• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4641775)   Today's Articles (2837)   Subscriber (50452)
For: Rudnick J, Hu Y. The winding angle distribution of an ordinary random walk. ACTA ACUST UNITED AC 1999. [DOI: 10.1088/0305-4470/20/13/042] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Number Cited by Other Article(s)
1
Dashti-N H, Najafi MN, Park H. Self-repelling bipedal exploration process. Phys Rev E 2021;104:054135. [PMID: 34942744 DOI: 10.1103/physreve.104.054135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/02/2021] [Indexed: 11/07/2022]
2
Huber G, Wilkinson M. Terasaki spiral ramps and intracellular diffusion. Phys Biol 2019;16:065002. [DOI: 10.1088/1478-3975/ab4080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
3
Bélisle C, Faraway J. Winding angle and maximum winding angle of the two-dimensional random walk. J Appl Probab 2016. [DOI: 10.2307/3214675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
4
Winding angle and maximum winding angle of the two-dimensional random walk. J Appl Probab 2016. [DOI: 10.1017/s0021900200042637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
5
Hammer Y, Kantor Y. Winding angles of long lattice walks. J Chem Phys 2016;145:014906. [DOI: 10.1063/1.4955161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
6
Laleman M, Baiesi M, Belotserkovskii BP, Sakaue T, Walter JC, Carlon E. Torque-Induced Rotational Dynamics in Polymers: Torsional Blobs and Thinning. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
7
Weysser F, Benzerara O, Johner A, Kulić IM. Topological energy storage of work generated by nanomotors. SOFT MATTER 2015;11:732-740. [PMID: 25482654 DOI: 10.1039/c4sm02294g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
8
Walter JC, Baiesi M, Carlon E, Schiessel H. Unwinding Dynamics of a Helically Wrapped Polymer. Macromolecules 2014. [DOI: 10.1021/ma500635h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
9
Grosberg A, Frisch H. Winding angle distribution for planar random walk, polymer ring entangled with an obstacle, and all that: Spitzer–Edwards–Prager–Frisch model revisited. ACTA ACUST UNITED AC 2003. [DOI: 10.1088/0305-4470/36/34/303] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
10
Samokhin KV. Vortex entanglement in disordered superconductors. PHYSICAL REVIEW LETTERS 2000;84:1304-1307. [PMID: 11017504 DOI: 10.1103/physrevlett.84.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/1999] [Indexed: 05/23/2023]
11
Bidaux R, Chave J, Vocka R. Finite time and asymptotic behaviour of the maximal excursion of a random walk. ACTA ACUST UNITED AC 1999. [DOI: 10.1088/0305-4470/32/27/302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
12
Drossel B, Kardar M. Winding angle distributions for random walks and flux lines. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1996;53:5861-5871. [PMID: 9964945 DOI: 10.1103/physreve.53.5861] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
13
Saleur H. Winding-angle distribution for Brownian and self-avoiding walks. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1994;50:1123-1128. [PMID: 9962070 DOI: 10.1103/physreve.50.1123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
14
Rudnick J, Hu Y. Winding angle of a self-avoiding random walk. PHYSICAL REVIEW LETTERS 1988;60:712-715. [PMID: 10038627 DOI: 10.1103/physrevlett.60.712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA