1
|
McFegan L, Juhász Á, Márton P, Hórvölgyi Z, Jedlovszky-Hajdu A, Hantal G, Jedlovszky P. Surface Affinity of Tetramethylammonium Iodide in Aqueous Solutions: A Combined Experimental and Computer Simulation Study. J Phys Chem B 2023. [PMID: 37276239 DOI: 10.1021/acs.jpcb.3c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The surface affinity of tetramethylammonium iodide (TMAI) in aqueous solutions is investigated by surface tension measurements and molecular dynamics computer simulations. Experiments, performed in the entire composition range of solubility using the pendant drop method with two different setups, clearly reveal that TMAI is a weakly capillary active salt. Computer simulations performed with the AMBER force field reproduce the experimental data very well, while two other major force fields (i.e., CHARMM and OPLS) can still reproduce the experimental trend qualitatively; however, even qualitative reproduction of the experimental trend requires scaling down the ion charges according to the Leontyev-Stuchebrukhov correction. On the other hand, the GROMOS force field fails in reproducing the experimentally confirmed capillary activity of TMAI. Molecular dynamics simulation results show that, among the two ions, iodide has a clearly larger surface affinity than tetramethylammonium (TMA+). Further, the adsorption of the I- anions is strictly limited to the first molecular layer beneath the liquid-vapor interface, which is followed by several layers of their depletion. On the other hand, the net negative charge of the surface layer, caused by the excess amount of I- with respect to TMA+, is compensated by a diffuse layer of adsorbed TMA+ cations, extending to or beyond the fourth molecular layer beneath the liquid surface.
Collapse
Affiliation(s)
- Louisa McFegan
- Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | | | - Péter Márton
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budafoki út 8, H-1111 Budapest, Hungary
| | - Zoltán Hórvölgyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budafoki út 8, H-1111 Budapest, Hungary
| | | | - György Hantal
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Straße 82, A-1190 Vienna, Austria
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly Catholic University, Leányka utca 6, H-3300 Eger, Hungary
| |
Collapse
|
2
|
Chen S, Voth GA. How Does Electronic Polarizability or Scaled-Charge Affect the Interfacial Properties of Room Temperature Ionic Liquids? J Phys Chem B 2023; 127:1264-1275. [PMID: 36701801 PMCID: PMC9924258 DOI: 10.1021/acs.jpcb.2c07981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/01/2023] [Indexed: 01/27/2023]
Abstract
The room temperature ionic liquid (RTIL) air-liquid interface plays an important role in many applications. Herein, we present molecular dynamics simulation results for the air-liquid interface of a common RTIL, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, [C4mim][NTf2]. To elucidate the effects of electronic polarizability and scaled-charge ions on the properties of the RTIL air-liquid interface, we employ three different kinds of force fields: a nonpolarizable force field (FF) with united ion charges (FixQ), a nonpolarizable FF with scaled-charge by 0.8 (ScaleQ), and a polarizable FF (Drude). To identify whether the ions reside at the interface or not, the method of identification of the truly interfacial molecules is used. The structural and dynamical properties in the interfacial, subinterfacial, and central layers are evaluated. In general for bulk liquids, the FixQ model predicts too-ordered structures and too-sluggish dynamics, while the ScaleQ model can serve as a simple cure. However, the ScaleQ model cannot reproduce the results of the Drude model at the interface, due to an inappropriate scaled-down charge near the interface.
