1
|
Kirichenko-Babko M, Bulak P, Kaczor M, Proc-Pietrycha K, Bieganowski A. Arthropods in landfills and their accumulation potential for toxic elements: A review. ENVIRONMENTAL RESEARCH 2024; 251:118612. [PMID: 38442814 DOI: 10.1016/j.envres.2024.118612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Landfills, as a source of potentially toxic elements (PTEs), pose a threat to the environment and human health. A literature review was conducted to explore the diversity of arthropods inhabiting solid waste landfills, as well as on the bioaccumulation of PTEs by arthropods. This review presents scientific papers over the last 20 years. Their importance in landfill ecosystems has been the subject of research; however, the issue of the accumulation of compounds such as toxic elements is emphasized only in a few studies. The bioaccumulation of PTEs was studied for 10 arthropod species that founded in landfills: Orthomorpha coarctata and Trigoniulus corallinus (class Diplopoda), Armadillidium vulgare and Trachelipus rathkii (class Malacostraca), the 6 species of the class Insecta - Zonocerus variegatus, Anacanthotermes ochraceus, Macrotermes bellicosus, Austroaeschna inermis, Calathus fuscipes and Harpalus rubripes.
Collapse
Affiliation(s)
- Marina Kirichenko-Babko
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland; Department of Invertebrate Fauna and Systematics, Schmalhausen Institute of Zoology National Academy of Sciences, B. Khmelnitsky 15, 01054, Kyiv, Ukraine.
| | - Piotr Bulak
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Monika Kaczor
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Kinga Proc-Pietrycha
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Andrzej Bieganowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
2
|
Islam MS, Mazumder AAM, Sohag MU, Sarkar MMH, Stampfl C, Park J. Growth mechanisms of monolayer hexagonal boron nitride ( h-BN) on metal surfaces: theoretical perspectives. NANOSCALE ADVANCES 2023; 5:4041-4064. [PMID: 37560434 PMCID: PMC10408602 DOI: 10.1039/d3na00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Two-dimensional hexagonal boron nitride (h-BN) has appeared as a promising material in diverse areas of applications, including as an excellent substrate for graphene devices, deep-ultraviolet emitters, and tunneling barriers, thanks to its outstanding stability, flat surface, and wide-bandgap. However, for achieving such exciting applications, controllable mass synthesis of high-quality and large-scale h-BN is a precondition. The synthesis of h-BN on metal surfaces using chemical vapor deposition (CVD) has been extensively studied, aiming to obtain large-scale and high-quality materials. The atomic-scale growth process, which is a prerequisite for rationally optimizing growth circumstances, is a key topic in these investigations. Although theoretical investigations on h-BN growth mechanisms are expected to reveal numerous new insights and understandings, different growth methods have completely dissimilar mechanisms, making theoretical research extremely challenging. In this article, we have summarized the recent cutting-edge theoretical research on the growth mechanisms of h-BN on different metal substrates. On the frequently utilized Cu substrate, h-BN development was shown to be more challenging than a simple adsorption-dehydrogenation-growth scenario. Controlling the number of surface layers is also an important challenge. Growth on the Ni surface is controlled by precipitation. An unusual reaction-limited aggregation growth behavior has been seen on interfaces having a significant lattice mismatch to h-BN. With intensive theoretical investigations employing advanced simulation approaches, further progress in understanding h-BN growth processes is predicted, paving the way for guided growth protocol design.
