1
|
Braeutigam A, Burnet AF, Gompper G, Sabass B. Clutch model for focal adhesions predicts reduced self-stabilization under oblique pulling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:295101. [PMID: 38574682 DOI: 10.1088/1361-648x/ad3ac1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Cell-matrix adhesions connect the cytoskeleton to the extracellular environment and are essential for maintaining the integrity of tissue and whole organisms. Remarkably, cell adhesions can adapt their size and composition to an applied force such that their size and strength increases proportionally to the load. Mathematical models for the clutch-like force transmission at adhesions are frequently based on the assumption that mechanical load is applied tangentially to the adhesion plane. Recently, we suggested a molecular mechanism that can explain adhesion growth under load for planar cell adhesions. The mechanism is based on conformation changes of adhesion molecules that are dynamically exchanged with a reservoir. Tangential loading drives the occupation of some states out of equilibrium, which for thermodynamic reasons, leads to the association of further molecules with the cluster, which we refer to as self-stabilization. Here, we generalize this model to forces that pull at an oblique angle to the plane supporting the cell, and examine if this idealized model also predicts self-stabilization. We also allow for a variable distance between the parallel planes representing cytoskeletal F-actin and transmembrane integrins. Simulation results demonstrate that the binding mechanism and the geometry of the cluster have a strong influence on the response of adhesion clusters to force. For oblique angles smaller than about 40∘, we observe a growth of the adhesion site under force. However this self-stabilization is reduced as the angle between the force and substrate plane increases, with vanishing self-stabilization for normal pulling. Overall, these results highlight the fundamental difference between the assumption of pulling and shearing forces in commonly used models of cell adhesion.
Collapse
Affiliation(s)
- Andrea Braeutigam
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
- Theoretical Physics of Living Matter, Institute for Biological Information Processes, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Anton F Burnet
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Biological Information Processes, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Benedikt Sabass
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
- Theoretical Physics of Living Matter, Institute for Biological Information Processes, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
| |
Collapse
|
2
|
Heyn JCJ, Rädler JO, Falcke M. Mesenchymal cell migration on one-dimensional micropatterns. Front Cell Dev Biol 2024; 12:1352279. [PMID: 38694822 PMCID: PMC11062138 DOI: 10.3389/fcell.2024.1352279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/29/2024] [Indexed: 05/04/2024] Open
Abstract
Quantitative studies of mesenchymal cell motion are important to elucidate cytoskeleton function and mechanisms of cell migration. To this end, confinement of cell motion to one dimension (1D) significantly simplifies the problem of cell shape in experimental and theoretical investigations. Here we review 1D migration assays employing micro-fabricated lanes and reflect on the advantages of such platforms. Data are analyzed using biophysical models of cell migration that reproduce the rich scenario of morphodynamic behavior found in 1D. We describe basic model assumptions and model behavior. It appears that mechanical models explain the occurrence of universal relations conserved across different cell lines such as the adhesion-velocity relation and the universal correlation between speed and persistence (UCSP). We highlight the unique opportunity of reproducible and standardized 1D assays to validate theory based on statistical measures from large data of trajectories and discuss the potential of experimental settings embedding controlled perturbations to probe response in migratory behavior.
Collapse
Affiliation(s)
- Johannes C. J. Heyn
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Joachim O. Rädler
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Physics, Humboldt University, Berlin, Germany
| |
Collapse
|
3
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Optimal cell traction forces in a generalized motor-clutch model. Biophys J 2023; 122:3369-3385. [PMID: 37475213 PMCID: PMC10465728 DOI: 10.1016/j.bpj.2023.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Cells exert forces on mechanically compliant environments to sense stiffness, migrate, and remodel tissue. Cells can sense environmental stiffness via myosin-generated pulling forces acting on F-actin, which is in turn mechanically coupled to the environment via adhesive proteins, akin to a clutch in a drivetrain. In this "motor-clutch" framework, the force transmitted depends on the complex interplay of motor, clutch, and environmental properties. Previous mean-field analysis of the motor-clutch model identified the conditions for optimal stiffness for maximal force transmission via a dimensionless number that combines motor-clutch parameters. However, in this and other previous mean-field analyses, the motor-clutch system is assumed to have balanced motors and clutches and did not consider force-dependent clutch reinforcement and catch bond behavior. Here, we generalize the motor-clutch analytical framework to include imbalanced motor-clutch regimes, with clutch reinforcement and catch bonding, and investigate optimality with respect to all parameters. We found that traction force is strongly influenced by clutch stiffness, and we discovered an optimal clutch stiffness that maximizes traction force, suggesting that cells could tune their clutch mechanical properties to perform a specific function. The results provide guidance for maximizing the accuracy of cell-generated force measurements via molecular tension sensors by designing their mechanosensitive linker peptide to be as stiff as possible. In addition, we found that, on rigid substrates, the mean-field analysis identifies optimal motor properties, suggesting that cells could regulate their myosin repertoire and activity to maximize force transmission. Finally, we found that clutch reinforcement shifts the optimum substrate stiffness to larger values, whereas the optimum substrate stiffness is insensitive to clutch catch bond properties. Overall, our work reveals novel features of the motor-clutch model that can affect the design of molecular tension sensors and provide a generalized analytical framework for predicting and controlling cell adhesion and migration in immunotherapy and cancer.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