Collapse
Affiliation(s)
- Sijia Chen
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, The James Franck Institute,
and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois60637, United States
| | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, The James Franck Institute,
and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
3
|
Kumar N, Clark AE. Unexpected inverse correlations and cooperativity in ion-pair phase transfer. Chem Sci 2021; 12:13930-13939. [PMID: 34760180 PMCID: PMC8549775 DOI: 10.1039/d1sc04004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Liquid/liquid extraction is one of the most widely used separation and purification methods, where a forefront of research is the study of transport mechanisms for solute partitioning and the relationships that these have to solution structure at the phase boundary. To date, organized surface features that include protrusions, water-fingers, and molecular hinges have been reported. Many of these equilibrium studies have focused upon small-molecule transport – yet the extent to which the complexity of the solute, and the competition between different solutes, influence transport mechanisms have not been explored. Here we report molecular dynamics simulations that demonstrate that a metal salt (LiNO3) can be transported via a protrusion mechanism that is remarkably similar to that reported for H2O by tri-butyl phosphate (TBP), a process that involves dimeric assemblies. Yet the LiNO3 out-competes H2O for a bridging position between the extracting TBP dimer, which in-turn changes the preferred transport pathway of H2O. Examining the electrolyte concentration dependence on ion-pair transport unexpectedly reveals an inverse correlation with the extracting surfactant concentration. As [LiNO3] increases, surface adsorbed TBP becomes a limiting reactant in correlation with an increased negative surface charge induced by excess interfacial NO3−, however the rate of transport is enhanced. Within the highly dynamic interfacial environment, we hypothesize that this unique cooperative effect may be due to perturbed surface organization that either decreases the energy of formation of transporting protrusion motifs or makes it easier for these self-assembled species to disengage from the surface. A forefront of research in separations science (specifically liquid–liquid extraction) is the study of transport mechanisms for solute partitioning, and the relationships that these have to solution structure at the phase boundary.![]()
Collapse
Affiliation(s)
- Nitesh Kumar
- Department of Chemistry, Washington State University Pullman Washington 99164 USA
| | - Aurora E Clark
- Department of Chemistry, Washington State University Pullman Washington 99164 USA.,Pacific Northwest National Laboratory Richland Washington 99354 USA
| |
Collapse
|
4
|
Lbadaoui-Darvas M, Garberoglio G, Karadima KS, Cordeiro MNDS, Nenes A, Takahama S. Molecular simulations of interfacial systems: challenges, applications and future perspectives. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1980215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Mária Lbadaoui-Darvas
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanni Garberoglio
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (FBK-ECT*), Trento, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), Trento, Italy
| | - Katerina S. Karadima
- Department of Chemical Engineering, University of Patras, Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas(FORTH-ICE/HT), Patras, Greece
| | | | - Athanasios Nenes
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas(FORTH-ICE/HT), Patras, Greece
| | - Satoshi Takahama
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
|
6
|
Hantal G, Kolafa J, Sega M, Jedlovszky P. Single-Particle Dynamics at the Intrinsic Surface of Aqueous Alkali Halide Solutions. J Phys Chem B 2021; 125:665-679. [PMID: 33423500 DOI: 10.1021/acs.jpcb.0c09989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The distribution of ions in the proximity of the liquid-vapor interface of their aqueous solution has been the subject of an intense debate during the last decade. The effects of ionic polarizability have been one of its salient aspects. Much less has been said about the corresponding dynamical properties, which are substantially unexplored. Here, we investigate the single-particle dynamics at the liquid-vapor interface of several alkali halide solutions, using molecular dynamics simulations with polarizable and nonpolarizable force fields and intrinsic surface analysis. We analyze the diffusion coefficient, residence time, and velocity autocorrelation function of water and ions and investigate how these properties depend on the molecular layer where they reside. While anions are found in the first molecular layer for relatively long times, cations are only making quick excursions into it, thanks to thermal fluctuations. The in-layer residence time of ions and their molar fraction in the layer turned out to be linearly dependent on each other. We interpret this unexpected result using a simple two-state model. In addition, we found that, unlike water and other neat molecular liquids that show a different diffusion mechanism at the surface than in the bulk of their liquid phase, ions do not enjoy enhanced mobility in the surface layer of their aqueous solution. This result indicates that ions in the surface layer are shielded by their nearest water neighbors from being exposed to the vapor phase as much as possible. Such positions are available for the ions at the negatively curved troughs of the molecularly rugged liquid surface.
Collapse
Affiliation(s)
- György Hantal
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Straße 82, Vienna A-1190, Austria
| | - Jiří Kolafa
- Department of Physical Chemistry, University of Chemistry and Technology, Prague CZ-166 28 Prague 6, Czech Republic
| | - Marcello Sega
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Fürther Straße 248, Nürnberg D-90429, Germany
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka utca 6, Eger H-3300, Hungary
| |
Collapse
|
7
|
Hantal G, Horváth RA, Kolafa J, Sega M, Jedlovszky P. Surface Affinity of Alkali and Halide Ions in Their Aqueous Solution: Insight from Intrinsic Density Analysis. J Phys Chem B 2020; 124:9884-9897. [PMID: 33084342 DOI: 10.1021/acs.jpcb.0c05547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The surface tension of all aqueous alkali halide solutions is higher than that of pure water. According to the Gibbs adsorption equation, this indicates a net depletion of these ions in the interfacial region. However, simulations and experiments show that large, soft ions, such as I-, can accumulate at the liquid/vapor interface. The presence of a loose hydration shell is usually considered to be the reason for this behavior. In this work, we perform computer simulations to characterize the liquid-vapor interface of aqueous alkali chloride and sodium halide solutions systematically, considering all ions from Li+ to Cs+ and from F- to I-. Using computational methods for the removal of surface fluctuations, we analyze the structure of the interface at a dramatically enhanced resolution, showing that the positive excess originates in the very first molecular layer and that the next 3-4 layers account for the net negative excess. With the help of a fictitious system with charge-inverted ion pairs, we also show that it is not possible to rationalize the surface affinity of ions in solutions in terms of the properties of anions and cations separately. Moreover, the surface excess is generally dominated by the smaller of the two ions.
