualitatively similar results. This is illustrated by comparing 2D electronic spectra for a molecule with an underdamped vibration subsumed into the bath spectral density.
Collapse
Affiliation(s)
- Ben S. Humphries
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Joshua C. Kinslow
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Dale Green
- Physics,
Faculty of Science, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Garth A. Jones
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| |
Collapse
|
8
|
Yadin B, Imai S, Gühne O. Quantum Speed Limit for States and Observables of Perturbed Open Systems. PHYSICAL REVIEW LETTERS 2024; 132:230404. [PMID: 38905682 DOI: 10.1103/physrevlett.132.230404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/01/2024] [Accepted: 05/06/2024] [Indexed: 06/23/2024]
Abstract
Quantum speed limits provide upper bounds on the rate with which a quantum system can move away from its initial state. Here, we provide a different kind of speed limit, describing the divergence of a perturbed open system from its unperturbed trajectory. In the case of weak coupling, we show that the divergence speed is bounded by the quantum Fisher information under a perturbing Hamiltonian, up to an error which can be estimated from system and bath timescales. We give three applications of our speed limit. First, it enables experimental estimation of quantum Fisher information in the presence of decoherence that is not fully characterized. Second, it implies that large quantum work fluctuations are necessary for a thermal system to be driven quickly out of equilibrium under a quench. Moreover, it can be used to bound the response to perturbations of expectation values of observables in open systems.
Collapse
|
9
|
Lipka-Bartosik P, Diotallevi GF, Bakhshinezhad P. Fundamental Limits on Anomalous Energy Flows in Correlated Quantum Systems. PHYSICAL REVIEW LETTERS 2024; 132:140402. [PMID: 38640379 DOI: 10.1103/physrevlett.132.140402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/26/2024] [Indexed: 04/21/2024]
Abstract
In classical thermodynamics energy always flows from the hotter system to the colder one. However, if these systems are initially correlated, the energy flow can reverse, making the cold system colder and the hot system hotter. This intriguing phenomenon is called "anomalous energy flow" and shows the importance of initial correlations in determining physical properties of thermodynamic systems. Here we investigate the fundamental limits of this effect. Specifically, we find the optimal amount of energy that can be transferred between quantum systems under closed and reversible dynamics, which then allows us to characterize the anomalous energy flow. We then explore a more general scenario where the energy flow is mediated by an ancillary quantum system that acts as a catalyst. We show that this approach allows for exploiting previously inaccessible types of correlations, ultimately resulting in an energy transfer that surpasses our fundamental bound. To demonstrate these findings, we use a well-studied quantum optics setup involving two atoms coupled to an optical cavity.
Collapse
Affiliation(s)
| | - Giovanni Francesco Diotallevi
- Augsburg University, Institute of Physics, Universitätsstraße 1 (Physik Nord), 86159 Augsburg, Germany
- Department of Physics and Nanolund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Pharnam Bakhshinezhad
- Department of Physics and Nanolund, Lund University, Box 118, 221 00 Lund, Sweden
- Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
| |
Collapse
|
10
|
Seneviratne A, Walters PL, Wang F. Exact Non-Markovian Quantum Dynamics on the NISQ Device Using Kraus Operators. ACS OMEGA 2024; 9:9666-9675. [PMID: 38434817 PMCID: PMC10906042 DOI: 10.1021/acsomega.3c09720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
The theory of open quantum systems has many applications ranging from simulating quantum dynamics in condensed phases to better understanding quantum-enabled technologies. At the center of theoretical chemistry are the developments of methodologies and computational tools for simulating charge and excitation energy transfer in solutions, biomolecules, and molecular aggregates. As a variety of these processes display non-Markovian behavior, classical computer simulation can be challenging due to exponential scaling with existing methods. With quantum computers holding the promise of efficient quantum simulations, in this paper, we present a new quantum algorithm based on Kraus operators that capture the exact non-Markovian effect at a finite temperature. The implementation of the Kraus operators on the quantum machine uses a combination of singular value decomposition (SVD) and optimal Walsh operators that result in shallow circuits. We demonstrate the feasibility of the algorithm by simulating the spin-boson dynamics and the exciton transfer in the Fenna-Matthews-Olson (FMO) complex. The NISQ results show very good agreement with the exact ones.
Collapse
Affiliation(s)
- Avin Seneviratne
- Department
of Physics and Astronomy, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, United States
| | - Peter L. Walters
- Department
of Chemistry and Biochemistry, George Mason
University, 4400 University
Drive, Fairfax, Virginia 22030, United States
| | - Fei Wang
- Department
of Chemistry and Biochemistry, George Mason
University, 4400 University
Drive, Fairfax, Virginia 22030, United States
- Quantum
Science and Engineering Center, George Mason
University, 4400 University
Drive, Fairfax, Virginia 22030, United States
| |
Collapse
|
11
|
Brand D, Sinayskiy I, Petruccione F. Markovian noise modelling and parameter extraction framework for quantum devices. Sci Rep 2024; 14:4769. [PMID: 38413630 PMCID: PMC10899264 DOI: 10.1038/s41598-024-54598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
In recent years, Noisy Intermediate Scale Quantum (NISQ) computers have been widely used as a test bed for quantum dynamics. This work provides a new hardware-agnostic framework for modelling the Markovian noise and dynamics of quantum systems in benchmark procedures used to evaluate device performance. As an accessible example, the application and performance of this framework is demonstrated on IBM Quantum computers. This framework serves to extract multiple calibration parameters simultaneously through a simplified process which is more reliable than previously studied calibration experiments and tomographic procedures. Additionally, this method allows for real-time calibration of several hardware parameters of a quantum computer within a comprehensive procedure, providing quantitative insight into the performance of each device to be accounted for in future quantum circuits. The framework proposed here has the additional benefit of highlighting the consistency among qubit pairs when extracting parameters, which leads to a less computationally expensive calibration process than evaluating the entire device at once.
Collapse
Affiliation(s)
- Dean Brand
- Department of Physics, School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, 7604, South Africa.
| | - Ilya Sinayskiy
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa.
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, 7604, South Africa.
| | - Francesco Petruccione
- Department of Physics, School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, 7604, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, 7604, South Africa
| |
Collapse
|
12
|
Bäcker C, Beyer K, Strunz WT. Local Disclosure of Quantum Memory in Non-Markovian Dynamics. PHYSICAL REVIEW LETTERS 2024; 132:060402. [PMID: 38394592 DOI: 10.1103/physrevlett.132.060402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/25/2024]
Abstract
Non-Markovian processes may arise in physics due to memory effects of environmental degrees of freedom. For quantum non-Markovianity, it is an ongoing debate to clarify whether such memory effects have a verifiable quantum origin, or whether they might equally be modeled by a classical memory. In this contribution, we propose a criterion to test locally for a truly quantum memory. The approach is agnostic with respect to the environment, as it solely depends on the local dynamics of the system of interest. Experimental realizations are particularly easy, as only single-time measurements on the system itself have to be performed. We study memory in a variety of physically motivated examples, both for a time-discrete case, and for time-continuous dynamics. For the latter, we are able to provide an interesting class of non-Markovian master equations with classical memory that allows for a physically measurable quantum trajectory representation.
