1
|
Todorov R, Hristova-Vasileva T, Katrova V, Atanasova A. Silver and Gold Containing Compounds of p-Block Elements As Perspective Materials for UV Plasmonics. ACS OMEGA 2023; 8:14321-14341. [PMID: 37125114 PMCID: PMC10134472 DOI: 10.1021/acsomega.2c05943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
We present a review of phase formation tendencies, methods for preparation and optical properties of alloys and compounds from the binary systems of silver or gold with metals and metalloids from the p-block of the Periodic system of elements. Reference data about the homogeneity regions in the systems of interest, together with information about the crystalline structure of existing indexed compounds in them, is proposed and statistically analyzed. General background for the synthesis of intermetallic alloys and compounds, and the tendencies for their preparation for plasmonic purposes are presented. The high plasma frequency, ωp of p-block metals makes their alloys with silver and gold an interesting object of study, due to the possibility of ωp variation over a wide interval in the ultraviolet (UV) spectral region with a view to finding more efficient materials for excitation of a localized surface plasmon resonance (LSPR) necessary for various applications and techniques operating in this part of the electromagnetic spectrum. Unlike the alloys between the noble metals Cu, Ag, and Au, which form continuous series of solid solutions, different areas can be observed in the phase diagrams of the Ag(Au)-p-block systems, containing solid solutions, intermetallic compounds, and heterogeneous mixtures. The ability to vary the plasma frequency of solid solutions, like the alloys between the noble metals Cu, Ag, and Au, is the reason to pay attention to the compositions of the Ag(Au-p-block systems that fall in these regions of their phase diagrams. The analysis of the published results for complex permittivity shows that the addition of small amounts of conductive p-block elements to noble metals reduces the energy gap for interband transitions and increases their plasmonic activity in the UV spectral range. The article analyzes the relationship between electrical resistivity and LSPR excitation efficiency, which shows that the intermetallic compounds from Ag(Au)-p-block systems with a well-ordered crystalline structure and good conductivity level can be more effective materials for UV plasmonics than the boundary solid solutions. Intermetallic compounds can be easily obtained in the form of bulk samples, thin films, and nanoparticles with controlled size and geometric shape. The spectral dependences of the plasmon efficiency of the intermetallic compounds, determined from their complex permittivity functions, show that they are promising materials for excitation of LSPR in the UV spectral region.
Collapse
Affiliation(s)
- Rosen Todorov
- Institute
of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 109, 1113 Sofia, Bulgaria
| | - Temenuga Hristova-Vasileva
- Institute
of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 109, 1113 Sofia, Bulgaria
- Institute
of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Vesela Katrova
- Institute
of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 109, 1113 Sofia, Bulgaria
| | - Anna Atanasova
- Institute
of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 109, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Liu PQ, Miao X, Datta S. Recent Advances in Liquid Metal Photonics: Technologies and Applications. OPTICAL MATERIALS EXPRESS 2023; 13:699-727. [PMID: 38249122 PMCID: PMC10798671 DOI: 10.1364/ome.484236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 01/23/2024]
Abstract
Near-room-temperature liquid metals offer unique and crucial advantages over solid metals for a broad range of applications which require soft, stretchable and/or reconfigurable structures and devices. In particular, gallium-based liquid metals are the most suitable for a wide range of applications, not only owing to their low melting points, but also thanks to their low toxicity and negligible vapor pressure. In addition, gallium-based liquid metals exhibit attractive optical properties which make them highly suitable for a variety of photonics applications. This review summarizes the material properties of gallium-based liquid metals, highlights several effective techniques for fabricating liquid-metal-based structures and devices, and then focuses on the various photonics applications of these liquid metals in different spectral regions, following with a discussion on the challenges and opportunities for future research in this relatively nascent field.
Collapse
Affiliation(s)
- Peter Q. Liu
- Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| | - Xianglong Miao
- Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| | - Shreyan Datta
- Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
3
|
Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ. Ga-Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903391. [PMID: 31583849 DOI: 10.1002/smll.201903391] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/21/2019] [Indexed: 05/20/2023]
Abstract
Liquid metals are emerging as fluidic inorganic materials in various research fields. Micro- and nanoparticles of Ga and its alloys have received particular attention in the last decade due to their non toxicity and accessibility in ambient conditions as well as their interesting chemical, physical, mechanical, and electrical properties. Unique features such as a fluidic nature and self-passivating oxide skin make Ga-based liquid metal particles (LMPs) distinguishable from conventional inorganic particles in the context of synthesis and applications. Here, recent advances in the bottom-up and top-down synthetic methods of Ga-based LMPs, their physicochemical properties, and their applications are summarized. Finally, the current status of the LMPs is highlighted and perspectives on future directions are also provided.