Collapse
Affiliation(s)
- György Hantal
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Straße 82, A-1190 Vienna, Austria
| | - Réka A Horváth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Jiří Kolafa
- Department of Physical Chemistry, University of Chemistry and Technology, 166 28 Prague 6, Czech Republic
| | - Marcello Sega
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Fürther Straße 248, D-90429 Nürnberg, Germany
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary
| |
Collapse
|
8
|
Gao P, Yang X, Tartakovsky AM. Learning Coarse-Grained Potentials for Binary Fluids. J Chem Inf Model 2020; 60:3731-3745. [PMID: 32668158 DOI: 10.1021/acs.jcim.0c00337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For a multiple-fluid system, CG models capable of accurately predicting the interfacial properties as a function of curvature are still lacking. In this work, we propose a new probabilistic machine learning (ML) model for learning CG potentials for binary fluids. The water-hexane mixture is selected as a typical immiscible binary liquid-liquid system. We develop a new CG force field (FF) using the Shinoda-DeVane-Klein (SDK) FF framework and compute parameters in this CG FF using the proposed probabilistic ML method. It is shown that a standard response-surface approach does not provide a unique set of parameters, as it results in a loss function with multiple shallow minima. To address this challenge, we develop a probabilistic ML approach where we compute the probability density function (PDF) of parameters that minimize the loss function. The PDF has a well-defined peak corresponding to a unique set of parameters in the CG FF that reproduces the desired properties of a liquid-liquid interface. We compare the performance of the new CG FF with several existing FFs for the water-hexane mixture, including two atomistic and three CG FFs with respect to modeling the interface structure and thermodynamic properties. It is demonstrated that the new FF significantly improves the CG model prediction of both the interfacial tension and structure for the water-hexane mixture.
Collapse
Affiliation(s)
- Peiyuan Gao
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xiu Yang
- Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Alexandre M Tartakovsky
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
9
|
Hantal G, Fábián B, Sega M, Jedlovszky P. Contribution of the two liquid phases to the interfacial tension at various water-organic liquid-liquid interfaces. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Horváth RA, Fábián B, Szőri M, Jedlovszky P. Investigation of the liquid-vapour interface of aqueous methylamine solutions by computer simulation methods. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Liu Z, Stecher T, Oberhofer H, Reuter K, Scheurer C. Response properties at the dynamic water/dichloroethane liquid–liquid interface. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1504132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Zhu Liu
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| | - Thomas Stecher
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| | - Harald Oberhofer
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| | - Karsten Reuter
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| | - Christoph Scheurer
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany
| |
Collapse
|
12
|
The Water-Alkane Interface at Various NaCl Salt Concentrations: A Molecular Dynamics Study of the Readily Available Force Fields. Sci Rep 2018; 8:352. [PMID: 29321556 PMCID: PMC5762912 DOI: 10.1038/s41598-017-18633-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/14/2017] [Indexed: 11/11/2022] Open
Abstract
In this study, classical molecular dynamic simulations have been used to examine the molecular properties of the water-alkane interface at various NaCl salt concentrations (up to 3.0 mol/kg). A variety of different force field combinations have been compared against experimental surface/interfacial tension values for the water-vapour, decane-vapour and water-decane interfaces. Six different force fields for water (SPC, SPC/E, TIP3P, TIP3Pcharmm, TIP4P & TIP4P2005), and three further force fields for alkane (TraPPE-UA, CGenFF & OPLS) have been compared to experimental data. CGenFF, OPLS-AA and TraPPE-UA all accurately reproduce the interfacial properties of decane. The TIP4P2005 (four-point) water model is shown to be the most accurate water model for predicting the interfacial properties of water. The SPC/E water model is the best three-point parameterisation of water for this purpose. The CGenFF and TraPPE parameterisations of oil accurately reproduce the interfacial tension with water using either the TIP4P2005 or SPC/E water model. The salinity dependence on surface/interfacial tension is accurately captured using the Smith & Dang parameterisation of NaCl. We observe that the Smith & Dang model slightly overestimates the surface/interfacial tensions at higher salinities (>1.5 mol/kg). This is ascribed to an overestimation of the ion exclusion at the interface.