Collapse
Affiliation(s)
- Charlotte Bäcker
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
| | - Konstantin Beyer
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Walter T Strunz
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
| |
Collapse
|
13
|
Mohammadi A, Shafiee A. Quantum non-Markovianity, quantum coherence and extractable work in a general quantum process. Phys Chem Chem Phys 2024; 26:3990-3999. [PMID: 38224013 DOI: 10.1039/d3cp04528e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A key concept in quantum thermodynamics is extractable work, which specifies the maximum amount of work that can be extracted from a quantum system. Different quantities are used to measure extractable work, the most prevalent of which are ergotropy and the difference between the non-equilibrium and equilibrium quantum free energies. Using the latter, we investigate the evolution of extractable work when an open quantum system undergoes a general quantum process described by a completely-positive and trace-preserving dynamical map. We derive a fundamental equation of thermodynamics for such processes as a relation between the distinct sorts of energy change in such a way that the first and the second law of thermodynamics are combined. We then identify the contributions from the reversible and irreversible processes in this equation and demonstrate that they are respectively responsible for the evolution of heat and extractable work of the open quantum system. Furthermore, we show how this correspondence between irreversibility and extractable work has the potential to provide a clear explanation of how the quantum properties of a system affect its extractable work evolution. Specifically, we establish this by directly connecting the change in extractable work with the change in standard quantifiers of quantum non-Markovianity and quantum coherence during a general quantum process. We illustrate these results with two examples.
Collapse
Affiliation(s)
- Amin Mohammadi
- Research Group on Foundations of Quantum Theory and Information, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| | - Afshin Shafiee
- Research Group on Foundations of Quantum Theory and Information, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| |
Collapse
|
14
|
Zhang YX. Zeno Regime of Collective Emission: Non-Markovianity beyond Retardation. PHYSICAL REVIEW LETTERS 2023; 131:193603. [PMID: 38000421 DOI: 10.1103/physrevlett.131.193603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023]
Abstract
To build up a collective emission, the atoms in an ensemble must coordinate their behavior by exchanging virtual photons. We study this non-Markovian process in a subwavelength atom chain coupled to a one-dimensional (1D) waveguide and find that retardation is not the only cause of non-Markovianity. The other factor is the memory of the photonic environment, for which a single excited atom needs a finite time, the Zeno regime, to transition from quadratic decay to exponential decay. In the waveguide setup, this crossover has a time scale longer than the retardation, thus impacting the development of collective behavior. By comparing a full quantum treatment with an approach incorporating only the retardation effect, we find that the field memory effect, characterized by the population of atomic excitation, is much more pronounced in collective emissions than that in the decay of a single atom. Our results maybe useful for the dissipation engineering of quantum information processings based on compact atom arrays.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; and Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
15
|
Thanopulos I, Yannopapas V, Paspalakis E. Strong Coupling Dynamics of a Quantum Emitter near a Topological Insulator Nanoparticle. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2787. [PMID: 37887938 PMCID: PMC10609747 DOI: 10.3390/nano13202787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
We study the spontaneous emission dynamics of a quantum emitter near a topological insulator Bi2Se3 spherical nanoparticle. Using the electromagnetic Green's tensor method, we find exceptional Purcell factors of the quantum emitter up to 1010 at distances between the emitter and the nanoparticle as large as half the nanoparticle's radius in the terahertz regime. We study the spontaneous emission evolution of a quantum emitter for various transition frequencies in the terahertz and various vacuum decay rates. For short vacuum decay times, we observe non-Markovian spontaneous emission dynamics, which correspond perfectly to values of well-established measures of non-Markovianity and possibly indicate considerable dynamical quantum speedup. The dynamics turn progressively Markovian as the vacuum decay times increase, while in this regime, the non-Markovianity measures are nullified, and the quantum speedup vanishes. For the shortest vacuum decay times, we find that the population remains trapped in the emitter, which indicates that a hybrid bound state between the quantum emitter and the continuum of electromagnetic modes as affected by the nanoparticle has been formed. This work demonstrates that a Bi2Se3 spherical nanoparticle can be a nanoscale platform for strong light-matter coupling.
Collapse
Affiliation(s)
- Ioannis Thanopulos
- Materials Science Department, School of Natural Sciences, University of Patras, 265 04 Patras, Greece;
| | - Vassilios Yannopapas
- Department of Physics, National Technical University of Athens, 157 80 Athens, Greece;
| | - Emmanuel Paspalakis
- Materials Science Department, School of Natural Sciences, University of Patras, 265 04 Patras, Greece;
| |
Collapse
|
16
|
Fiorelli E, Gherardini S, Marcantoni S. Stochastic Entropy Production: Fluctuation Relation and Irreversibility Mitigation in Non-unital Quantum Dynamics. JOURNAL OF STATISTICAL PHYSICS 2023; 190:111. [PMID: 37323124 PMCID: PMC10267040 DOI: 10.1007/s10955-023-03118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
In this work, we study the stochastic entropy production in open quantum systems whose time evolution is described by a class of non-unital quantum maps. In particular, as in Phys Rev E 92:032129 (2015), we consider Kraus operators that can be related to a nonequilibrium potential. This class accounts for both thermalization and equilibration to a non-thermal state. Unlike unital quantum maps, non-unitality is responsible for an unbalance of the forward and backward dynamics of the open quantum system under scrutiny. Here, concentrating on observables that commute with the invariant state of the evolution, we show how the non-equilibrium potential enters the statistics of the stochastic entropy production. In particular, we prove a fluctuation relation for the latter and we find a convenient way of expressing its average solely in terms of relative entropies. Then, the theoretical results are applied to the thermalization of a qubit with non-Markovian transient, and the phenomenon of irreversibility mitigation, introduced in Phys Rev Res 2:033250 (2020), is analyzed in this context.
Collapse
Affiliation(s)
- Eliana Fiorelli
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), UIB-CSIC UIB Campus, 07122 Palma de Mallorca, Spain
| | - Stefano Gherardini
- Istituto Nazionale di Ottica - CNR, Area Science Park, Basovizza, 34149 Trieste, Italy
- LENS, University of Florence, via Carrara 1, 50019 Sesto Fiorentino, Italy
- The Abdus Salam International Center for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| | - Stefano Marcantoni
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD UK
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham, NG7 2RD UK
- Mathematics Area, SISSA, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
17
|
Tang JL, Alvarado Barrios G, Solano E, Albarrán-Arriagada F. Tunable Non-Markovianity for Bosonic Quantum Memristors. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25050756. [PMID: 37238511 DOI: 10.3390/e25050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/28/2023]
Abstract
We studied the tunable control of the non-Markovianity of a bosonic mode due to its coupling to a set of auxiliary qubits, both embedded in a thermal reservoir. Specifically, we considered a single cavity mode coupled to auxiliary qubits described by the Tavis-Cummings model. As a figure of merit, we define the dynamical non-Markovianity as the tendency of a system to return to its initial state, instead of evolving monotonically to its steady state. We studied how this dynamical non-Markovianity can be manipulated in terms of the qubit frequency. We found that the control of the auxiliary systems affects the cavity dynamics as an effective time-dependent decay rate. Finally, we show how this tunable time-dependent decay rate can be tuned to engineer bosonic quantum memristors, involving memory effects that are fundamental for developing neuromorphic quantum technologies.
