1
|
Mishra RK, Maganti L. Antitumor drugs effect on the stability of double-stranded DNA: steered molecular dynamics analysis. J Biomol Struct Dyn 2022; 40:11373-11382. [PMID: 34355668 DOI: 10.1080/07391102.2021.1960193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Denaturation of the DNA double helix inside the cell is essential for cellular processes such as replication and transcription for the growth of the cells. However, the growth of unwanted cells, which are responsible for cancerous kind of disease, is one of the biggest challenges of modern therapeutics. DNA cross-linking agents may kill cancer cells by damaging their DNA and stopping them from dividing. In the present study, we have carried out steered molecular dynamics simulations to study the effects of rupture and unzipping forces on the stability of dsDNA in the absence and presence of covalently bonded drugs. We have found that the stability of dsDNA increases strongly in the presence of covalently bonded drugs. The microscopic study of disruption of hydrogen-bonds associated with base-pairs of the dsDNA and the study of the variation of stacking overlap parameters gives evidence of symmetry during the rupture and asymmetry in the unzip event. The significance of the mechanism of force-induced melting study of the dsDNA in the absence and presence of antitumor drugs might have a biological relevance as it provides a pathway to open the double helix in a specific position and may help for the pharmaceutical design of drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Lakshmi Maganti
- Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Chakrabarti S, Jarzynski C, Thirumalai D. Processivity, Velocity, and Universal Characteristics of Nucleic Acid Unwinding by Helicases. Biophys J 2019; 117:867-879. [PMID: 31400912 PMCID: PMC6731385 DOI: 10.1016/j.bpj.2019.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/20/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
Helicases are components of the cellular replisome that are essential for unwinding double-strand nucleic acids during the process of replication. Intriguingly, most helicases are inefficient and require either oligomerization or assistance from other partner proteins to increase the processivity of unwinding in the presence of the replication fork, which acts as a barrier to progress. Single-molecule force spectroscopy has emerged as a promising experimental technique to probe how relieving this barrier on the helicase can allow for increased efficiency of unwinding. However, there exists no comprehensive theoretical framework to provide unique interpretations of the underlying helicase kinetics from the force spectroscopy data. This remains a major confounding issue in the field. Here, we develop a mathematical framework and derive analytic expressions for the velocity and run length of a general model of finitely processive helicases, the two most commonly measured experimental quantities. We show that in contrast to the unwinding velocity, the processivity exhibits a universal increase in response to external force, irrespective of the underlying architecture and unwinding kinetics of the helicase. Our work provides the first, to our knowledge, explanation to a wide array of experiments and suggests that helicases may have evolved to maximize processivity rather than speed. To demonstrate the use of our theory on experimental data, we analyze velocity and processivity data on the T7 helicase and provide unique inferences on the kinetics of the helicase. Our results show that T7 is a weakly active helicase that destabilizes the fork ahead by less than 1 kBT and back steps very frequently while unwinding DNA. Our work generates fundamental insights into the force response of helicases and provides a widely applicable method for inferring the underlying helicase kinetics from force spectroscopy data.
Collapse
Affiliation(s)
- Shaon Chakrabarti
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.
| | - Christopher Jarzynski
- Department of Chemistry and Biochemistry, Institute for Physical Sciences and Technology, Department of Physics, University of Maryland, College Park, Maryland
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
3
|
Pincus DL, Chakrabarti S, Thirumalai D. Helicase processivity and not the unwinding velocity exhibits universal increase with force. Biophys J 2016. [PMID: 26200858 DOI: 10.1016/j.bpj.2015.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Helicases, involved in a number of cellular functions, are motors that translocate along single-stranded nucleic acid and couple the motion to unwinding double-strands of a duplex nucleic acid. The junction between double- and single-strands creates a barrier to the movement of the helicase, which can be manipulated in vitro by applying mechanical forces directly on the nucleic acid strands. Single-molecule experiments have demonstrated that the unwinding velocities of some helicases increase dramatically with increase in the external force, while others show little response. In contrast, the unwinding processivity always increases when the force increases. The differing responses of the unwinding velocity and processivity to force have lacked explanation. By generalizing a previous model of processive unwinding by helicases, we provide a unified framework for understanding the dependence of velocity and processivity on force and the nucleic acid sequence. We predict that the sensitivity of unwinding processivity to external force is a universal feature that should be observed in all helicases. Our prediction is illustrated using T7 and NS3 helicases as case studies. Interestingly, the increase in unwinding processivity with force depends on whether the helicase forces basepair opening by direct interaction or if such a disruption occurs spontaneously due to thermal fluctuations. Based on the theoretical results, we propose that proteins like single-strand binding proteins associated with helicases in the replisome may have coevolved with helicases to increase the unwinding processivity even if the velocity remains unaffected.