Collapse
Affiliation(s)
- Hyunsun Song
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taekyung Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Seohyun Kang
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Haneul Jin
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo Jae Yoon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Perova T, Shaganov I, Berwick K. Accounting for the Local Field When Determining the Dielectric Loss Spectra of Metals in the Region of the Frequencies of Volume, Surface and Localized Plasmon Oscillations. MATERIALS 2020; 13:ma13030631. [PMID: 32023870 PMCID: PMC7040674 DOI: 10.3390/ma13030631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022]
Abstract
The optical constant of bulk metal is used to determine the dispersion of the local field under one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) confinement. 3D confinement, expressed as ε 2 m i c ( ω 3 D ) , corresponds to the dielectric loss spectra of spherical particles with a diameter, d, much less than the wavelength of the beam used to measure the spectrum (d << λ). Excellent agreement with the results of Mie theory and experimental data for solid colloids within alkali halide crystals was observed. The function expressed as ε 2 m i c ( ω 1 D ) allows the measurement of spectral micro-characteristics in the frequency range of the longitudinal collective motion of the free electrons. This corresponds to the spectrum of dielectric losses of bulk plasma oscillations. The function ε 2 m i c ( ω 2 D ) describes the spectra of the dielectric losses of surface plasma oscillations in thin metal films. It is shown that the peak positions of ε 2 m i c ( ω 3 D ) , ε 2 m i c ( ω 2 D ) and ε 2 m i c ( ω 1 D ) spectra for simple metals, viz. alkali metals as well as Al, Be, Mg, Ga, In, Sn and Si, are in agreement with experimental results from electron-energy-loss spectroscopy and various optical techniques.
Collapse
Affiliation(s)
- Tatiana Perova
- Department of Electronic and Electrical Engineering, Trinity College Dublin, The University of Dublin, 2 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-896-1432
| | - Igor Shaganov
- Vavilov State Optical Institute, 199034 St.-Petersburg, Russia;
| | - Kevin Berwick
- School of Electrical and Electronic Engineering, Technical University Dublin, 8 Dublin, Ireland;
| |
Collapse
|
5
|
Kim S, Kim JM, Park JE, Nam JM. Nonnoble-Metal-Based Plasmonic Nanomaterials: Recent Advances and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704528. [PMID: 29572964 DOI: 10.1002/adma.201704528] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/17/2017] [Indexed: 06/08/2023]
Abstract
The application scope of plasmonic nanostructures is rapidly expanding to keep pace with the ongoing development of various scientific findings and emerging technologies. However, most plasmonic nanostructures heavily depend on rare, expensive, and extensively studied noble metals such as Au and Ag, with the limited choice of elements hindering their broad and practical applications in a wide spectral range. Therefore, abundant and inexpensive nonnoble metals have attracted attention as new plasmonic nanomaterial components, allowing these nonnoble-metal-based materials to be used in areas such as photocatalysis, sensing, nanoantennas, metamaterials, and magnetoplasmonics with new compositions, structures, and properties. Furthermore, the use of nonnoble metal hybrids results in newly emerging or synergistic properties not observed from single-metal component systems. Here, the synthetic strategies and recent advances in nonnoble-metal-based plasmonic nanostructures comprising Cu, Al, Mg, In, Ga, Pb, Ni, Co, Fe, and related hybrids are highlighted, and a discussion and perspectives in their synthesis, properties, applications, and challenges are presented.
Collapse
Affiliation(s)
- Sungi Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jeong-Eun Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
6
|
Gutierrez Y, Ortiz D, Sanz JM, Saiz JM, Gonzalez F, Everitt HO, Moreno F. How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures. OPTICS EXPRESS 2016; 24:20621-31. [PMID: 27607666 DOI: 10.1364/oe.24.020621] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ultraviolet (UV) range presents new challenges for plasmonics, with interesting applications ranging from engineering to biology. In previous research, gallium, aluminum, and magnesium were found to be very promising UV plasmonic metals. However, a native oxide shell surrounds nanostructures of these metals that affects their plasmonic response. Here, through a nanoparticle-oxide core-shell model, we present a detailed electromagnetic analysis of how oxidation alters the UV-plasmonic response of spherical or hemisphere-on-substrate nanostructures made of those metals by analyzing the spectral evolution of two parameters: the absorption efficiency (far-field analysis) and the enhancement of the local intensity averaged over the nanoparticle surface (near-field analysis).
Collapse
|
7
|
Knight MW, Coenen T, Yang Y, Brenny BJM, Losurdo M, Brown AS, Everitt HO, Polman A. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. ACS NANO 2015; 9:2049-2060. [PMID: 25629392 DOI: 10.1021/nn5072254] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gallium has recently been demonstrated as a phase-change plasmonic material offering UV tunability, facile synthesis, and a remarkable stability due to its thin, self-terminating native oxide. However, the dense irregular nanoparticle (NP) ensembles fabricated by molecular-beam epitaxy make optical measurements of individual particles challenging. Here we employ hyperspectral cathodoluminescence (CL) microscopy to characterize the response of single Ga NPs of various sizes within an irregular ensemble by spatially and spectrally resolving both in-plane and out-of-plane plasmonic modes. These modes, which include hybridized dipolar and higher-order terms due to phase retardation and substrate interactions, are correlated with finite difference time domain (FDTD) electrodynamics calculations that consider the Ga NP contact angle, substrate, and native Ga/Si surface oxidation. This study experimentally confirms previous theoretical predictions of plasmonic size-tunability in single Ga NPs and demonstrates that the plasmonic modes of interacting Ga nanoparticles can hybridize to produce strong hot spots in the ultraviolet. The controlled, robust UV plasmonic resonances of gallium nanoparticles are applicable to energy- and phase-specific applications such as optical memory, environmental remediation, and simultaneous fluorescence and surface-enhanced Raman spectroscopies.
Collapse
Affiliation(s)
- Mark W Knight
- Center for Nanophotonics, FOM Institute AMOLF , Science Park Amsterdam 104, 1098 XG Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
8
|
McMahon JM, Schatz GC, Gray SK. Correction: Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys Chem Chem Phys 2015; 17:19670-1. [DOI: 10.1039/c5cp90112j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correction for ‘Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi’ by Jeffrey M. McMahon et al., Phys. Chem. Chem. Phys., 2013, 15, 5415–5423.
Collapse
Affiliation(s)
- Jeffrey M. McMahon
- Department of Chemistry
- Northwestern University
- Evanston
- USA
- Center for Nanoscale Materials
| | | | - Stephen K. Gray
- Center for Nanoscale Materials
- Argonne National Laboratory
- Argonne
- USA
| |
Collapse
|
9
|
McMahon JM, Schatz GC, Gray SK. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys Chem Chem Phys 2013; 15:5415-23. [DOI: 10.1039/c3cp43856b] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Blaber MG, Arnold MD, Ford MJ. A review of the optical properties of alloys and intermetallics for plasmonics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:143201. [PMID: 21389523 DOI: 10.1088/0953-8984/22/14/143201] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Alternative materials are required to enhance the efficacy of plasmonic devices. We discuss the optical properties of a number of alloys, doped metals, intermetallics, silicides, metallic glasses and high pressure materials. We conclude that due to the probability of low frequency interband transitions, materials with partially occupied d states perform poorly as plasmonic materials, ruling out many alloys, intermetallics and silicides as viable. The increased probability of electron-electron and electron-phonon scattering rules out many doped and glassy metals.
Collapse
Affiliation(s)
- M G Blaber
- Institute for Nanoscale Technology, Department of Physics and Advanced Materials, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | | | | |
Collapse
|
11
|
Jezequel G, Lemonnier JC, Thomas J. Optical properties of white tin films between 2 and 15 eV. ACTA ACUST UNITED AC 2001. [DOI: 10.1088/0305-4608/7/12/020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Kofman R, Cheyssac P, Garrigos R. Optical investigation of the solid-liquid transition in gallium. ACTA ACUST UNITED AC 2001. [DOI: 10.1088/0305-4608/9/12/007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
|