Collapse
Affiliation(s)
- Jia-Liang Tang
- International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist), Physics Department, Shanghai University, Shanghai 200444, China
| | | | - Enrique Solano
- Kipu Quantum, Greifswalderstrasse 226, 10405 Berlin, Germany
| | - Francisco Albarrán-Arriagada
- Departamento de Física, Universidad de Santiago de Chile (USACH), Avenida Víctor Jara 3493, Santiago 9170124, Chile
- Center for the Development of Nanoscience and Nanotechnology, Estación Central 9170124, Chile
| |
Collapse
|
18
|
Meng X, Sun Y, Wang Q, Ren J, Cai X, Czerwinski A. Dephasing Dynamics in a Non-Equilibrium Fluctuating Environment. ENTROPY (BASEL, SWITZERLAND) 2023; 25:634. [PMID: 37190422 PMCID: PMC10137637 DOI: 10.3390/e25040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
We performed a theoretical study of the dephasing dynamics of a quantum two-state system under the influences of a non-equilibrium fluctuating environment. The effect of the environmental non-equilibrium fluctuations on the quantum system is described by a generalized random telegraph noise (RTN) process, of which the statistical properties are both non-stationary and non-Markovian. Due to the time-homogeneous property in the master equations for the multi-time probability distribution, the decoherence factor induced by the generalized RTN with a modulatable-type memory kernel can be exactly derived by means of a closed fourth-order differential equation with respect to time. In some special limit cases, the decoherence factor recovers to the expression of the previous ones. We analyzed in detail the environmental effect of memory modulation in the dynamical dephasing in four types of dynamics regimes. The results showed that the dynamical dephasing of the quantum system and the conversion between the Markovian and non-Markovian characters in the dephasing dynamics under the influence of the generalized RTN can be effectively modulated via the environmental memory kernel.
Collapse
Affiliation(s)
- Xiangjia Meng
- School of Information Engineering, Shandong Youth University of Political Science, Jinan 250103, China
- New Technology Research and Development Center of Intelligent Information Controlling in Universities of Shandong, Shandong Youth University of Political Science, Jinan 250103, China
| | - Yaxin Sun
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Qinglong Wang
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Jing Ren
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Xiangji Cai
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Artur Czerwinski
- Institute of Physics, Faculty of Physics, Astronomy and Intypeatics, Nicolaus Copernicus University in Torun, ul. Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
19
|
Davalos D, Ziman M. Quantum Dynamics is Not Strictly Bidivisible. PHYSICAL REVIEW LETTERS 2023; 130:080801. [PMID: 36898093 DOI: 10.1103/physrevlett.130.080801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/08/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
We address the question of the existence of quantum channels that are divisible in two quantum channels but not in three or, more generally, channels divisible in n but not in n+1 parts. We show that for the qubit those channels do not exist, whereas for general finite-dimensional quantum channels the same holds at least for full Kraus rank channels. To prove these results, we introduce a novel decomposition of quantum channels which separates them into a boundary and Markovian part, and it holds for any finite dimension. Additionally, the introduced decomposition amounts to the well-known connection between divisibility classes and implementation types of quantum dynamical maps and can be used to implement quantum channels using smaller quantum registers.
Collapse
Affiliation(s)
- David Davalos
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84511, Slovakia and Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México 01000, Mexico
| | - Mario Ziman
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84511, Slovakia
| |
Collapse
|
20
|
Chruściński D, Hesabi S, Lonigro D. On Markovianity and classicality in multilevel spin-boson models. Sci Rep 2023; 13:1518. [PMID: 36707631 PMCID: PMC9883298 DOI: 10.1038/s41598-023-28606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
We provide a detailed discussion about the unitary and reduced evolution induced by family of Hamiltonian models describing a multilevel system, with a ground state and a possibly multilevel excited sector, coupled to a multimode boson field via a rotating-wave interaction. We prove explicitly that the system, in the limit in which the coupling is flat with respect to the boson frequencies, is Markovian under sharp measurements in arbitrary bases; we also find necessary and sufficient conditions under which the process is classical, i.e. its family of multitime joint probability distributions satisfies the Kolmogorov consistency condition, and may thus be equivalently obtained by a classical stochastic process.
Collapse
Affiliation(s)
- Dariusz Chruściński
- grid.5374.50000 0001 0943 6490Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5/7, 87-100 Toruń, Poland
| | - Samaneh Hesabi
- grid.5374.50000 0001 0943 6490Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5/7, 87-100 Toruń, Poland
| | - Davide Lonigro
- grid.7644.10000 0001 0120 3326Dipartimento di Fisica and MECENAS, Università di Bari, 70126 Bari, Italy ,grid.470190.bINFN, Sezione di Bari, 70126 Bari, Italy
| |
Collapse
|
21
|
Celebi Torabfam G, K. Demir G, Demir D. Quantum tunneling time delay investigation of [Formula: see text] ion in human telomeric G-quadruplex systems. J Biol Inorg Chem 2023; 28:213-224. [PMID: 36656371 PMCID: PMC9851595 DOI: 10.1007/s00775-022-01982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/24/2022] [Indexed: 01/20/2023]
Abstract
Guanine-rich quadruplex DNA (G-quadruplex) is of interest both in cell biology and nanotechnology. Its biological functions necessitate a G-quadruplex to be stabilized against escape of the monovalent metal cations. The potassium ion ([Formula: see text]) is particularly important as it experiences a potential energy barrier while it enters and exits the G-quadruplex systems which are normally found in human telomere. In the present work, we analyzed the time it takes for the [Formula: see text] cations to get in and out of the G-quadruplex. Our time estimate is based on entropic tunneling time-a time formula which gave biologically relevant results for DNA point mutation by proton tunneling. The potential energy barrier experienced by [Formula: see text] ions is determined from a quantum mechanical simulation study, Schrodinger equation is solved using MATLAB, and the computed eigenfunctions and eigenenergies are used in the entropic tunneling time formula to compute the time delay and charge accumulation rate during the tunneling of [Formula: see text] in G-quadruplex. The computations have shown that ion tunneling takes picosecond times. In addition, average [Formula: see text] accumulation rate is found to be in the picoampere range. Our results show that time delay during the [Formula: see text] ion tunneling is in the ballpark of the conformational transition times in biological systems, and it could be an important parameter for understanding its biological role in human DNA as well as for the possible applications in biotechnology. To our knowledge, for the first time in the literature, time delay during the ion tunneling from and into G-quadruplexes is computed.