Collapse
Affiliation(s)
- David L Pincus
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland.
| | - Shaon Chakrabarti
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland.
| | - D Thirumalai
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland.
| |
Collapse
|
4
|
Spies M. Two steps forward, one step back: determining XPD helicase mechanism by single-molecule fluorescence and high-resolution optical tweezers. DNA Repair (Amst) 2014; 20:58-70. [PMID: 24560558 DOI: 10.1016/j.dnarep.2014.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/31/2013] [Accepted: 01/13/2014] [Indexed: 11/17/2022]
Abstract
XPD-like helicases constitute a prominent DNA helicase family critical for many aspects of genome maintenance. These enzymes share a unique structural feature, an auxiliary domain stabilized by an iron-sulphur (FeS) cluster, and a 5'-3' polarity of DNA translocation and duplex unwinding. Biochemical analyses alongside two single-molecule approaches, total internal reflection fluorescence microscopy and high-resolution optical tweezers, have shown how the unique structural features of XPD helicase and its specific patterns of substrate interactions tune the helicase for its specific cellular function and shape its molecular mechanism. The FeS domain forms a duplex separation wedge and contributes to an extended DNA binding site. Interactions within this site position the helicase in an orientation to unwind the duplex, control the helicase rate, and verify the integrity of the translocating strand. Consistent with its cellular role, processivity of XPD is limited and is defined by an idiosyncratic stepping kinetics. DNA duplex separation occurs in single base pair steps punctuated by frequent backward steps and conformational rearrangements of the protein-DNA complex. As such, the helicase in isolation mainly stabilizes spontaneous base pair opening and exhibits a limited ability to unwind stable DNA duplexes. The presence of a cognate ssDNA binding protein converts XPD into a vigorous helicase by destabilizing the upstream dsDNA as well as by trapping the unwound strands. Remarkably, the two proteins can co-exist on the same DNA strand without competing for binding. The current model of the XPD unwinding mechanism will be discussed along with possible modifications to this mechanism by the helicase interacting partners and unique features of such bio-medically important XPD-like helicases as FANCJ (BACH1), RTEL1 and CHLR1 (DDX11).
Collapse
Affiliation(s)
- Maria Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, IA 52242, United States.
| |
Collapse
|
5
|
On the mechanism of recombination hotspot scanning during double-stranded DNA break resection. Proc Natl Acad Sci U S A 2013; 110:E2562-71. [PMID: 23798400 DOI: 10.1073/pnas.1303035110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Double-stranded DNA break repair by homologous recombination is initiated by resection of free DNA ends to produce a 3'-ssDNA overhang. In bacteria, this reaction is catalyzed by helicase-nuclease complexes such as AddAB in a manner regulated by specific recombination hotspot sequences called Crossover hotspot instigator (Chi). We have used magnetic tweezers to investigate the dynamics of AddAB translocation and hotspot scanning during double-stranded DNA break resection. AddAB was prone to stochastic pausing due to transient recognition of Chi-like sequences, unveiling an antagonistic relationship between DNA translocation and sequence-specific DNA recognition. Pauses at bona fide Chi sequences were longer, were nonexponentially distributed, and resulted in an altered velocity upon restart of translocation downstream of Chi. We propose a model for the recognition of Chi sequences to explain the origin of pausing during failed and successful hotspot recognition.
Collapse
|
6
|
Mishra G, Sadhukhan P, Bhattacharjee SM, Kumar S. Dynamical phase transition of a periodically driven DNA. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022718. [PMID: 23496559 DOI: 10.1103/physreve.87.022718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Indexed: 06/01/2023]
Abstract
Replication and transcription are two important processes in living systems. To execute such processes, various proteins work far away from equilibrium in a staggered way. Motivated by this, aspects of hysteresis during unzipping of DNA under a periodic drive are studied. A steady-state phase diagram of a driven DNA is proposed which is experimentally verifiable. As a two-state system, we also compare the results of DNA with that of an Ising magnet under an asymmetrical variation of the magnetic field.
Collapse
Affiliation(s)
- Garima Mishra
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | | | | | | |
Collapse
|
7
|
Coupling translocation with nucleic acid unwinding by NS3 helicase. J Mol Biol 2010; 404:439-55. [PMID: 20887735 DOI: 10.1016/j.jmb.2010.09.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/27/2010] [Accepted: 09/20/2010] [Indexed: 11/20/2022]
Abstract
We present a semiquantitative model for translocation and unwinding activities of monomeric nonstructural protein 3 (NS3) helicase. The model is based on structural, biochemical, and single-molecule measurements. The model predicts that the NS3 helicase actively unwinds duplex by reducing more than 50% the free energy that stabilizes base pairing/stacking. The unwinding activity slows the movement of the helicase in a sequence-dependent manner, lowering the average unwinding efficiency to less than 1 bp per ATP cycle. When bound with ATP, the NS3 helicase can display significant translocational diffusion. This increases displacement fluctuations of the helicase, decreases the average unwinding efficiency, and enhances the sequence dependence. Also, interactions between the helicase and the duplex stabilize the helicase at the junction, facilitating the helicase's unwinding activity while preventing it from dissociating. In the presence of translocational diffusion during active unwinding, the dissociation rate of the helicase also exhibits sequence dependence. Based on unwinding velocity fluctuations measured from single-molecule experiments, we estimate the diffusion rate to be on the order of 10 s(-1). The generic features of coupling single-stranded nucleic acid translocation with duplex unwinding presented in this work may apply generally to a class of helicases.
