• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4641773)   Today's Articles (25)   Subscriber (50433)
For: Adler J, Stauffer D, Aharony A. Comparison of bootstrap percolation models. ACTA ACUST UNITED AC 1999. [DOI: 10.1088/0305-4470/22/7/008] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Number Cited by Other Article(s)
1
Martin-Calle D, Pierre-Louis O. Domain convexification: A simple model for invasion processes. Phys Rev E 2023;108:044108. [PMID: 37978705 DOI: 10.1103/physreve.108.044108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/13/2023] [Indexed: 11/19/2023]
2
Duminil-Copin H, van Enter ACD, Hulshof T. Higher order corrections for anisotropic bootstrap percolation. Probab Theory Relat Fields 2017. [DOI: 10.1007/s00440-017-0808-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
3
The time of bootstrap percolation in two dimensions. Probab Theory Relat Fields 2015. [DOI: 10.1007/s00440-015-0657-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
4
Teomy E, Shokef Y. Finite-density effects in the Fredrickson-Andersen and Kob-Andersen kinetically-constrained models. J Chem Phys 2014;141:064110. [PMID: 25134554 DOI: 10.1063/1.4892416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
5
Teomy E, Shokef Y. Jamming transition of kinetically constrained models in rectangular systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012;86:051133. [PMID: 23214764 DOI: 10.1103/physreve.86.051133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Indexed: 06/01/2023]
6
Cellai D, Lawlor A, Dawson KA, Gleeson JP. Tricritical point in heterogeneous k-core percolation. PHYSICAL REVIEW LETTERS 2011;107:175703. [PMID: 22107541 DOI: 10.1103/physrevlett.107.175703] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Indexed: 05/31/2023]
7
Gravner J, Holroyd A. Local Bootstrap Percolation. ELECTRON J PROBAB 2009. [DOI: 10.1214/ejp.v14-607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
8
Gravner J, Holroyd AE. Slow convergence in bootstrap percolation. ANN APPL PROBAB 2008. [DOI: 10.1214/07-aap473] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
9
Guo X, Liu DJ, Evans JW. Generic two-phase coexistence, relaxation kinetics, and interface propagation in the quadratic contact process: simulation studies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007;75:061129. [PMID: 17677242 DOI: 10.1103/physreve.75.061129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Indexed: 05/16/2023]
10
Holroyd A. The Metastability Threshold for Modified Bootstrap Percolation in $d$ Dimensions. ELECTRON J PROBAB 2006. [DOI: 10.1214/ejp.v11-326] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
11
Farrow C, Duxbury PM, Moukarzel CF. Culling avalanches in bootstrap percolation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005;72:066109. [PMID: 16486012 DOI: 10.1103/physreve.72.066109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Indexed: 05/06/2023]
12
Cerf R, Manzo F. The threshold regime of finite volume bootstrap percolation. Stoch Process Their Appl 2002. [DOI: 10.1016/s0304-4149(02)00124-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
13
Cerf R, Cirillo ENM. Finite Size Scaling in Three-Dimensional Bootstrap Percolation. ANN PROBAB 1999. [DOI: 10.1214/aop/1022874817] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA