1
|
Rivas G, Minton AP. Surfaces as frameworks for intracellular organization. Trends Biochem Sci 2024; 49:942-954. [PMID: 39375067 DOI: 10.1016/j.tibs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 10/09/2024]
Abstract
A large fraction of soluble protein within the interior of living cells may reversibly associate with structural elements, including proteinaceous fibers and phospholipid membranes. In this opinion, we present theoretical and experimental evidence that many of these associations are due to nonspecific attraction between the protein and the surface of the fiber or membrane, and that such associations may lead to substantial changes in the association state of the adsorbed proteins, the biological function of the adsorbed proteins, and the distribution of these proteins between the many microenvironments existing within the cell.
Collapse
Affiliation(s)
- Germán Rivas
- CIB Margarita Salas - Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Li G, Gong W, Yang L, Cheng M, Yan H, Quan J, Zhang F, Lu Z, Li H. Guest-Induced Planar-Chiral Pillar[5]arene Surface for Selectively Adsorbing Protein Based on Host-Guest Chemistry. Bioconjug Chem 2022; 33:2237-2244. [PMID: 34898177 DOI: 10.1021/acs.bioconjchem.1c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In living systems, the adsorption of a protein on biointerfaces is a universal phenomenon, such as the specific binding of an antibody and antigen, which plays an important role in body growth and life maintenance. The exploration of a protein-selective adsorption on the biointerface is of great significance for understanding the life process and treatment in vitro. Herein, on the basis of biomimetic strategies, we fabricated a planar-chiral NH2-pillar[5]arene modified silicon surface (pR-/pS-NP5 surfaces) for a highly enantioselective adsorption of protein by taking advantage of the guest-induced planar chirality of pillar[5]arenes. Results from practical experiments and theoretical calculations show that the pR-NP5 surface possesses a high adsorption capacity and chiral selectivity for bovine serum albumin (BSA). Moreover, it was identified that the guest-induced chiral effect the generation and amplification of planar chirality, which was much beneficial for enhancing the interaction between planar-chiral pillar[5]arene host and BSA. The binding capacity of pR-NP5 and BSA is stronger than that of pS-NP5, thus promoting the chiral selective adsorption of BSA. This work affords a deeper understanding of the chiral influence of protein adsorption on biointerfaces and meanwhile provides a new perspective for chiral-sensing applications.
Collapse
Affiliation(s)
- Guang Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen Gong
- Department of Cardiology, The Third People's Hospital of Hubei Province Hospital of Hubei Province, Wuhan 430030, P. R. China
| | - Lei Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hewei Yan
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jiaxin Quan
- Department of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, P. R. China
| | - Fan Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhiyan Lu
- Department of Forensic Medicine, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang District, Wuhan 430071, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
3
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Peck C, Virtanen P, Johnson D, Kimble-Hill AC. Using the Predicted Structure of the Amot Coiled Coil Homology Domain to Understand Lipid Binding. INDIANA UNIVERSITY JOURNAL OF UNDERGRADUATE RESEARCH 2018; 4:27-46. [PMID: 30957019 PMCID: PMC6448796 DOI: 10.14434/iujur.v4i1.24528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiomotins (Amots) are a family of adapter proteins that modulate cellular polarity, differentiation, proliferation, and migration. Amot family members have a characteristic lipid-binding domain, the coiled coil homology (ACCH) domain that selectively targets the protein to membranes, which has been directly linked to its regulatory role in the cell. Several spot blot assays were used to validate the regions of the domain that participate in its membrane association, deformation, and vesicle fusion activity, which indicated the need for a structure to define the mechanism. Therefore, we sought to understand the structure-function relationship of this domain in order to find ways to modulate these signaling pathways. After many failed attempts to crystallize the ACCH domain of each Amot family member for structural analysis, we decided to pursue homologous models that could be refined using small angle x-ray scattering data. Theoretical models were produced using the homology software SWISS-MODEL and threading software I-TASSER and LOMETS, followed by comparison to SAXS data for model selection and refinement. We present a theoretical model of the domain that is driven by alpha helices and short random coil regions. These alpha helical regions form a classic dimer interface followed by two wide spread legs that we predict to be the lipid binding interface.