4
|
Amiri B, Heyn JCJ, Schreiber C, Rädler JO, Falcke M. On multistability and constitutive relations of cell motion on fibronectin lanes. Biophys J 2023; 122:753-766. [PMID: 36739476 PMCID: PMC10027452 DOI: 10.1016/j.bpj.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Cell motility on flat substrates exhibits coexisting steady and oscillatory morphodynamics, the biphasic adhesion-velocity relation, and the universal correlation between speed and persistence (UCSP) as simultaneous observations common to many cell types. Their universality and concurrency suggest a unifying mechanism causing all three of them. Stick-slip models for cells on one-dimensional lanes suggest multistability to arise from the nonlinear friction of retrograde flow. This study suggests a mechanical mechanism controlled by integrin signaling on the basis of a biophysical model and analysis of trajectories of MDA-MB-231 cells on fibronectin lanes, which additionally explains the constitutive relations. The experiments exhibit cells with steady or oscillatory morphodynamics and either spread or moving with spontaneous transitions between the dynamic regimes, spread and moving, and spontaneous direction reversals. Our biophysical model is based on the force balance at the protrusion edge, the noisy clutch of retrograde flow, and a response function of friction and membrane drag to integrin signaling. The theory reproduces the experimentally observed cell states, characteristics of oscillations, and state probabilities. Analysis of experiments with the biophysical model establishes a stick-slip oscillation mechanism, and explains multistability of cell states and the statistics of state transitions. It suggests protrusion competition to cause direction reversal events, the statistics of which explain the UCSP. The effect of integrin signaling on drag and friction explains the adhesion-velocity relation and cell behavior at fibronectin density steps. The dynamics of our mechanism are nonlinear flow mechanics driven by F-actin polymerization and shaped by the noisy clutch of retrograde flow friction, protrusion competition via membrane tension, and drag forces. Integrin signaling controls the parameters of the mechanical system.
Collapse
Affiliation(s)
- Behnam Amiri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Johannes C J Heyn
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Christoph Schreiber
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Joachim O Rädler
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany.
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Physics, Humboldt University, Berlin, Germany.
| |
Collapse
|
5
|
Generic self-stabilization mechanism for biomolecular adhesions under load. Nat Commun 2022; 13:2197. [PMID: 35459276 PMCID: PMC9033785 DOI: 10.1038/s41467-022-29823-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/20/2022] [Indexed: 11/09/2022] Open
Abstract
Mechanical loading generally weakens adhesive structures and eventually leads to their rupture. However, biological systems can adapt to loads by strengthening adhesions, which is essential for maintaining the integrity of tissue and whole organisms. Inspired by cellular focal adhesions, we suggest here a generic, molecular mechanism that allows adhesion systems to harness applied loads for self-stabilization through adhesion growth. The mechanism is based on conformation changes of adhesion molecules that are dynamically exchanged with a reservoir. Tangential loading drives the occupation of some states out of equilibrium, which, for thermodynamic reasons, leads to association of further molecules with the cluster. Self-stabilization robustly increases adhesion lifetimes in broad parameter ranges. Unlike for catch-bonds, bond rupture rates can increase monotonically with force. The self-stabilization principle can be realized in many ways in complex adhesion-state networks; we show how it naturally occurs in cellular adhesions involving the adaptor proteins talin and vinculin. Cellular adhesions have the remarkable property that they adapt their stability to the applied mechanical load. Here, authors describe a generic physical mechanism that explains self-stabilization of idealized adhesion systems under shear.
Collapse
|
6
|
Vazquez K, Saraswathibhatla A, Notbohm J. Effect of substrate stiffness on friction in collective cell migration. Sci Rep 2022; 12:2474. [PMID: 35169196 PMCID: PMC8847350 DOI: 10.1038/s41598-022-06504-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022] Open
Abstract
In collective cell migration, the motion results from forces produced by each cell and transmitted to the neighboring cells and to the substrate. Because inertia is negligible and the migration occurs over long time scales, the cell layer exhibits viscous behavior, where force and motion are connected by an apparent friction that results from the breaking and forming of adhesive bonds at the cell–cell and cell–substrate interfaces. Most theoretical models for collective migration include an apparent friction to connect force and motion, with many models making predictions that depend on the ratio of cell–cell and cell–substrate friction. However, little is known about factors that affect friction, leaving predictions of many theoretical models untested. Here, we considered how substrate stiffness and the number of adhesions affected friction at the cell–substrate interface. The experimental data were interpreted through prior theoretical models, which led to the same conclusion, that increased substrate stiffness increased the number of cell–substrate adhesions and caused increased cell–substrate friction. In turn, the friction affected the collective migration by altering the curvature at the edge of the cell layer. By revealing underlying factors affecting friction and demonstrating how friction perturbs the collective migration, this work provides experimental evidence supporting prior theoretical models and motivates the study of other ways to alter the collective migration by changing friction.