Collapse
Affiliation(s)
- Md Sherajul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology Khulna 9203 Bangladesh
- Department of Electrical and Biomedical Engineering, University of Nevada Reno NV 89557 USA
| | | | - Minhaz Uddin Sohag
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology Khulna 9203 Bangladesh
| | - Md Mosarof Hossain Sarkar
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology Khulna 9203 Bangladesh
| | - Catherine Stampfl
- School of Physics, The University of Sydney New South Wales 2006 Australia
| | - Jeongwon Park
- Department of Electrical and Biomedical Engineering, University of Nevada Reno NV 89557 USA
- School of Electrical Engineering and Computer Science, University of Ottawa Ottawa ON K1N 6N5 Canada
| |
Collapse
|
3
|
Naclerio AE, Kidambi PR. A Review of Scalable Hexagonal Boron Nitride (h-BN) Synthesis for Present and Future Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207374. [PMID: 36329667 DOI: 10.1002/adma.202207374] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Hexagonal boron nitride (h-BN) is a layered inorganic synthetic crystal exhibiting high temperature stability and high thermal conductivity. As a ceramic material it has been widely used for thermal management, heat shielding, lubrication, and as a filler material for structural composites. Recent scientific advances in isolating atomically thin monolayers from layered van der Waals crystals to study their unique properties has propelled research interest in mono/few layered h-BN as a wide bandgap insulating support for nanoscale electronics, tunnel barriers, communications, neutron detectors, optics, sensing, novel separations, quantum emission from defects, among others. Realizing these futuristic applications hinges on scalable cost-effective high-quality h-BN synthesis. Here, the authors review scalable approaches of high-quality mono/multilayer h-BN synthesis, discuss the challenges and opportunities for each method, and contextualize their relevance to emerging applications. Maintaining a stoichiometric balance B:N = 1 as the atoms incorporate into the growing layered crystal and maintaining stacking order between layers during multi-layer synthesis emerge as some of the main challenges for h-BN synthesis and the development of processes to address these aspects can inform and guide the synthesis of other layered materials with more than one constituent element. Finally, the authors contextualize h-BN synthesis efforts along with quality requirements for emerging applications via a technological roadmap.
Collapse
Affiliation(s)
- Andrew E Naclerio
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Piran R Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Vanderbilt Institute of Nanoscale Sciences and Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
4
|
Lawrence RA, Ramasse QM, Holsgrove KM, Sando D, Cazorla C, Valanoor N, Arredondo MA. Effects of Multiple Local Environments on Electron Energy Loss Spectra of Epitaxial Perovskite Interfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:21453-21466. [PMID: 36582487 PMCID: PMC9791663 DOI: 10.1021/acs.jpcc.2c06879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The role of local chemical environments in the electron energy loss spectra of complex multiferroic oxides was studied using computational and experimental techniques. The evolution of the O K-edge across an interface between bismuth ferrite (BFO) and lanthanum strontium manganate (LSMO) was considered through spectral averaging over crystallographically equivalent positions to capture the periodicity of the local O environments. Computational techniques were used to investigate the contribution of individual atomic environments to the overall spectrum, and the role of doping and strain was considered. Chemical variation, even at the low level, was found to have a major impact on the spectral features, whereas strain only induced a small chemical shift to the edge onset energy. Through a combination of these methods, it was possible to explain experimentally observed effects such as spectral flattening near the interface as the combination of spectral responses from multiple local atomic environments.
Collapse
Affiliation(s)
- Robert A. Lawrence
- Department
of Physics, University of York, Heslington, North YorkshireYO10 5DD, United Kingdom
| | - Quentin M. Ramasse
- SuperSTEM
Laboratory, SciTech Daresbury Campus, DaresburyWA4 4AD, United Kingdom
- School
of Chemical and Process Engineering and School of Physics and Astronomy, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Kristina M. Holsgrove
- School
of Mathematics and Physics, Queen’s
University Belfast, BelfastBT7 1NN, Northern Ireland, United Kingdom
| | - Daniel Sando
- School
of Physical and Chemical Sciences, University
of Canterbury, ChristChurch8140, New Zealand
| | - Claudio Cazorla
- Departament
de Fisica, Universitat Politecnica de Catalunya, BarcelonaE-08034, Catalonia, Spain
| | - Nagarajan Valanoor
- School
of Materials Science and Engineering, University
of New South Wales, Sydney, NSW2052, Australia
| | - Miryam A. Arredondo
- School
of Mathematics and Physics, Queen’s
University Belfast, BelfastBT7 1NN, Northern Ireland, United Kingdom