Collapse
|
5
|
Casein interaction with lipid membranes: Are the phase state or charge density of the phospholipids affecting protein adsorption? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2588-2598. [DOI: 10.1016/j.bbamem.2018.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023]
|
6
|
In vitro and in vivo investigation of the potential of amorphous microporous silica as a protein delivery vehicle. BIOMED RESEARCH INTERNATIONAL 2013; 2013:306418. [PMID: 23991413 PMCID: PMC3749544 DOI: 10.1155/2013/306418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/28/2013] [Accepted: 07/09/2013] [Indexed: 11/21/2022]
Abstract
Delivering growth factors (GFs) at bone/implant interface needs to be optimized to achieve faster osseointegration. Amorphous microporous silica (AMS) has a potential to be used as a carrier and delivery platform for GFs. In this work, adsorption (loading) and release (delivery) mechanism of a model protein, bovine serum albumin (BSA), from AMS was investigated in vitro as well as in vivo. In general, strong BSA adsorption to AMS was observed. The interaction was stronger at lower pH owing to favorable electrostatic interaction. In vitro evaluation of BSA release revealed a peculiar release profile, involving a burst release followed by a 6 h period without appreciable BSA release and a further slower release later. Experimental data supporting this observation are discussed. Apart from understanding protein/biomaterial (BSA/AMS) interaction, determination of in vivo protein release is an essential aspect of the evaluation of a protein delivery system. In this regard micropositron emission tomography (μ-PET) was used in an exploratory experiment to determine in vivo BSA release profile from AMS. Results suggest stronger in vivo retention of BSA when adsorbed on AMS. This study highlights the possible use of AMS as a controlled protein delivery platform which may facilitate osseointegration.
Collapse
|
7
|
Pähler G, Panse C, Diederichsen U, Janshoff A. Coiled-coil formation on lipid bilayers--implications for docking and fusion efficiency. Biophys J 2013; 103:2295-303. [PMID: 23283228 DOI: 10.1016/j.bpj.2012.08.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/31/2012] [Accepted: 08/15/2012] [Indexed: 11/26/2022] Open
Abstract
Coiled-coil formation of four different oligopeptides was characterized in solution, on hydrogels, and on membranes by employing circular dichroism spectroscopy, surface plasmon resonance spectroscopy, attenuated total reflection infrared spectroscopy, and ellipsometry. Peptide sequences rich in either glutamic acid (E: E3Cys, i-E3Cys) or lysine (K: K3Cys, i-K3Cys) were used to represent minimal mimics of eukaryotic SNARE motifs. Half of the peptides were synthesized in reverse sequence, so that parallel and antiparallel heptad coiled-coil structures were formed. Either E-peptides or K-peptides were attached covalently to phospholipid anchors via maleimide chemistry, and served as receptors for the recognition of the corresponding binding partners added to solution. Attenuated total reflection infrared spectroscopy of single bilayers confirmed the formation of coiled-coil complexes at the membrane interface. Coiled-coil formation in solution, as compared with association at the membrane surface, displays considerably larger binding constants that are largely attributed to loss of translational entropy at the interface. Finally, the fusogenicity of the various coiled-coil motifs was explored, and the results provide clear evidence that hemifusion followed by full fusion requires a parallel orientation of α-helices, whereas antiparallel oriented coiled-coil motifs display only docking.
Collapse
Affiliation(s)
- Gesa Pähler
- Institute of Physical Chemistry, Georg August University, Göttingen, Germany
| | | | | | | |
Collapse
|
8
|
Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci 2011; 162:87-106. [PMID: 21295764 DOI: 10.1016/j.cis.2010.12.007] [Citation(s) in RCA: 992] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/21/2010] [Accepted: 12/28/2010] [Indexed: 11/21/2022]
Abstract
Protein adsorption at solid surfaces plays a key role in many natural processes and has therefore promoted a widespread interest in many research areas. Despite considerable progress in this field there are still widely differing and even contradictive opinions on how to explain the frequently observed phenomena such as structural rearrangements, cooperative adsorption, overshooting adsorption kinetics, or protein aggregation. In this review recent achievements and new perspectives on protein adsorption processes are comprehensively discussed. The main focus is put on commonly postulated mechanistic aspects and their translation into mathematical concepts and model descriptions. Relevant experimental and computational strategies to practically approach the field of protein adsorption mechanisms and their impact on current successes are outlined.