Collapse
Affiliation(s)
- Kelly Vazquez
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Chandra A, Butler MT, Bear JE, Haugh JM. Modeling cell protrusion predicts how myosin II and actin turnover affect adhesion-based signaling. Biophys J 2022; 121:102-118. [PMID: 34861242 PMCID: PMC8758409 DOI: 10.1016/j.bpj.2021.11.2889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023] Open
Abstract
Orchestration of cell migration is essential for development, tissue regeneration, and the immune response. This dynamic process integrates adhesion, signaling, and cytoskeletal subprocesses across spatial and temporal scales. In mesenchymal cells, adhesion complexes bound to extracellular matrix mediate both biochemical signal transduction and physical interaction with the F-actin cytoskeleton. Here, we present a mathematical model that offers insight into both aspects, considering spatiotemporal dynamics of nascent adhesions, active signaling molecules, mechanical clutching, actin treadmilling, and nonmuscle myosin II contractility. At the core of the model is a positive feedback loop, whereby adhesion-based signaling promotes generation of barbed ends at, and protrusion of, the cell's leading edge, which in turn promotes formation and stabilization of nascent adhesions. The model predicts a switch-like transition and optimality of membrane protrusion, determined by the balance of actin polymerization and retrograde flow, with respect to extracellular matrix density. The model, together with new experimental measurements, explains how protrusion can be modulated by mechanical effects (nonmuscle myosin II contractility and adhesive bond stiffness) and F-actin turnover.
Collapse
Affiliation(s)
- Ankit Chandra
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Mitchell T Butler
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - James E Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|
8
|
Henning Stumpf B, Ambriović-Ristov A, Radenovic A, Smith AS. Recent Advances and Prospects in the Research of Nascent Adhesions. Front Physiol 2020; 11:574371. [PMID: 33343382 PMCID: PMC7746844 DOI: 10.3389/fphys.2020.574371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
Nascent adhesions are submicron transient structures promoting the early adhesion of cells to the extracellular matrix. Nascent adhesions typically consist of several tens of integrins, and serve as platforms for the recruitment and activation of proteins to build mature focal adhesions. They are also associated with early stage signaling and the mechanoresponse. Despite their crucial role in sampling the local extracellular matrix, very little is known about the mechanism of their formation. Consequently, there is a strong scientific activity focused on elucidating the physical and biochemical foundation of their development and function. Precisely the results of this effort will be summarized in this article.
Collapse
Affiliation(s)
- Bernd Henning Stumpf
- PULS Group, Institute for Theoretical Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ana-Sunčana Smith
- PULS Group, Institute for Theoretical Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
9
|
Stick-slip model for actin-driven cell protrusions, cell polarization, and crawling. Proc Natl Acad Sci U S A 2020; 117:24670-24678. [PMID: 32958682 DOI: 10.1073/pnas.2011785117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell crawling requires the generation of intracellular forces by the cytoskeleton and their transmission to an extracellular substrate through specific adhesion molecules. Crawling cells show many features of excitable systems, such as spontaneous symmetry breaking and crawling in the absence of external cues, and periodic and propagating waves of activity. Mechanical instabilities in the active cytoskeleton network and feedback loops in the biochemical network of activators and repressors of cytoskeleton dynamics have been invoked to explain these dynamical features. Here, I show that the interplay between the dynamics of cell-substrate adhesion and linear cellular mechanics is sufficient to reproduce many nonlinear dynamical patterns observed in spreading and crawling cells. Using an analytical formalism of the molecular clutch model of cell adhesion, regulated by local mechanical forces, I show that cellular traction forces exhibit stick-slip dynamics resulting in periodic waves of protrusion/retraction and propagating waves along the cell edge. This can explain spontaneous symmetry breaking and polarization of spreading cells, leading to steady crawling or bipedal motion, and bistability, where persistent cell motion requires a sufficiently strong transient external stimulus. The model also highlights the role of membrane tension in providing the long-range mechanical communication across the cell required for symmetry breaking.
Collapse
|
10
|
Zhao J, Manuchehrfar F, Liang J. Cell-substrate mechanics guide collective cell migration through intercellular adhesion: a dynamic finite element cellular model. Biomech Model Mechanobiol 2020; 19:1781-1796. [PMID: 32108272 PMCID: PMC7990038 DOI: 10.1007/s10237-020-01308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/13/2020] [Indexed: 01/23/2023]
Abstract
During the process of tissue formation and regeneration, cells migrate collectively while remaining connected through intercellular adhesions. However, the roles of cell-substrate and cell-cell mechanical interactions in regulating collective cell migration are still unclear. In this study, we employ a newly developed finite element cellular model to study collective cell migration by exploring the effects of mechanical feedback between cell and substrate and mechanical signal transmission between adjacent cells. Our viscoelastic model of cells consists many triangular elements and is of high resolution. Cadherin adhesion between cells is modeled explicitly as linear springs at subcellular level. In addition, we incorporate a mechano-chemical feedback loop between cell-substrate mechanics and Rac-mediated cell protrusion. Our model can reproduce a number of experimentally observed patterns of collective cell migration during wound healing, including cell migration persistence, separation distance between cell pairs and migration direction. Moreover, we demonstrate that cell protrusion determined by the cell-substrate mechanics plays an important role in guiding persistent and oriented collective cell migration. Furthermore, this guidance cue can be maintained and transmitted to submarginal cells of long distance through intercellular adhesions. Our study illustrates that our finite element cellular model can be employed to study broad problems of complex tissue in dynamic changes at subcellular level.