Collapse
|
13
|
Zhou T, McCue A, Ghadar Y, Bakó I, Clark AE. Structural and Dynamic Heterogeneity of Capillary Wave Fronts at Aqueous Interfaces. J Phys Chem B 2017; 121:9052-9062. [PMID: 28871781 DOI: 10.1021/acs.jpcb.7b07406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a unique combination of slab-layering analyses and identification of truly interfacial molecules, this work examines water/vapor and water/n-hexane interfaces, specifically the structural and dynamic perturbations of the interfacial water molecules at different locations within the surface capillary waves. From both the structural and dynamic properties analyzed, it is found that these interfacial water molecules dominate the perturbations within the interfacial region, which can extend deep into the water phase relative to the Gibbs dividing surface. Of more importance is the demonstration of structural and dynamic heterogeneity of the interfacial water molecules at the capillary wave front, as indicated by the dipole orientation and the structural and dynamic behavior of hydrogen bonds and their networks.
Collapse
Affiliation(s)
- Tiecheng Zhou
- Department of Chemistry and the Materials Science and Engineering Program, Washington State University , Pullman, 99164-2920 Washington, United States
| | - Alex McCue
- Department of Chemistry and the Materials Science and Engineering Program, Washington State University , Pullman, 99164-2920 Washington, United States
| | - Yasaman Ghadar
- Department of Chemistry and the Materials Science and Engineering Program, Washington State University , Pullman, 99164-2920 Washington, United States
| | - Imre Bakó
- Institute of Organic Chemistry Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar Tudosók Körútja 2, P.O. Box 286, 1519 Budapest, Hungary
| | - Aurora E Clark
- Department of Chemistry and the Materials Science and Engineering Program, Washington State University , Pullman, 99164-2920 Washington, United States
| |
Collapse
|
14
|
Fábián B, Sega M, Horvai G, Jedlovszky P. Single Particle Dynamics at the Intrinsic Surface of Various Apolar, Aprotic Dipolar, and Hydrogen Bonding Liquids As Seen from Computer Simulations. J Phys Chem B 2017; 121:5582-5594. [PMID: 28498673 DOI: 10.1021/acs.jpcb.7b02220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the single molecule dynamics at the intrinsic liquid/vapor interface of five different molecular liquids (carbon tetrachloride, acetone, acetonitrile, methanol, and water). After assessing that the characteristic residence times in the surface layer are long enough for a meaningful definition of several transport properties within the layer itself, we characterize the dynamics of the individual molecules at the liquid surface by analyzing their normal and lateral mean-square displacements and lateral velocity autocorrelation functions and, in the case of the hydrogen bonding liquids (i.e., water and methanol), also the properties of the hydrogen bonds. Further, dynamical properties as well as the clustering of the molecules residing unusually long in the surface layer are also investigated. The global picture emerging from this analysis is that of a noticeably enhanced dynamics of the molecules at the liquid surface, with diffusion coefficients up to 4 times larger than in the bulk, and the disappearance of the caging effect at the surface of all liquids but water. The dynamics of water is dominated by the strong hydrogen bonding structure also at the liquid surface.
Collapse
Affiliation(s)
- Balázs Fábián
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics , Szt. Gellért tér 4, H-1111 Budapest, Hungary.,Institut UTINAM (CNRS UMR 6213), Université Bourgogne Franche-Comté , 16 route de Gray, F-25030 Besançon, France
| | - Marcello Sega
- Faculty of Physics, University of Vienna , Boltzmanngasse 5, A-1090 Vienna, Austria
| | - George Horvai
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics , Szt. Gellért tér 4, H-1111 Budapest, Hungary.,MTA-BME Research Group of Technical Analytical Chemistry, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Pál Jedlovszky
- MTA-BME Research Group of Technical Analytical Chemistry, Szt. Gellért tér 4, H-1111 Budapest, Hungary.,Department of Chemistry, Eszterházy Károly University , Leányka u. 6, H-3300 Eger, Hungary
| |
Collapse
|
15
|
Fábián B, Idrissi A, Marekha B, Jedlovszky P. Local lateral environment of the molecules at the surface of DMSO-water mixtures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:404002. [PMID: 27506283 DOI: 10.1088/0953-8984/28/40/404002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular dynamics simulations of the liquid-vapour interface of dimethyl sulphoxide (DMSO)-water mixtures of 11 different compositions, including two neat systems are performed on the canonical (N, V, T) ensemble at 298 K. The molecules constituting the surface layer of these systems are selected by means of the identification of the truly interfacial molecules (ITIM) method, and their local lateral environment at the liquid surface is investigated by performing Voronoi analysis. The obtained results reveal that both molecules prefer to be in a mixed local environment, consisting of both kinds of molecules, at the liquid surface, and this preference is even stronger here than in the bulk liquid phase. Neat-like patches, in which a molecule is surrounded by like neighbours, are not found. However, vacancies that are surrounded solely by water molecules are observed at the liquid surface. Our results show that strongly hydrogen bonded DMSO·H2O complexes, known to exist in the bulk phase of these mixtures, are absent from the liquid surface.