Collapse
Affiliation(s)
- Gizem Celebi Torabfam
- Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, 34956 Istanbul, Turkey
| | - Güleser K. Demir
- Department of Electrical and Electronics Engineering, Dokuz Eylül University, Buca, 35390 İzmir, Turkey
| | - Durmuş Demir
- Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, 34956 Istanbul, Turkey
| |
Collapse
|
22
|
Hsiang JT, Arısoy O, Hu BL. Entanglement Dynamics of Coupled Quantum Oscillators in Independent NonMarkovian Baths. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1814. [PMID: 36554219 PMCID: PMC9778547 DOI: 10.3390/e24121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
This work strives to better understand how the entanglement in an open quantum system, here represented by two coupled Brownian oscillators, is affected by a nonMarkovian environment (with memories), here represented by two independent baths each oscillator separately interacts with. We consider two settings, a 'symmetric' configuration wherein the parameters of both oscillators and their baths are identical, and an 'asymmetric' configuration wherein they are different, in particular, a 'hybrid' configuration, where one of the two coupled oscillators interacts with a nonMarkovian bath and the other with a Markovian bath. Upon finding the solutions to the Langevin equations governing the system dynamics and the evolution of the covariance matrix elements entering into its entanglement dynamics, we ask two groups of questions: (Q1) Which time regime does the bath's nonMarkovianity benefit the system's entanglement most? The answers we get from detailed numerical studies suggest that (A1) For an initially entangled pair of oscillators, we see that in the intermediate time range, the duration of entanglement is proportional to the memory time, and it lasts a fraction of the relaxation time, but at late times when the dynamics reaches a steady state, the value of the symplectic eigenvalue of the partially transposed covariance matrix barely benefit from the bath nonMarkovianity. For the second group of questions: (Q2) Can the memory of one nonMarkovian bath be passed on to another Markovian bath? And if so, does this memory transfer help to sustain the system's entanglement dynamics? Our results from numerical studies of the asymmetric hybrid configuration indicate that (A2) A system with a short memory time can acquire improvement when it is coupled to another system with a long memory time, but, at a cost of the latter. The sustainability of the bipartite entanglement is determined by the party which breaks off entanglement most easily.
Collapse
Affiliation(s)
- Jen-Tsung Hsiang
- Center for High Energy and High Field Physics, National Central University, Taoyuan 320317, Taiwan
| | - Onat Arısoy
- Chemical Physics Program and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Bei-Lok Hu
- Maryland Center for Fundamental Physics and Joint Quantum Institute, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
23
|
Time inhomogeneous quantum dynamical maps. Sci Rep 2022; 12:21223. [PMID: 36481815 PMCID: PMC9731978 DOI: 10.1038/s41598-022-25694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
We discuss a wide class of time inhomogeneous quantum evolution which is represented by two-parameter family of completely positive trace-preserving maps. These dynamical maps are constructed as infinite series of jump processes. It is shown that such dynamical maps satisfy time inhomogeneous memory kernel master equation which provides a generalization of the master equation involving the standard convolution. Time-local (time convolution-less) approach is discussed as well. Finally, the comparative analysis of traditional time homogeneous versus time inhomogeneous scenario is provided.
Collapse
|
24
|
Chakraborty S, Das A, Chruściński D. Strongly coupled quantum Otto cycle with single qubit bath. Phys Rev E 2022; 106:064133. [PMID: 36671160 DOI: 10.1103/physreve.106.064133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022]
Abstract
We discuss a model of a closed quantum evolution of two qubits where the joint Hamiltonian is so chosen such that one of the qubits acts as a bath and thermalizes the other qubit which is acting as the system. The corresponding exact master equation for the system is derived. Interestingly, for a specific choice of parameters the master equation takes the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) form, with constant coefficients representing pumping and damping of a single qubit system. Based on this model we construct an Otto cycle connected to a single qubit bath and study its thermodynamic properties. Our analysis goes beyond the conventional weak coupling scenario and illustrates the effects of finite baths, including non-Markovianity. We find closed form expressions for efficiency (coefficient of performance), power (cooling power) for the heat engine regime (refrigerator regime), and for different modifications of the joint Hamiltonian.
Collapse
Affiliation(s)
- Sagnik Chakraborty
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, 87-100 Toruń, Poland
| | - Arpan Das
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, 87-100 Toruń, Poland
| | - Dariusz Chruściński
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, 87-100 Toruń, Poland
| |
Collapse
|
25
|
Nüßeler A, Tamascelli D, Smirne A, Lim J, Huelga SF, Plenio MB. Fingerprint and Universal Markovian Closure of Structured Bosonic Environments. PHYSICAL REVIEW LETTERS 2022; 129:140604. [PMID: 36240420 DOI: 10.1103/physrevlett.129.140604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
We exploit the properties of chain mapping transformations of bosonic environments to identify a finite collection of modes able to capture the characteristic features, or fingerprint, of the environment. Moreover we show that the countable infinity of residual bath modes can be replaced by a universal Markovian closure, namely, a small collection of damped modes undergoing a Lindblad-type dynamics whose parametrization is independent of the spectral density under consideration. We show that the Markovian closure provides a quadratic speedup with respect to standard chain mapping techniques and makes the memory requirement independent of the simulation time, while preserving all the information on the fingerprint modes. We illustrate the application of the Markovian closure to the computation of linear spectra but also to nonlinear spectral response, a relevant experimentally accessible many body coherence witness for which efficient numerically exact calculations in realistic environments are currently lacking.
Collapse
Affiliation(s)
- Alexander Nüßeler
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| | - Dario Tamascelli
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Andrea Smirne
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
| | - James Lim
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| | - Susana F Huelga
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| |
Collapse
|
26
|
Chen M, Chen H, Han T, Cai X. Disentanglement Dynamics in Nonequilibrium Environments. ENTROPY 2022; 24:1330. [PMCID: PMC9601490 DOI: 10.3390/e24101330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/17/2022] [Indexed: 05/28/2023]
Abstract
We theoretically study the non-Markovian disentanglement dynamics of a two-qubit system coupled to nonequilibrium environments with nonstationary and non-Markovian random telegraph noise statistical properties. The reduced density matrix of the two-qubit system can be expressed as the Kraus representation in terms of the tensor products of the single qubit Kraus operators. We derive the relation between the entanglement and nonlocality of the two-qubit system which are both closely associated with the decoherence function. We identify the threshold values of the decoherence function to ensure the existences of the concurrence and nonlocal quantum correlations for an arbitrary evolution time when the two-qubit system is initially prepared in the composite Bell states and the Werner states, respectively. It is shown that the environmental nonequilibrium feature can suppress the disentanglement dynamics and reduce the entanglement revivals in non-Markovian dynamics regime. In addition, the environmental nonequilibrium feature can enhance the nonlocality of the two-qubit system. Moreover, the entanglement sudden death and rebirth phenomena and the transition between quantum and classical nonlocalities closely depend on the parameters of the initial states and the environmental parameters in nonequilibrium environments.
Collapse
|
27
|
Ptaszyński K. Non-Markovian thermal operations boosting the performance of quantum heat engines. Phys Rev E 2022; 106:014114. [PMID: 35974499 DOI: 10.1103/physreve.106.014114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
It is investigated whether non-Markovianity, i.e., the memory effects resulting from the coupling of the system to its environment, can be beneficial for the performance of quantum heat engines. Specifically, two physical models are considered. The first one is a well-known single-qubit Otto engine; the non-Markovian behavior is there implemented by replacing standard thermalization strokes with so-called extremal thermal operations which cannot be realized without the memory effects. The second one is a three-stroke engine in which the cycle consists of two extremal thermal operations and a single qubit rotation. It is shown that the non-Markovian Otto engine can generate more work-per-cycle for a given efficiency than its Markovian counterpart, whereas performance of both setups is superior to the three-stroke engine. Furthermore, both the non-Markovian Otto engine and the three-stroke engine can reduce the work fluctuations in comparison with the Markovian Otto engine, with their relative advantage depending on the performance target. This demonstrates the beneficial influence of non-Markovianity on both the average performance and the stability of operation of quantum heat engines.