| |
Collapse
|
5
|
Blaha P, Schwarz K, Tran F, Laskowski R, Madsen GKH, Marks LD. WIEN2k: An APW+lo program for calculating the properties of solids. J Chem Phys 2020; 152:074101. [DOI: 10.1063/1.5143061] [Citation(s) in RCA: 585] [Impact Index Per Article: 146.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter Blaha
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Karlheinz Schwarz
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Fabien Tran
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Robert Laskowski
- Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, #16-16, Connexis 138632, Singapore
| | - Georg K. H. Madsen
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Laurence D. Marks
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
6
|
Wafer-scale and selective-area growth of high-quality hexagonal boron nitride on Ni(111) by metal-organic chemical vapor deposition. Sci Rep 2019; 9:5736. [PMID: 30952939 PMCID: PMC6450880 DOI: 10.1038/s41598-019-42236-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/27/2019] [Indexed: 11/12/2022] Open
Abstract
We demonstrate wafer-scale growth of high-quality hexagonal boron nitride (h-BN) film on Ni(111) template using metal-organic chemical vapor deposition (MOCVD). Compared with inert sapphire substrate, the catalytic Ni(111) template facilitates a fast growth of high-quality h-BN film at the relatively low temperature of 1000 °C. Wafer-scale growth of a high-quality h-BN film with Raman E2g peak full width at half maximum (FWHM) of 18~24 cm−1 is achieved, which is to the extent of our knowledge the best reported for MOCVD. Systematic investigation of the microstructural and chemical characteristics of the MOCVD-grown h-BN films reveals a substantial difference in catalytic capability between the Ni(111) and sapphire surfaces that enables the selective-area growth of h-BN at pre-defined locations over a whole 2-inch wafer. These achievement and findings have advanced our understanding of the growth mechanism of h-BN by MOCVD and will contribute an important step toward scalable and controllable production of high-quality h-BN films for practical integrated two-dimensional materials-based systems and devices.
Collapse
|
7
|
Michelitsch GS, Reuter K. Efficient simulation of near-edge x-ray absorption fine structure (NEXAFS) in density-functional theory: Comparison of core-level constraining approaches. J Chem Phys 2019; 150:074104. [DOI: 10.1063/1.5083618] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Georg S. Michelitsch
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching, Germany
| |
Collapse
|
8
|
Tonkikh AA, Voloshina EN, Werner P, Blumtritt H, Senkovskiy B, Güntherodt G, Parkin SSP, Dedkov YS. Structural and electronic properties of epitaxial multilayer h-BN on Ni(111) for spintronics applications. Sci Rep 2016; 6:23547. [PMID: 27009238 PMCID: PMC4806377 DOI: 10.1038/srep23547] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/09/2016] [Indexed: 12/01/2022] Open
Abstract
Hexagonal boron nitride (h-BN) is a promising material for implementation in spintronics due to a large band gap, low spin-orbit coupling, and a small lattice mismatch to graphene and to close-packed surfaces of fcc-Ni(111) and hcp-Co(0001). Epitaxial deposition of h-BN on ferromagnetic metals is aimed at small interface scattering of charge and spin carriers. We report on the controlled growth of h-BN/Ni(111) by means of molecular beam epitaxy (MBE). Structural and electronic properties of this system are investigated using cross-section transmission electron microscopy (TEM) and electron spectroscopies which confirm good agreement with the properties of bulk h-BN. The latter are also corroborated by density functional theory (DFT) calculations, revealing that the first h-BN layer at the interface to Ni is metallic. Our investigations demonstrate that MBE is a promising, versatile alternative to both the exfoliation approach and chemical vapour deposition of h-BN.
Collapse
Affiliation(s)
- A A Tonkikh
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany.,Institute for Physics of Microstructures RAS, 603950, GSP-105, Nizhny Novgorod, Russia
| | - E N Voloshina
- Humboldt-Universität zu Berlin, Institut für Chemie, 10099 Berlin, Germany
| | - P Werner
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
| | - H Blumtritt
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
| | - B Senkovskiy
- Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden, Germany.,St. Petersburg State University, 198504 St. Petersburg, Russia
| | - G Güntherodt
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany.,2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - S S P Parkin
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
| | - Yu S Dedkov
- SPECS Surface Nano Analysis GmbH, Voltastraße 5, 13355 Berlin, Germany
| |
Collapse
|
9
|
|
10
|
Bidermane I, Lüder J, Boudet S, Zhang T, Ahmadi S, Grazioli C, Bouvet M, Rusz J, Sanyal B, Eriksson O, Brena B, Puglia C, Witkowski N. Experimental and theoretical study of electronic structure of lutetium bi-phthalocyanine. J Chem Phys 2013; 138:234701. [DOI: 10.1063/1.4809725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
11
|
|