Collapse
|
9
|
Steinem C, Janshoff A. Multicomponent membranes on solid substrates: Interfaces for protein binding. Curr Opin Colloid Interface Sci 2010. [DOI: 10.1016/j.cocis.2010.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Dias RS, Pais AACC. Polyelectrolyte condensation in bulk, at surfaces, and under confinement. Adv Colloid Interface Sci 2010; 158:48-62. [PMID: 20347064 DOI: 10.1016/j.cis.2010.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/05/2010] [Accepted: 02/14/2010] [Indexed: 11/18/2022]
Abstract
In this review we discuss recent results from computer simulations based on coarse-grained polyion models representing aqueous solutions of polyelectrolytes. The focus will be directed to the conformation of the polyions and, in particular, their condensation in bulk, induced by multivalent ions and oppositely charged polyelectrolytes, at responsive surfaces and under confinement.
Collapse
Affiliation(s)
- R S Dias
- Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | | |
Collapse
|
11
|
Protein adsorption and desorption on lipid bilayers. Biophys Chem 2009; 146:60-4. [PMID: 19903579 DOI: 10.1016/j.bpc.2009.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 10/18/2009] [Accepted: 10/20/2009] [Indexed: 11/22/2022]
Abstract
The protein surface usually exhibits one or a few charged spots. If a lipid bilayer contains a significant amount of lipids with oppositely charged head groups, protein adsorption on a bilayer may be energetically favourable due to the protein-lipid electrostatic interaction. The specifics of this case are that the lipids are highly mobile and the protein adsorption is accompanied by the redistribution of lipids between the areas covered and not covered by protein. We present a kinetic model illustrating that this effect is especially interesting if the fraction of the surface covered by charged lipids is relatively low. In this situation, with increasing protein coverage, the protein desorption rate constant rapidly increases while the adsorption rate constant drops, so that there is critical fraction of the area covered by protein. Adsorption above this fraction is hindered both kinetically and thermodynamically.
Collapse
|
12
|
Abstract
The adsorption of colloids of varying sizes and charges onto a surface that carries both negative and positive charges, representing a membrane, has been investigated using a simple model employing Monte Carlo simulations. The membrane is made of positive and negative charges (headgroups) that are allowed to move along the membrane, simulating the translational diffusion of the lipids, and are also allowed to protrude into the solution, giving rise to a fluid and soft membrane. When an uncharged colloid is placed in the vicinity of the membrane, a short-range repulsion between the colloid and the membrane is observed and the membrane will deflect to avoid coming into contact with the colloid. When the colloid is charged, the membrane response is twofold: the headgroups of the membrane move toward the colloid, as if to partly embrace it, and the positive headgroups of the membrane approach the oppositely charged colloid, inducing the demixing of the membrane lipids (polarization). The presence of protrusions enhances the polarization of the membrane. Potential of mean force calculations show that protrusions give rise to a more long-range attractive colloid-membrane potential which has a smaller magnitude at short separations.
Collapse
|
13
|
Trusova VM, Gorbenko GP. Electrostatically-controlled protein adsorption onto lipid bilayer: modeling adsorbate aggregation behavior. Biophys Chem 2007; 133:90-103. [PMID: 18201814 DOI: 10.1016/j.bpc.2007.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 11/24/2022]
Abstract
Using adsorption models based on scaled particle (SPT) and double layer theories the electrostatically-controlled protein adsorption onto membrane surface has been simulated for non-associating and self-associating ligands. The binding isotherms of monomeric and oligomeric protein species have been calculated over a range of variable parameters including lipid and protein concentrations, protein and membrane charges, pH and ionic strength. Adsorption behavior of monomers appeared to be the most sensitive to the changes in the protein aggregation state. The hallmarks of the protein oligomerization are identified. The practical guides for optimal design of binding experiments focused on obtaining proofs of protein self-association are suggested.
Collapse
Affiliation(s)
- Valeriya M Trusova
- Department of Biological and Medical Physics, V.N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine.
| | | |
Collapse
|