Collapse
Affiliation(s)
- Krzysztof Ptaszyński
- Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
| |
Collapse
|
28
|
Entropy Production in Non-Markovian Collision Models: Information Backflow vs. System-Environment Correlations. ENTROPY 2022; 24:e24060824. [PMID: 35741544 PMCID: PMC9222943 DOI: 10.3390/e24060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/04/2022]
Abstract
We investigate the irreversible entropy production of a qubit in contact with an environment modelled by a microscopic collision model in both Markovian and non-Markovian regimes. Our main goal is to contribute to the discussions on the relationship between non-Markovian dynamics and negative entropy production rates. We employ two different types of collision models that do or do not keep the correlations established between the system and the incoming environmental particle, while both of them pertain to their non-Markovian nature through information backflow from the environment to the system. We observe that as the former model, where the correlations between the system and environment are preserved, gives rise to negative entropy production rates in the transient dynamics, the latter one always maintains positive rates, even though the convergence to the steady-state value is slower as compared to the corresponding Markovian dynamics. Our results suggest that the mechanism underpinning the negative entropy production rates is not solely non-Markovianity through information backflow, but rather the contribution to it through established system-environment correlations.
Collapse
|
29
|
Budini AA. Quantum Non-Markovian Environment-to-System Backflows of Information: Nonoperational vs. Operational Approaches. ENTROPY 2022; 24:e24050649. [PMID: 35626534 PMCID: PMC9140462 DOI: 10.3390/e24050649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022]
Abstract
Quantum memory effects can be qualitatively understood as a consequence of an environment-to-system backflow of information. Here, we analyze and compare how this concept is interpreted and implemented in different approaches to quantum non-Markovianity. We study a nonoperational approach, defined by the distinguishability between two system states characterized by different initial conditions, and an operational approach, which is defined by the correlation between different outcomes associated to successive measurement processes performed over the system of interest. The differences, limitations, and vantages of each approach are characterized in detail by considering diverse system–environment models and dynamics. As a specific example, we study a non-Markovian depolarizing map induced by the interaction of the system of interest with an environment characterized by incoherent and coherent self-dynamics.
Collapse
Affiliation(s)
- Adrián A Budini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Atómico Bariloche, Avenida E. Bustillo Km 9.5, Bariloche 8400, Argentina
- Universidad Tecnológica Nacional (UTN-FRBA), Fanny Newbery 111, Bariloche 8400, Argentina
| |
Collapse
|
30
|
Memory Effects in High-Dimensional Systems Faithfully Identified by Hilbert–Schmidt Speed-Based Witness. ENTROPY 2022; 24:e24030395. [PMID: 35327906 PMCID: PMC8947421 DOI: 10.3390/e24030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/19/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023]
Abstract
A witness of non-Markovianity based on the Hilbert–Schmidt speed (HSS), a special type of quantum statistical speed, has been recently introduced for low-dimensional quantum systems. Such a non-Markovianity witness is particularly useful, being easily computable since no diagonalization of the system density matrix is required. We investigate the sensitivity of this HSS-based witness to detect non-Markovianity in various high-dimensional and multipartite open quantum systems with finite Hilbert spaces. We find that the time behaviors of the HSS-based witness are always in agreement with those of quantum negativity or quantum correlation measure. These results show that the HSS-based witness is a faithful identifier of the memory effects appearing in the quantum evolution of a high-dimensional system with a finite Hilbert space.
Collapse
|
31
|
Megier N, Smirne A, Campbell S, Vacchini B. Correlations, Information Backflow, and Objectivity in a Class of Pure Dephasing Models. ENTROPY (BASEL, SWITZERLAND) 2022; 24:304. [PMID: 35205599 PMCID: PMC8871357 DOI: 10.3390/e24020304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023]
Abstract
We critically examine the role that correlations established between a system and fragments of its environment play in characterising the ensuing dynamics. We employ a dephasing model with different initial conditions, where the state of the initial environment represents a tunable degree of freedom that qualitatively and quantitatively affects the correlation profiles, but nevertheless results in the same reduced dynamics for the system. We apply recently developed tools for the characterisation of non-Markovianity to carefully assess the role that correlations, as quantified by the (quantum) Jensen-Shannon divergence and relative entropy, as well as changes in the environmental state, play in whether the conditions for classical objectivity within the quantum Darwinism paradigm are met. We demonstrate that for precisely the same non-Markovian reduced dynamics of the system arising from different microscopic models, some exhibit quantum Darwinistic features, while others show that no meaningful notion of classical objectivity is present. Furthermore, our results highlight that the non-Markovian nature of an environment does not a priori prevent a system from redundantly proliferating relevant information, but rather it is the system's ability to establish the requisite correlations that is the crucial factor in the manifestation of classical objectivity.
Collapse
Affiliation(s)
- Nina Megier
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (A.S.); (B.V.)
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milan, Italy
- International Centre for Theory of Quantum Technologies (ICTQT), University of Gdansk, 80-308 Gdansk, Poland
| | - Andrea Smirne
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (A.S.); (B.V.)
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Steve Campbell
- School of Physics, University College Dublin, Belfield, D04 Dublin, Ireland
- Centre for Quantum Engineering, Science, and Technology, University College Dublin, Belfield, D04 Dublin, Ireland
| | - Bassano Vacchini
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (A.S.); (B.V.)
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milan, Italy
| |
Collapse
|
32
|
Work Measurement in OPEN Quantum System. ENTROPY 2022; 24:e24020180. [PMID: 35205475 PMCID: PMC8871378 DOI: 10.3390/e24020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022]
Abstract
Work is an important quantity in thermodynamics. In a closed quanutm system, the two-point energy measurements can be applied to measure the work but cannot be utilized in an open quantum system. With the two-point energy measurements, it has been shown that the work fluctuation satisfies the Jarzynski equality. We propose a scheme to measure the work in an open quantum system through the technique of reservoir engineering. Based on this scheme, we show that the work fluctuation in open quantum system may violate the Jarzynski equality. We apply our scheme to a two-level atom coupled to an engineered reservoir and numerically justify the general results, especially demonstrating that the second law of thermodynamics can be violated.
Collapse
|
33
|
Dynamics of Characteristic and One-Point Correlation Functions of Multi-Mode Bosonic Systems: Exactly Solvable Model. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this communication we study dynamics of the open quantum bosonic system governed by the generalized Lindblad equation with both dynamical and environment induced intermode couplings taken into account. By using the method of characteristics we deduce the analytical expression for the normally ordered characteristic function. Analytical results for one-point correlation functions describing temporal evolution of the covariance matrix are obtained.
Collapse
|
34
|
Fu S, Luo S. Quantifying Decoherence via Increases in Classicality. ENTROPY 2021; 23:e23121594. [PMID: 34945900 PMCID: PMC8700208 DOI: 10.3390/e23121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
As a direct consequence of the interplay between the superposition principle of quantum mechanics and the dynamics of open systems, decoherence is a recurring theme in both foundational and experimental exploration of the quantum realm. Decoherence is intimately related to information leakage of open systems and is usually formulated in the setup of "system + environment" as information acquisition of the environment (observer) from the system. As such, it has been mainly characterized via correlations (e.g., quantum mutual information, discord, and entanglement). Decoherence combined with redundant proliferation of the system information to multiple fragments of environment yields the scenario of quantum Darwinism, which is now a widely recognized framework for addressing the quantum-to-classical transition: the emergence of the apparent classical reality from the enigmatic quantum substrate. Despite the half-century development of the notion of decoherence, there are still many aspects awaiting investigations. In this work, we introduce two quantifiers of classicality via the Jordan product and uncertainty, respectively, and then employ them to quantify decoherence from an information-theoretic perspective. As a comparison, we also study the influence of the system on the environment.