Collapse
Affiliation(s)
- Jieling Zhao
- INRIA de Paris and Sorbonne Universités UPMC, LJLL Team Mamba, Paris, France.
| | - Farid Manuchehrfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
11
|
Bressloff PC. Stochastic resetting and the mean-field dynamics of focal adhesions. Phys Rev E 2020; 102:022134. [PMID: 32942383 DOI: 10.1103/physreve.102.022134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/12/2020] [Indexed: 11/07/2022]
Abstract
In this paper we investigate the effects of diffusion on the dynamics of a single focal adhesion at the leading edge of a crawling cell by considering a simplified model of sliding friction. Using a mean-field approximation, we derive an effective single-particle system that can be interpreted as an overdamped Brownian particle with spatially dependent stochastic resetting. We then use renewal and path-integral methods from the theory of stochastic resetting to calculate the mean sliding velocity under the combined action of diffusion, active forces, viscous drag, and elastic forces generated by the adhesive bonds. Our analysis suggests that the inclusion of diffusion can sharpen the response to changes in the effective stiffness of the adhesion bonds. This is consistent with the hypothesis that force fluctuations could play a role in mechanosensing of the local microenvironment.
Collapse
Affiliation(s)
- Paul C Bressloff
- Department of Mathematics, University of Utah Salt Lake City, Utah 84112, USA
| |
Collapse
|
12
|
MacKay L, Khadra A. The bioenergetics of integrin-based adhesion, from single molecule dynamics to stability of macromolecular complexes. Comput Struct Biotechnol J 2020; 18:393-416. [PMID: 32128069 PMCID: PMC7044673 DOI: 10.1016/j.csbj.2020.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
The forces actively generated by motile cells must be transmitted to their environment in a spatiotemporally regulated manner, in order to produce directional cellular motion. This task is accomplished through integrin-based adhesions, large macromolecular complexes that link the actin-cytoskelton inside the cell to its external environment. Despite their relatively large size, adhesions exhibit rapid dynamics, switching between assembly and disassembly in response to chemical and mechanical cues exerted by cytoplasmic biochemical signals, and intracellular/extracellular forces, respectively. While in material science, force typically disrupts adhesive contact, in this biological system, force has a more nuanced effect, capable of causing assembly or disassembly. This initially puzzled experimentalists and theorists alike, but investigation into the mechanisms regulating adhesion dynamics have progressively elucidated the origin of these phenomena. This review provides an overview of recent studies focused on the theoretical understanding of adhesion assembly and disassembly as well as the experimental studies that motivated them. We first concentrate on the kinetics of integrin receptors, which exhibit a complex response to force, and then investigate how this response manifests itself in macromolecular adhesion complexes. We then turn our attention to studies of adhesion plaque dynamics that link integrins to the actin-cytoskeleton, and explain how force can influence the assembly/disassembly of these macromolecular structure. Subsequently, we analyze the effect of force on integrins populations across lengthscales larger than single adhesions. Finally, we cover some theoretical studies that have considered both integrins and the adhesion plaque and discuss some potential future avenues of research.
Collapse
Affiliation(s)
- Laurent MacKay
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| |
Collapse
|
13
|
De PS, De R. Stick-slip dynamics of migrating cells on viscoelastic substrates. Phys Rev E 2019; 100:012409. [PMID: 31499904 DOI: 10.1103/physreve.100.012409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Indexed: 01/14/2023]
Abstract
Stick-slip motion, a common phenomenon observed during crawling of cells, is found to be strongly sensitive to the substrate stiffness. Stick-slip behaviors have previously been investigated typically using purely elastic substrates. For a more realistic understanding of this phenomenon, we propose a theoretical model to study the dynamics on a viscoelastic substrate. Our model, based on a reaction-diffusion framework, incorporates known important interactions such as retrograde flow of actin, myosin contractility, force-dependent assembly, and disassembly of focal adhesions coupled with cell-substrate interaction. We show that consideration of a viscoelastic substrate not only captures the usually observed stick-slip jumps but also predicts the existence of an optimal substrate viscosity corresponding to maximum traction force and minimum retrograde flow which was hitherto unexplored. Moreover, our theory predicts the time evolution of individual bond force that characterizes the stick-slip patterns on soft versus stiff substrates. Our analysis also elucidates how the duration of the stick-slip cycles are affected by various cellular parameters.