Collapse
Affiliation(s)
- Balázs Fábián
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary. Institut UTINAM (CNRS UMR 6213), Université Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon, France
| | | | | | | |
Collapse
|
16
|
|
17
|
Abrankó-Rideg N, Horvai G, Jedlovszky P. Structure of the adsorption layer of various ionic and non-ionic surfactants at the free water surface, as seen from computer simulation and ITIM analysis. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2014.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Jedlovszky P, Jójárt B, Horvai G. Properties of the intrinsic surface of liquid acetone, as seen from computer simulations. Mol Phys 2014. [DOI: 10.1080/00268976.2014.968227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Sega M, Horvai G, Jedlovszky P. Two-dimensional percolation at the free water surface and its relation with the surface tension anomaly of water. J Chem Phys 2014; 141:054707. [PMID: 25106600 DOI: 10.1063/1.4891323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The percolation temperature of the lateral hydrogen bonding network of the molecules at the free water surface is determined by means of molecular dynamics computer simulation and identification of the truly interfacial molecules analysis for six different water models, including three, four, and five site ones. The results reveal that the lateral percolation temperature coincides with the point where the temperature derivative of the surface tension has a minimum. Hence, the anomalous temperature dependence of the water surface tension is explained by this percolation transition. It is also found that the hydrogen bonding structure of the water surface is largely model-independent at the percolation threshold; the molecules have, on average, 1.90 ± 0.07 hydrogen bonded surface neighbors. The distribution of the molecules according to the number of their hydrogen bonded neighbors at the percolation threshold also agrees very well for all the water models considered. Hydrogen bonding at the water surface can be well described in terms of the random bond percolation model, namely, by the assumptions that (i) every surface water molecule can form up to 3 hydrogen bonds with its lateral neighbors and (ii) the formation of these hydrogen bonds occurs independently from each other.
Collapse
Affiliation(s)
- Marcello Sega
- Department of Physics, University of Rome "Tor Vergata," via della Ricerca Scientifica 1, I-00133 Rome, Italy and Institut für Computergestützte Biologische Chemie, University of Vienna, Währinger Strasse 17, A-1090 Vienna, Austria
| | - George Horvai
- MTA-BME Research Group of Technical Analytical Chemistry, Szt. Gellért tér 4, H‑1111 Budapest, Hungary
| | - Pál Jedlovszky
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| |
Collapse
|
20
|
Darvas M, Jorge M, Cordeiro MND, Jedlovszky P. Calculation of the intrinsic solvation free energy profile of methane across a liquid/liquid interface in computer simulations. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2013.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Role of the fluidity of a liquid phase in determining the surface properties of the opposite phase at the liquid–liquid interface. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Lísal M, Izák P. Molecular dynamics simulations of n-hexane at 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide interface. J Chem Phys 2013; 139:014704. [DOI: 10.1063/1.4811673] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
23
|
Darvas M, Horvai G, Jedlovszky P. Temperature dependence of the lateral hydrogen bonded clusters of molecules at the free water surface. J Mol Liq 2012. [DOI: 10.1016/j.molliq.2012.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Kiss P, Darvas M, Baranyai A, Jedlovszky P. Surface properties of the polarizable Baranyai-Kiss water model. J Chem Phys 2012; 136:114706. [DOI: 10.1063/1.3692602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Péter Kiss
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/a, H-1117 Budapest, Hungary
| | | | | | | |
Collapse
|
25
|
Lísal M, Posel Z, Izák P. Air–liquid interfaces of imidazolium-based [TF2N−] ionic liquids: insight from molecular dynamics simulations. Phys Chem Chem Phys 2012; 14:5164-77. [DOI: 10.1039/c2cp23572b] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Hantal G, Voroshylova I, Cordeiro MNDS, Jorge M. A systematic molecular simulation study of ionic liquid surfaces using intrinsic analysis methods. Phys Chem Chem Phys 2012; 14:5200-13. [DOI: 10.1039/c2cp23967a] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|