Collapse
Affiliation(s)
- Shuangshuang Fu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
| | - Shunlong Luo
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
35
|
Kiselev AD, Ali R, Rybin AV. Lindblad Dynamics and Disentanglement in Multi-Mode Bosonic Systems. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1409. [PMID: 34828107 PMCID: PMC8618519 DOI: 10.3390/e23111409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022]
Abstract
In this paper, we consider the thermal bath Lindblad master equation to describe the quantum nonunitary dynamics of quantum states in a multi-mode bosonic system. For the two-mode bosonic system interacting with an environment, we analyse how both the coupling between the modes and the coupling with the environment characterised by the frequency and the relaxation rate vectors affect dynamics of the entanglement. We discuss how the revivals of entanglement can be induced by the dynamic coupling between the different modes. For the system, initially prepared in a two-mode squeezed state, we find the logarithmic negativity as defined by the magnitude and orientation of the frequency and the relaxation rate vectors. We show that, in the regime of finite-time disentanglement, reorientation of the relaxation rate vector may significantly increase the time of disentanglement.
Collapse
Affiliation(s)
- Alexei D. Kiselev
- Laboratory of Quantum Processes and Measurements, ITMO University, Kadetskaya Line 3b, 199034 Saint Petersburg, Russia
| | - Ranim Ali
- Faculty of Photonics, ITMO University, Kronverksky Pr. 49, bldg. A, 197101 Saint Petersburg, Russia;
| | - Andrei V. Rybin
- Center of Information Optical Technology, ITMO University, Birzhevaya Line 14a, 199034 Saint Petersburg, Russia;
| |
Collapse
|
36
|
Moreira SV, Marques B, Semião FL. Time-Dependent Dephasing and Quantum Transport. ENTROPY 2021; 23:e23091179. [PMID: 34573804 PMCID: PMC8469640 DOI: 10.3390/e23091179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
The investigation of the phenomenon of dephasing assisted quantum transport, which happens when the presence of dephasing benefits the efficiency of this process, has been mainly focused on Markovian scenarios associated with constant and positive dephasing rates in their respective Lindblad master equations. What happens if we consider a more general framework, where time-dependent dephasing rates are allowed, thereby, permitting the possibility of non-Markovian scenarios? Does dephasing-assisted transport still manifest for non-Markovian dephasing? Here, we address these open questions in a setup of coupled two-level systems. Our results show that the manifestation of non-Markovian dephasing-assisted transport depends on the way in which the incoherent energy sources are locally coupled to the chain. This is illustrated with two different configurations, namely non-symmetric and symmetric. Specifically, we verify that non-Markovian dephasing-assisted transport manifested only in the non-symmetric configuration. This allows us to draw a parallel with the conditions in which time-independent Markovian dephasing-assisted transport manifests. Finally, we find similar results by considering a controllable and experimentally implementable system, which highlights the significance of our findings for quantum technologies.
Collapse
Affiliation(s)
- Saulo V. Moreira
- Department of Physics and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC—UFABC, Santo André 09210-580, Brazil; (B.M.); (F.L.S.)
- Correspondence:
| | - Breno Marques
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC—UFABC, Santo André 09210-580, Brazil; (B.M.); (F.L.S.)
| | - Fernando L. Semião
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC—UFABC, Santo André 09210-580, Brazil; (B.M.); (F.L.S.)
| |
Collapse
|
37
|
Cosacchi M, Seidelmann T, Cygorek M, Vagov A, Reiter DE, Axt VM. Accuracy of the Quantum Regression Theorem for Photon Emission from a Quantum Dot. PHYSICAL REVIEW LETTERS 2021; 127:100402. [PMID: 34533331 DOI: 10.1103/physrevlett.127.100402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The quantum regression theorem (QRT) is the most widely used tool for calculating multitime correlation functions for the assessment of quantum emitters. It is an approximate method based on a Markov assumption for environmental coupling. In this Letter we quantify properties of photons emitted from a single quantum dot coupled to phonons. For the single-photon purity and the indistinguishability, we compare numerically exact path-integral results with those obtained from the QRT. It is demonstrated that the QRT systematically overestimates the influence of the environment for typical quantum dots used in quantum information technology.
Collapse
Affiliation(s)
- M Cosacchi
- Theoretische Physik III, Universität Bayreuth, 95440 Bayreuth, Germany
| | - T Seidelmann
- Theoretische Physik III, Universität Bayreuth, 95440 Bayreuth, Germany
| | - M Cygorek
- Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - A Vagov
- Theoretische Physik III, Universität Bayreuth, 95440 Bayreuth, Germany
- ITMO University, St. Petersburg 197101, Russia
| | - D E Reiter
- Institut für Festkörpertheorie, Universität Münster, 48149 Münster, Germany
| | - V M Axt
- Theoretische Physik III, Universität Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
38
|
General Non-Markovian Quantum Dynamics. ENTROPY 2021; 23:e23081006. [PMID: 34441146 PMCID: PMC8391488 DOI: 10.3390/e23081006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022]
Abstract
A general approach to the construction of non-Markovian quantum theory is proposed. Non-Markovian equations for quantum observables and states are suggested by using general fractional calculus. In the proposed approach, the non-locality in time is represented by operator kernels of the Sonin type. A wide class of the exactly solvable models of non-Markovian quantum dynamics is suggested. These models describe open (non-Hamiltonian) quantum systems with general form of nonlocality in time. To describe these systems, the Lindblad equations for quantum observable and states are generalized by taking into account a general form of nonlocality. The non-Markovian quantum dynamics is described by using integro-differential equations with general fractional derivatives and integrals with respect to time. The exact solutions of these equations are derived by using the operational calculus that is proposed by Yu. Luchko for general fractional differential equations. Properties of bi-positivity, complete positivity, dissipativity, and generalized dissipativity in general non-Markovian quantum dynamics are discussed. Examples of a quantum oscillator and two-level quantum system with a general form of nonlocality in time are suggested.
Collapse
|
39
|
Chruściński D, Kimura G, Kossakowski A, Shishido Y. Universal Constraint for Relaxation Rates for Quantum Dynamical Semigroup. PHYSICAL REVIEW LETTERS 2021; 127:050401. [PMID: 34397244 DOI: 10.1103/physrevlett.127.050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/24/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
A general property of relaxation rates in open quantum systems is discussed. We find an interesting constraint for relaxation rates that universally holds in fairly large classes of quantum dynamics, e.g., weak coupling regimes, as well as for entropy nondecreasing evolutions. We conjecture that this constraint is universal, i.e., it is valid for all quantum dynamical semigroups. The conjecture is supported by numerical analysis. Moreover, we show that the conjectured constraint is tight by providing a concrete model that saturates the bound. This universality marks an essential step toward the physical characterization of complete positivity as the constraint is directly verifiable in experiments. It provides, therefore, a physical manifestation of complete positivity. Our conjecture also has two important implications: it provides (i) a universal constraint for the spectra of quantum channels and (ii) a necessary condition to decide whether a given channel is consistent with Markovian evolution.