Collapse
|
8
|
Garai A, Chowdhury D, Betterton MD. Two-state model for helicase translocation and unwinding of nucleic acids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:061910. [PMID: 18643303 DOI: 10.1103/physreve.77.061910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 02/29/2008] [Indexed: 05/26/2023]
Abstract
Helicases are molecular motors that unwind double-stranded nucleic acids (dsNA), such as DNA and RNA. Typically a helicase translocates along one of the NA single strands while unwinding and uses adenosine triphosphate (ATP) hydrolysis as an energy source. Here we model a helicase motor that can switch between two states, which could represent two different points in the ATP hydrolysis cycle. Our model is an extension of the earlier Betterton-Jülicher model of helicases to incorporate switching between two states. The main predictions of the model are the speed of unwinding of the dsNA and fluctuations around the average unwinding velocity. Motivated by a recent claim that the NS3 helicase of Hepatitis C virus follows a flashing-ratchet mechanism, we have compared the experimental results for the NS3 helicase with a special limit of our model which corresponds to the flashing-ratchet scenario. Our model accounts for one key feature of the experimental data on NS3 helicase. However, contradictory observations in experiments carried out under different conditions limit the ability to compare the model to experiments.
Collapse
Affiliation(s)
- Ashok Garai
- Department of Physics, Indian Institute of Technology, Kanpur, India.
| | | | | |
Collapse
|
9
|
Cheng W, Dumont S, Tinoco I, Bustamante C. NS3 helicase actively separates RNA strands and senses sequence barriers ahead of the opening fork. Proc Natl Acad Sci U S A 2007; 104:13954-9. [PMID: 17709749 PMCID: PMC1955789 DOI: 10.1073/pnas.0702315104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA helicases regulate virtually all RNA-dependent cellular processes. Although much is known about helicase structures, very little is known about how they deal with barriers in RNA and the factors that affect their processivity. The hepatitis C virus encodes NS3, an RNA helicase that is essential for viral RNA replication. We have used optical tweezers to determine at the single-molecule level how the local stability of the RNA substrate affects the enzyme rate of strand separation, whether separation occurs by an active or a passive mechanism, and whether processivity is affected. We show that sequence barriers in RNA modulate NS3 activity. NS3 processivity depends on barriers ahead of the opening fork. Our results rule out a model where NS3 passively waits for the thermal fraying of double-stranded RNA. Instead, we find that NS3 destabilizes the duplex before separating the strands. Failure to do so before a strong barrier leads to helicase dissociation and limits the processivity of the enzyme.
Collapse
Affiliation(s)
| | | | | | - Carlos Bustamante
- QB3 Institute
- Departments of Chemistry and
- Physics, and
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; and
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Abstract
Recent years have seen an increasing number of biological applications of single molecule techniques, evolving from a proof of principle type to the more sophisticated studies. Here we compare the capabilities and limitations of different single molecule techniques in studying the activities of helicases. Helicases share a common catalytic activity but present a high variability in kinetic and phenomenological behavior, making their studies ideal in exemplifying the use of the new single molecule techniques to answer biological questions. Unexpected phenomena have also been observed from individual molecules suggesting extended or alternative functionality of helicases in vivo.
Collapse
Affiliation(s)
- Ivan Rasnik
- Department of Physics, Emory UniversityAtlanta, GA 30322,USA
| | - Sua Myong
- Department of Physics, University of IllinoisUrbana, IL 61801, USA
| | - Taekjip Ha
- Department of Physics, University of IllinoisUrbana, IL 61801, USA
- Howard Hughes Medical InstituteUrbana, IL 61801, USA
- To whom correspondence should be addressed. Tel: +1 271 265 0717;
| |
Collapse
|
11
|
Abstract
DNA helicases are ubiquitous molecular motors involved in cellular DNA metabolism. They move along single-stranded DNA (ssDNA) and separate duplex DNA into its component strands, utilizing the free energy from ATP hydrolysis. The PcrA helicase from Bacillus stearothermophilus translocates as a monomer progressively from the 3' end to the 5' end of ssDNA and is one of the smallest motor proteins structurally known in full atomic detail. Using high-resolution crystal structures of the PcrA-DNA complex, we performed nanosecond molecular dynamics simulations and derived potential energy profiles governing individual domain movement of the PcrA helicase along ssDNA. Based on these profiles, the millisecond translocation of the helicase along ssDNA was described through Langevin dynamics. The calculations support a domain stepping mechanism of PcrA helicase, in which, during one ATP hydrolysis cycle, the pulling together and pushing apart of domains 2A and 1A are synchronized with alternating mobilities of the individual domains in such a fashion that PcrA moves unidirectionally along ssDNA. By combining short timescale (nanoseconds) molecular dynamics and long timescale (milliseconds) stochastic-dynamics descriptions, our study suggests a structure-based mechanism of the ATP-powered unidirectional movement of PcrA helicase.
Collapse
Affiliation(s)
- Jin Yu
- Beckman Institute, Department of Physics, and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|