Collapse
Affiliation(s)
- Partho Sakha De
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Rumi De
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
14
|
Abstract
Cell migration is the physical movement of cells and is responsible for the extensive cellular invasion and metastasis that occur in high-grade tumors. Motivated by decades of direct observation of cell migration via light microscopy, theoretical models have emerged to capture various aspects of the fundamental physical phenomena underlying cell migration. Yet, the motility mechanisms actually used by tumor cells during invasion are still poorly understood, as is the role of cellular interactions with the extracellular environment. In this chapter, we review key physical principles of cytoskeletal self-assembly and force generation, membrane tension, biological adhesion, hydrostatic and osmotic pressures, and their integration in mathematical models of cell migration. With the goal of modeling-driven cancer therapy, we provide examples to guide oncologists and physical scientists in developing next-generation models to predict disease progression and treatment.
Collapse
Affiliation(s)
- Louis S Prahl
- Department of Biomedical Engineering and Physical Sciences-Oncology Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
| | - David J Odde
- Department of Biomedical Engineering and Physical Sciences-Oncology Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
15
|
Shams H, Hoffman BD, Mofrad MRK. The "Stressful" Life of Cell Adhesion Molecules: On the Mechanosensitivity of Integrin Adhesome. J Biomech Eng 2019; 140:2667887. [PMID: 29272321 DOI: 10.1115/1.4038812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 02/06/2023]
Abstract
Cells have evolved into complex sensory machines that communicate with their microenvironment via mechanochemical signaling. Extracellular mechanical cues trigger complex biochemical pathways in the cell, which regulate various cellular processes. Integrin-mediated focal adhesions (FAs) are large multiprotein complexes, also known as the integrin adhesome, that link the extracellular matrix (ECM) to the actin cytoskeleton, and are part of powerful intracellular machinery orchestrating mechanotransduction pathways. As forces are transmitted across FAs, individual proteins undergo structural and functional changes that involve a conversion of chemical to mechanical energy. The local composition of early adhesions likely defines the regional stress levels and determines the type of newly recruited proteins, which in turn modify the local stress distribution. Various approaches have been used for detecting and exploring molecular mechanisms through which FAs are spatiotemporally regulated, however, many aspects are yet to be understood. Current knowledge on the molecular mechanisms of mechanosensitivity in adhesion proteins is discussed herein along with important questions yet to be addressed, are discussed.
Collapse
Affiliation(s)
- Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720-1762
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall #1762, Berkeley, CA 94720-1762.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA 94720 e-mail:
| |
Collapse
|
16
|
Multiscale model of integrin adhesion assembly. PLoS Comput Biol 2019; 15:e1007077. [PMID: 31163027 PMCID: PMC6568411 DOI: 10.1371/journal.pcbi.1007077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/14/2019] [Accepted: 05/08/2019] [Indexed: 01/09/2023] Open
Abstract
The ability of adherent cells to form adhesions is critical to numerous phases of their physiology. The assembly of adhesions is mediated by several types of integrins. These integrins differ in physical properties, including rate of diffusion on the plasma membrane, rapidity of changing conformation from bent to extended, affinity for extracellular matrix ligands, and lifetimes of their ligand-bound states. However, the way in which nanoscale physical properties of integrins ensure proper adhesion assembly remains elusive. We observe experimentally that both β-1 and β-3 integrins localize in nascent adhesions at the cell leading edge. In order to understand how different nanoscale parameters of β-1 and β-3 integrins mediate proper adhesion assembly, we therefore develop a coarse-grained computational model. Results from the model demonstrate that morphology and distribution of nascent adhesions depend on ligand binding affinity and strength of pairwise interactions. Organization of nascent adhesions depends on the relative amounts of integrins with different bond kinetics. Moreover, the model shows that the architecture of an actin filament network does not perturb the total amount of integrin clustering and ligand binding; however, only bundled actin architectures favor adhesion stability and ultimately maturation. Together, our results support the view that cells can finely tune the expression of different integrin types to determine both structural and dynamic properties of adhesions.
Collapse
|
17
|
Chen Y, Li Z, Ju LA. Tensile and compressive force regulation on cell mechanosensing. Biophys Rev 2019; 11:311-318. [PMID: 31073958 DOI: 10.1007/s12551-019-00536-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Receptor-mediated cell mechanosensing plays critical roles in cell spreading, migration, growth, and survival. Dynamic force spectroscopy (DFS) techniques have recently been advanced to visualize such processes, which allow the concurrent examination of molecular binding dynamics and cellular response to mechanical stimuli on single living cells. Notably, the live-cell DFS is able to manipulate the force "waveforms" such as tensile versus compressive, ramped versus clamped, static versus dynamic, and short versus long lasting forces, thereby deriving correlations of cellular responses with ligand binding kinetics and mechanical stimulation profiles. Here, by differentiating extracellular mechanical stimulations into two major categories, tensile force and compressive force, we review the latest findings on receptor-mediated mechanosensing mechanisms that are discovered by the state-of-the-art live-cell DFS technologies.