Collapse
Affiliation(s)
- Dariusz Chruściński
- Institute of Physics, Faculty of Physics, Astronomy and Informatics Nicolaus Copernicus University, Grudziądzka 5/7, 87-100 Toruń, Poland
| | - Gen Kimura
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 330-8570, Japan
| | - Andrzej Kossakowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics Nicolaus Copernicus University, Grudziądzka 5/7, 87-100 Toruń, Poland
| | - Yasuhito Shishido
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 330-8570, Japan
| |
Collapse
|
40
|
Megier N, Smirne A, Vacchini B. Entropic Bounds on Information Backflow. PHYSICAL REVIEW LETTERS 2021; 127:030401. [PMID: 34328753 DOI: 10.1103/physrevlett.127.030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
In the dynamics of open quantum systems, the backflow of information to the reduced system under study has been suggested as the actual physical mechanism inducing memory and thus leading to non-Markovian quantum dynamics. To this aim, the trace-distance revivals between distinct evolved system states have been shown to be subordinated to the establishment of system-environment correlations or changes in the environmental state. We show that this interpretation can be substantiated also for a class of entropic quantifiers. We exploit a suitably regularized version of Umegaki's quantum relative entropy, known as telescopic relative entropy, that is tightly connected to the quantum Jensen-Shannon divergence. In particular, we derive general upper bounds on the telescopic relative entropy revivals conditioned and determined by the formation of correlations and changes in the environment. We illustrate our findings by means of examples, considering in particular the Jaynes-Cummings model and a phase covariant dynamics.
Collapse
Affiliation(s)
- Nina Megier
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan, Italy
| | - Andrea Smirne
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan, Italy
| | - Bassano Vacchini
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan, Italy
| |
Collapse
|
41
|
Megier N, Ponzi M, Smirne A, Vacchini B. Memory Effects in Quantum Dynamics Modelled by Quantum Renewal Processes. ENTROPY (BASEL, SWITZERLAND) 2021; 23:905. [PMID: 34356446 PMCID: PMC8306438 DOI: 10.3390/e23070905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
Simple, controllable models play an important role in learning how to manipulate and control quantum resources. We focus here on quantum non-Markovianity and model the evolution of open quantum systems by quantum renewal processes. This class of quantum dynamics provides us with a phenomenological approach to characterise dynamics with a variety of non-Markovian behaviours, here described in terms of the trace distance between two reduced states. By adopting a trajectory picture for the open quantum system evolution, we analyse how non-Markovianity is influenced by the constituents defining the quantum renewal process, namely the time-continuous part of the dynamics, the type of jumps and the waiting time distributions. We focus not only on the mere value of the non-Markovianity measure, but also on how different features of the trace distance evolution are altered, including times and number of revivals.
Collapse
Affiliation(s)
- Nina Megier
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (M.P.); (A.S.); (B.V.)
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Manuel Ponzi
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (M.P.); (A.S.); (B.V.)
| | - Andrea Smirne
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (M.P.); (A.S.); (B.V.)
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Bassano Vacchini
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (M.P.); (A.S.); (B.V.)
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milan, Italy
| |
Collapse
|
42
|
Guo Y, Taranto P, Liu BH, Hu XM, Huang YF, Li CF, Guo GC. Experimental Demonstration of Instrument-Specific Quantum Memory Effects and Non-Markovian Process Recovery for Common-Cause Processes. PHYSICAL REVIEW LETTERS 2021; 126:230401. [PMID: 34170148 DOI: 10.1103/physrevlett.126.230401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
The duration, strength, and structure of memory effects are crucial properties of physical evolution. Because of the invasive nature of quantum measurement, such properties must be defined with respect to the probing instruments employed. Here, using a photonic platform, we experimentally demonstrate this necessity via two paradigmatic processes: future-history correlations in the first process can be erased by an intermediate quantum measurement; for the second process, a noisy classical measurement blocks the effect of history. We then apply memory truncation techniques to recover an efficient description that approximates expectation values for multitime observables. Our proof-of-principle analysis paves the way for experiments concerning more general non-Markovian quantum processes and highlights where standard open systems techniques break down.
Collapse
Affiliation(s)
- Yu Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Philip Taranto
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
- Vienna Center for Quantum Science and Technology, Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
| | - Bi-Heng Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xiao-Min Hu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yun-Feng Huang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
43
|
Klatt J, Kropf CM, Buhmann SY. Open Quantum Systems' Decay across Time. PHYSICAL REVIEW LETTERS 2021; 126:210401. [PMID: 34114863 DOI: 10.1103/physrevlett.126.210401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The description of an open quantum system's decay almost always requires several approximations so as to remain tractable. In this Letter, we first revisit the meaning, domain, and seeming contradictions of a few of the most widely used of such approximations: (semigroup) Markovianity, linear response theory, Wigner-Weisskopf approximation, and rotating-wave approximation. Second, we derive an effective time-dependent decay theory and corresponding generalized quantum regression relations for an open quantum system linearly coupled to an environment. This theory covers all timescales and subsumes the Markovian and linear-response results as limiting cases. Finally, we apply our theory to the phenomenon of quantum friction.
Collapse
Affiliation(s)
- Juliane Klatt
- Physikalisches Institut, Universität Freiburg, Hermann-Herder-Straße 4, D-79104 Freiburg, Germany
| | - Chahan M Kropf
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
- Department of Physics, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
| | - Stefan Y Buhmann
- Physikalisches Institut, Universität Freiburg, Hermann-Herder-Straße 4, D-79104 Freiburg, Germany
| |
Collapse
|
44
|
Canonical Hamiltonian ensemble representation of dephasing dynamics and the impact of thermal fluctuations on quantum-to-classical transition. Sci Rep 2021; 11:10046. [PMID: 33976361 PMCID: PMC8113319 DOI: 10.1038/s41598-021-89400-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/26/2021] [Indexed: 12/02/2022] Open
Abstract
An important mathematical tool for studying open quantum system theory, which studies the dynamics of a reduced system, is the completely positive and trace-preserving dynamical linear map parameterized by a special parameter-time. Counter-intuitively, akin to the Fourier transform of a signal in time-sequence to its frequency distribution, the time evolution of a reduced system can also be studied in the frequency domain. A recent proposed idea which studies the representation of dynamical processes in the frequency domain, referred to as canonical Hamiltonian ensemble representation (CHER), proved its capability of characterizing the noncalssical traits of the dynamics. Here we elaborate in detail the theoretical foundation within a unified framework and demonstrate several examples for further studies of its properties. In particular, we find that the thermal fluctuations are clearly manifested in the manner of broadening CHER, and consequently rendering the CHER less nonclassical. We also point out the discrepancy between the notions of nonclassicality and non-Markovianity, show multiple CHERs beyond pure dephasing, and, finally, to support the practical viability, propose an experimental realization based upon the free induction decay measurement of nitrogen-vacancy center in diamond.
Collapse
|
45
|
Tarasov VE. Quantum Maps with Memory from Generalized Lindblad Equation. ENTROPY 2021; 23:e23050544. [PMID: 33924949 PMCID: PMC8145516 DOI: 10.3390/e23050544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
In this paper, we proposed the exactly solvable model of non-Markovian dynamics of open quantum systems. This model describes open quantum systems with memory and periodic sequence of kicks by environment. To describe these systems, the Lindblad equation for quantum observable is generalized by taking into account power-law fading memory. Dynamics of open quantum systems with power-law memory are considered. The proposed generalized Lindblad equations describe non-Markovian quantum dynamics. The quantum dynamics with power-law memory are described by using integrations and differentiation of non-integer orders, as well as fractional calculus. An example of a quantum oscillator with linear friction and power-law memory is considered. In this paper, discrete-time quantum maps with memory, which are derived from generalized Lindblad equations without any approximations, are suggested. These maps exactly correspond to the generalized Lindblad equations, which are fractional differential equations with the Caputo derivatives of non-integer orders and periodic sequence of kicks that are represented by the Dirac delta-functions. The solution of these equations for coordinates and momenta are derived. The solutions of the generalized Lindblad equations for coordinate and momentum operators are obtained for open quantum systems with memory and kicks. Using these solutions, linear and nonlinear quantum discrete-time maps are derived.
Collapse
Affiliation(s)
- Vasily E. Tarasov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Faculty “Information Technologies and Applied Mathematics”, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| |
Collapse
|
46
|
Chruściński D. On the hybrid Davies like generator for quantum dissipation. CHAOS (WOODBURY, N.Y.) 2021; 31:023110. [PMID: 33653046 DOI: 10.1063/5.0036620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
We provide a class of quantum evolution beyond Markovian semigroup. This class is governed by a hybrid Davies like generator such that dissipation is controlled by a suitable memory kernel and decoherence by standard Gorini-Kossakowski-Lindblad-Sudarshan generator. These two processes commute and both of them commute with the unitary evolution controlled by the systems Hamiltonian. The corresponding memory kernel gives rise to semi-Markov evolution of the diagonal elements of the density matrix. However, the corresponding evolution needs not be completely positive. The role of decoherence generator is to restore complete positivity. Hence, to pose the dynamical problem, one needs two processes generated by classical semi-Markov memory kernel and purely quantum decoherence generator. This scheme is illustrated for a qubit evolution.
Collapse
Affiliation(s)
- Dariusz Chruściński
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5/7, 87-100 Toruń, Poland
| |
Collapse
|
47
|
Irreversible work and Maxwell demon in terms of quantum thermodynamic force. Sci Rep 2021; 11:2301. [PMID: 33504852 PMCID: PMC7840741 DOI: 10.1038/s41598-021-81737-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
The second law of classical equilibrium thermodynamics, based on the positivity of entropy production, asserts that any process occurs only in a direction that some information may be lost (flow out of the system) due to the irreversibility inside the system. However, any thermodynamic system can exhibit fluctuations in which negative entropy production may be observed. In particular, in stochastic quantum processes due to quantum correlations and also memory effects we may see the reversal energy flow (heat flow from the cold system to the hot system) and the backflow of information into the system that leads to the negativity of the entropy production which is an apparent violation of the Second Law. In order to resolve this apparent violation, we will try to properly extend the Second Law to quantum processes by incorporating information explicitly into the Second Law. We will also provide a thermodynamic operational meaning for the flow and backflow of information. Finally, it is shown that negative and positive entropy production can be described by a quantum thermodynamic force.
Collapse
|
48
|
Head-Marsden K, Flick J, Ciccarino CJ, Narang P. Quantum Information and Algorithms for Correlated Quantum Matter. Chem Rev 2020; 121:3061-3120. [PMID: 33326218 DOI: 10.1021/acs.chemrev.0c00620] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Discoveries in quantum materials, which are characterized by the strongly quantum-mechanical nature of electrons and atoms, have revealed exotic properties that arise from correlations. It is the promise of quantum materials for quantum information science superimposed with the potential of new computational quantum algorithms to discover new quantum materials that inspires this Review. We anticipate that quantum materials to be discovered and developed in the next years will transform the areas of quantum information processing including communication, storage, and computing. Simultaneously, efforts toward developing new quantum algorithmic approaches for quantum simulation and advanced calculation methods for many-body quantum systems enable major advances toward functional quantum materials and their deployment. The advent of quantum computing brings new possibilities for eliminating the exponential complexity that has stymied simulation of correlated quantum systems on high-performance classical computers. Here, we review new algorithms and computational approaches to predict and understand the behavior of correlated quantum matter. The strongly interdisciplinary nature of the topics covered necessitates a common language to integrate ideas from these fields. We aim to provide this common language while weaving together fields across electronic structure theory, quantum electrodynamics, algorithm design, and open quantum systems. Our Review is timely in presenting the state-of-the-art in the field toward algorithms with nonexponential complexity for correlated quantum matter with applications in grand-challenge problems. Looking to the future, at the intersection of quantum information science and algorithms for correlated quantum matter, we envision seminal advances in predicting many-body quantum states and describing excitonic quantum matter and large-scale entangled states, a better understanding of high-temperature superconductivity, and quantifying open quantum system dynamics.
Collapse
Affiliation(s)
- Kade Head-Marsden
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Christopher J Ciccarino
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
49
|
Demonstration of non-Markovian process characterisation and control on a quantum processor. Nat Commun 2020; 11:6301. [PMID: 33298929 PMCID: PMC7725842 DOI: 10.1038/s41467-020-20113-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/10/2020] [Indexed: 11/10/2022] Open
Abstract
In the scale-up of quantum computers, the framework underpinning fault-tolerance generally relies on the strong assumption that environmental noise affecting qubit logic is uncorrelated (Markovian). However, as physical devices progress well into the complex multi-qubit regime, attention is turning to understanding the appearance and mitigation of correlated — or non-Markovian — noise, which poses a serious challenge to the progression of quantum technology. This error type has previously remained elusive to characterisation techniques. Here, we develop a framework for characterising non-Markovian dynamics in quantum systems and experimentally test it on multi-qubit superconducting quantum devices. Where noisy processes cannot be accounted for using standard Markovian techniques, our reconstruction predicts the behaviour of the devices with an infidelity of 10−3. Our results show this characterisation technique leads to superior quantum control and extension of coherence time by effective decoupling from the non-Markovian environment. This framework, validated by our results, is applicable to any controlled quantum device and offers a significant step towards optimal device operation and noise reduction. As quantum computing devices become more complex, they enter the realm of correlated noise, which is difficult to characterise and mitigate. Here, the authors demonstrate, over a range of superconducting devices, a method for non-Markovian dynamics characterisation based on the process tensor framework.
Collapse
|
50
|
Excitation Dynamics in Chain-Mapped Environments. ENTROPY 2020; 22:e22111320. [PMID: 33287085 PMCID: PMC7712952 DOI: 10.3390/e22111320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
The chain mapping of structured environments is a most powerful tool for the simulation of open quantum system dynamics. Once the environmental bosonic or fermionic degrees of freedom are unitarily rearranged into a one dimensional structure, the full power of Density Matrix Renormalization Group (DMRG) can be exploited. Beside resulting in efficient and numerically exact simulations of open quantum systems dynamics, chain mapping provides an unique perspective on the environment: the interaction between the system and the environment creates perturbations that travel along the one dimensional environment at a finite speed, thus providing a natural notion of light-, or causal-, cone. In this work we investigate the transport of excitations in a chain-mapped bosonic environment. In particular, we explore the relation between the environmental spectral density shape, parameters and temperature, and the dynamics of excitations along the corresponding linear chains of quantum harmonic oscillators. Our analysis unveils fundamental features of the environment evolution, such as localization, percolation and the onset of stationary currents.
Collapse
|