Collapse
Affiliation(s)
- Yunfeng Chen
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Zhiyong Li
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Lining Arnold Ju
- Heart Research Institute, Sydney, Australia. .,School of Aerospace, Mechanical and Mechatronic Engineering, Darlington, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
18
|
Sun L, Noel JK, Levine H, Onuchic JN. Molecular Simulations Suggest a Force-Dependent Mechanism of Vinculin Activation. Biophys J 2017; 113:1697-1710. [PMID: 29045864 DOI: 10.1016/j.bpj.2017.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/19/2017] [Accepted: 08/08/2017] [Indexed: 10/18/2022] Open
Abstract
Focal adhesions are dynamic constructs at the leading edge of migrating cells, linking them to the extracellular matrix and enabling force sensing and transmission. The lifecycle of a focal adhesion is a highly coordinated process involving spatial and temporal variations of protein composition, interaction, and cellular tension. The assembly of focal adhesions requires the recruitment and activation of vinculin. Vinculin is present in the cytoplasm in an autoinhibited conformation in which its tail is held pincerlike by its head domains, further stabilized by two high-affinity head-tail interfaces. Vinculin has binding sites for talin and F-actin, but effective binding requires vinculin activation to release its head-tail associations. In migrating cells, it has been shown that the locations of vinculin activation coincide with areas of high cellular tension, and that the highest recorded tensions across vinculin are associated with adhesion assembly. Here, we use a structure-based model to investigate vinculin activation by talin modulated by tensile force generated by transient associations with F-actin. We show that vinculin activation may proceed from an intermediate state stabilized by partial talin-vinculin association. There is a low-force regime and a high-force regime where vinculin activation is dominated by two different pathways with distinct responses to force. Specifically, at zero or low forces, vinculin activation requires substantial destabilization of the main head-tail interface, which is rigid and undergoes very limited fluctuations, despite the other being relatively flexible. This pathway is not significantly affected by force; instead, higher forces favor an alternative pathway, which seeks to release the vinculin tail from its pincerlike head domains before destabilizing the head-tail interfaces. This pathway has a force-sensitive activation barrier and is significantly accelerated by force. Experimental data of vinculin during various stages of the focal adhesion lifecycle are consistent with the proposed force-regulated activation pathway.
Collapse
Affiliation(s)
- Li Sun
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Jeffrey K Noel
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Max Delbrück Center, Berlin, Germany
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas.
| |
Collapse
|
19
|
Ziebert F, Löber J, Aranson IS. Macroscopic Model of Substrate-Based Cell Motility. PHYSICAL MODELS OF CELL MOTILITY 2016. [DOI: 10.1007/978-3-319-24448-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Cell Invasion Dynamics into a Three Dimensional Extracellular Matrix Fibre Network. PLoS Comput Biol 2015; 11:e1004535. [PMID: 26436883 PMCID: PMC4593642 DOI: 10.1371/journal.pcbi.1004535] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/05/2015] [Indexed: 01/02/2023] Open
Abstract
The dynamics of filopodia interacting with the surrounding extracellular matrix (ECM) play a key role in various cell-ECM interactions, but their mechanisms of interaction with the ECM in 3D environment remain poorly understood. Based on first principles, here we construct an individual-based, force-based computational model integrating four modules of 1) filopodia penetration dynamics; 2) intracellular mechanics of cellular and nuclear membranes, contractile actin stress fibers, and focal adhesion dynamics; 3) structural mechanics of ECM fiber networks; and 4) reaction-diffusion mass transfers of seven biochemical concentrations in related with chemotaxis, proteolysis, haptotaxis, and degradation in ECM to predict dynamic behaviors of filopodia that penetrate into a 3D ECM fiber network. The tip of each filopodium crawls along ECM fibers, tugs the surrounding fibers, and contracts or retracts depending on the strength of the binding and the ECM stiffness and pore size. This filopodium-ECM interaction is modeled as a stochastic process based on binding kinetics between integrins along the filopodial shaft and the ligands on the surrounding ECM fibers. This filopodia stochastic model is integrated into migratory dynamics of a whole cell in order to predict the cell invasion into 3D ECM in response to chemotaxis, haptotaxis, and durotaxis cues. Predicted average filopodia speed and that of the cell membrane advance agreed with experiments of 3D HUVEC migration at r(2) > 0.95 for diverse ECMs with different pore sizes and stiffness.
Collapse
|
21
|
Abstract
Mechanical stimuli are known to be potent regulators of the form and function of cells and organisms. Although biological regulation has classically been understood in terms of principles from solution biochemistry, advancements in many fields have led to the development of a suite of techniques that are able to reveal the interplay between mechanical loading and changes in the biochemical properties of proteins in systems ranging from single molecules to living organisms. Here, we review these techniques and highlight the emergence of a new molecular-scale understanding of the mechanisms mediating the detection and response of cells to mechanical stimuli, a process termed mechanotransduction. Specifically, we focus on the role of subcellular adhesion structures in sensing the stiffness of the surrounding environment because this process is pertinent to applications in tissue engineering as well the onset of several mechanosensitive disease states, including cancer.
Collapse
Affiliation(s)
- Andrew S LaCroix
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708;
| | - Katheryn E Rothenberg
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708;
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708;
| |
Collapse
|
22
|
Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model. Bull Math Biol 2015; 77:1813-32. [PMID: 26403420 DOI: 10.1007/s11538-015-0105-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/09/2015] [Indexed: 12/24/2022]
Abstract
The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as the distribution of effective forces across the lamellipodia of a keratocyte with stationary shape. The order of magnitude method is also used to determine the contribution of forces in the internal dynamics of lamellipodia.
Collapse
|
23
|
Craig EM, Stricker J, Gardel M, Mogilner A. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge. Phys Biol 2015; 12:035002. [PMID: 25969948 DOI: 10.1088/1478-3975/12/3/035002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell motility relies on the continuous reorganization of a dynamic actin-myosin-adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin-adhesion-myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium-lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium-lamellum boundary is not very sensitive to the level of myosin contraction.
Collapse
Affiliation(s)
- Erin M Craig
- Central Washington University, Department of Physics, 400 E. University Way, Ellensburg, WA 98926-7422, USA
| | | | | | | |
Collapse
|
24
|
Oakes PW, Gardel ML. Stressing the limits of focal adhesion mechanosensitivity. Curr Opin Cell Biol 2014; 30:68-73. [PMID: 24998185 DOI: 10.1016/j.ceb.2014.06.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 01/09/2023]
Abstract
Focal adhesion assembly and maturation often occurs concomitantly with changes in force generated within the cytoskeleton or extracellular matrix. To coordinate focal adhesion dynamics with force, it has been suggested that focal adhesion dynamics are mechanosensitive. This review discusses current understanding of the regulation of focal adhesion assembly and force transmission, and the limits to which we can consider focal adhesion plaques as mechanosensitive entities.
Collapse
Affiliation(s)
- Patrick W Oakes
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| | - Margaret L Gardel
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
25
|
Molecular Mechanisms Underlying the Force-Dependent Regulation of Actin-to-ECM Linkage at the Focal Adhesions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:135-54. [DOI: 10.1016/b978-0-12-394624-9.00006-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Danuser G, Allard J, Mogilner A. Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu Rev Cell Dev Biol 2013; 29:501-28. [PMID: 23909278 DOI: 10.1146/annurev-cellbio-101512-122308] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A migrating cell is a molecular machine made of tens of thousands of short-lived and interacting parts. Understanding migration means understanding the self-organization of these parts into a system of functional units. This task is one of tackling complexity: First, the system integrates numerous chemical and mechanical component processes. Second, these processes are connected in feedback interactions and over a large range of spatial and temporal scales. Third, many processes are stochastic, which leads to heterogeneous migration behaviors. Early on in the research of cell migration it became evident that this complexity exceeds human intuition. Thus, the cell migration community has led the charge to build mathematical models that could integrate the diverse experimental observations and measurements in consistent frameworks, first in conceptual and more recently in molecularly explicit models. The main goal of this review is to sift through a series of important conceptual and explicit mathematical models of cell migration and to evaluate their contribution to the field in their ability to integrate critical experimental data.
Collapse
Affiliation(s)
- Gaudenz Danuser
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
27
|
Schwarz US, Gardel ML. United we stand: integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J Cell Sci 2012; 125:3051-60. [PMID: 22797913 DOI: 10.1242/jcs.093716] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many essential cellular functions in health and disease are closely linked to the ability of cells to respond to mechanical forces. In the context of cell adhesion to the extracellular matrix, the forces that are generated within the actin cytoskeleton and transmitted through integrin-based focal adhesions are essential for the cellular response to environmental clues, such as the spatial distribution of adhesive ligands or matrix stiffness. Whereas substantial progress has been made in identifying mechanosensitive molecules that can transduce mechanical force into biochemical signals, much less is known about the nature of cytoskeletal force generation and transmission that regulates the magnitude, duration and spatial distribution of forces imposed on these mechanosensitive complexes. By focusing on cell-matrix adhesion to flat elastic substrates, on which traction forces can be measured with high temporal and spatial resolution, we discuss our current understanding of the physical mechanisms that integrate a large range of molecular mechanotransduction events on cellular scales. Physical limits of stability emerge as one important element of the cellular response that complements the structural changes affected by regulatory systems in response to mechanical processes.
Collapse
Affiliation(s)
- Ulrich S Schwarz
- BioQuant and Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
28
|
Roca-Cusachs P, Iskratsch T, Sheetz MP. Finding the weakest link: exploring integrin-mediated mechanical molecular pathways. J Cell Sci 2012; 125:3025-38. [PMID: 22797926 DOI: 10.1242/jcs.095794] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
From the extracellular matrix to the cytoskeleton, a network of molecular links connects cells to their environment. Molecules in this network transmit and detect mechanical forces, which subsequently determine cell behavior and fate. Here, we reconstruct the mechanical pathway followed by these forces. From matrix proteins to actin through integrins and adaptor proteins, we review how forces affect the lifetime of bonds and stretch or alter the conformation of proteins, and how these mechanical changes are converted into biochemical signals in mechanotransduction events. We evaluate which of the proteins in the network can participate in mechanotransduction and which are simply responsible for transmitting forces in a dynamic network. Besides their individual properties, we also analyze how the mechanical responses of a protein are determined by their serial connections from the matrix to actin, their parallel connections in integrin clusters and by the rate at which force is applied to them. All these define mechanical molecular pathways in cells, which are emerging as key regulators of cell function alongside better studied biochemical pathways.
Collapse
Affiliation(s)
- Pere Roca-Cusachs
- University of Barcelona and Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
29
|
Welf ES, Haugh JM. Stochastic models of cell protrusion arising from spatiotemporal signaling and adhesion dynamics. Methods Cell Biol 2012; 110:223-41. [PMID: 22482951 DOI: 10.1016/b978-0-12-388403-9.00009-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During cell migration, local protrusion events are regulated by biochemical and physical processes that are in turn coordinated with the dynamic properties of cell-substratum adhesion structures. In this chapter, we present a modeling approach for integrating the apparent stochasticity and spatial dependence of signal transduction pathways that promote protrusion in tandem with adhesion dynamics. We describe our modeling framework, as well as its abstraction, parameterization, and validation against experimental data. Analytical techniques for identifying and evaluating the effects of model bistability on simulation simulation results are shown, and implications of this analysis for understanding cell protrusion behavior are offered.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | | |
Collapse
|
30
|
Abstract
Cellular responses to mechanical forces are crucial in embryonic development and adult physiology, and are involved in numerous diseases, including atherosclerosis, hypertension, osteoporosis, muscular dystrophy, myopathies and cancer. These responses are mediated by load-bearing subcellular structures, such as the plasma membrane, cell-adhesion complexes and the cytoskeleton. Recent work has demonstrated that these structures are dynamic, undergoing assembly, disassembly and movement, even when ostensibly stable. An emerging insight is that transduction of forces into biochemical signals occurs within the context of these processes. This framework helps to explain how forces of varying strengths or dynamic characteristics regulate distinct signalling pathways.
Collapse
|
31
|
Gao H, Qian J, Chen B. Probing mechanical principles of focal contacts in cell-matrix adhesion with a coupled stochastic-elastic modelling framework. J R Soc Interface 2011; 8:1217-32. [PMID: 21632610 DOI: 10.1098/rsif.2011.0157] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell-matrix adhesion depends on the collective behaviours of clusters of receptor-ligand bonds called focal contacts between cell and extracellular matrix. While the behaviour of a single molecular bond is governed by statistical mechanics at the molecular scale, continuum mechanics should be valid at a larger scale. This paper presents an overview of a series of recent theoretical studies aimed at probing the basic mechanical principles of focal contacts in cell-matrix adhesion via stochastic-elastic models in which stochastic descriptions of molecular bonds and elastic descriptions of interfacial traction-separation are unified in a single modelling framework. The intention here is to illustrate these principles using simple analytical and numerical models. The aim of the discussions is to provide possible clues to the following questions: why does the size of focal adhesions (FAs) fall into a narrow range around the micrometre scale? How can cells sense and respond to substrates of varied stiffness via FAs? How do the magnitude and orientation of mechanical forces affect the binding dynamics of FAs? The effects of cluster size, cell-matrix elastic modulus, loading direction and cytoskeletal pretension on the lifetime of FA clusters have been investigated by theoretical arguments as well as Monte Carlo numerical simulations, with results showing that intermediate adhesion size, stiff substrate, cytoskeleton stiffening, low-angle pulling and moderate cytoskeletal pretension are factors that contribute to stable FAs. From a mechanistic point of view, these results provide possible explanations for a wide range of experimental observations and suggest multiple mechanisms by which cells can actively control adhesion and de-adhesion via cytoskeletal contractile machinery in response to mechanical properties of their surroundings.
Collapse
Affiliation(s)
- Huajian Gao
- School of Engineering, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
32
|
Conserved F-actin dynamics and force transmission at cell adhesions. Curr Opin Cell Biol 2010; 22:583-8. [PMID: 20728328 DOI: 10.1016/j.ceb.2010.07.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/20/2010] [Accepted: 07/26/2010] [Indexed: 12/20/2022]
Abstract
Adhesions are a central mechanism by which cells mechanically interact with the surrounding extracellular matrix (ECM) and neighboring cells. In both cell-ECM and cell-cell adhesions, forces generated within the actin cytoskeleton are transmitted to the surrounding environment and are essential for numerous morphogenic processes. Despite differences in many molecular components that regulate cell-cell and cell-ECM adhesions, the roles of F-actin dynamics and mechanical forces in adhesion regulation are surprisingly similar. Moreover, force transmission at adhesions occurs concomitantly with dynamic F-actin; proteins comprising the adhesion of F-actin to the plasma membrane must accommodate this movement while still facilitating force transmission. Thus, despite different molecular architectures, integrin and cadherin-mediated adhesions operate with common biophysical characteristics to transmit and respond to mechanical forces in multicellular tissue.
Collapse
|